MATH 4X03: Home Assignment \# 3

Due to: October 24, 2000

Problem 1: Evaluate the following integrals:
(a) $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$,
(b) $\int_{-\infty}^{\infty} \frac{\cos k x \cos m x}{x^{2}+a^{2}} d x$
where k, m, a are real numbers.

Problem 2: Use principal value integrals to evaluate the following integrals:
(a) $\int_{0}^{\infty} \frac{\cos k x-\cos m x}{x^{2}} d x$,
(b) $\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x$

Problem 3: Suppose the functions $f(z)$ and $g(z)$ are holomorphic everywhere outside the circle C_{R} of radius R centered at the origin, with the limits:

$$
\lim _{z \rightarrow \infty} f(z)=f_{\infty}, \quad \lim _{z \rightarrow \infty} z g(z)=g_{\infty},
$$

where f_{∞} and g_{∞} are complex constants. Find

$$
\frac{1}{2 \pi i} \int_{C_{R}} g(z) e^{f(z)} d z
$$

Problem 4: The Poisson formula for the harmonic function $u(r, \theta)$ at the unit disc is

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} U(\phi) \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}} d \phi
$$

where $U(\theta)=\lim _{r \rightarrow 1^{-}} u(r, \theta)$. Derive the following expression for the harmonic conjugate function $v(r, \theta)$ at the unit disc:

$$
v(r, \theta)=v(0)+\frac{1}{\pi} \int_{0}^{2 \pi} U(\phi) \frac{r \sin (\theta-\phi)}{1-2 r \cos (\theta-\phi)+r^{2}} d \phi .
$$

What is the limiting function $V(\theta)$:

$$
V(\theta)=\lim _{r \rightarrow 1^{-}} v(r, \theta) \quad ?
$$

