MATH 4X03: Home Assignment \# 1

Due to: September 26, 2000

Problem 1: Given a function of two real variables $u=u(x, y)$, construct, if possible, a holomorphic function $f=f(z)$ of complex variable $z=x+i y$. If impossible, explain why.
(a) $u=\frac{y}{x^{2}+y^{2}}$
(b) $u=2 x(c-y)$
(c) $u=x^{3}-y^{3}$

Problem 2: Consider the integral

$$
I_{\epsilon}=\int_{\mathrm{C}} z^{\alpha} f(z) d z
$$

where $\alpha>-1, \alpha$ is real, $f(z)$ is a holomorphic function inside C, and C is a Jordan contour:

$$
C=\{z:|z|=\epsilon\}
$$

Prove that $\lim _{\epsilon \rightarrow 0} I_{\epsilon}=0$.

Problem 3: Evaluate the integral

$$
\int_{\mathrm{C}} \frac{e^{i z} d z}{(z-\pi / 2)(z-3 \pi / 2)}
$$

for two Jordan contours

$$
\begin{array}{ll}
\text { (a) } & C=\{z:|z|=\pi\} \\
\text { (b) } & C=\{z:|z|=2 \pi\}
\end{array}
$$

Problem 4: Use power series to evaluate the integrals
(a) $\int_{\mathrm{C}} \frac{\sin z d z}{z^{2}}$,
(b) $\int_{\mathrm{C}} \frac{(\cos z-1) d z}{z^{3}}$,
where C is a unit circle.

