MATH 3J04: Solutions to Home Assignment \# 2

Problem 3.3 \#8: The spectrum of the underlying matrix consists of a single eigenvalue $\lambda_{1}=-6$ and a double eigenvalue $\lambda_{2}=\lambda_{3}=-3$. There are three (non-degenerate) eigenvectors $\mathbf{x}_{1}, \mathrm{x}_{2}$ and x_{3}. The general solution of the system is

$$
\mathbf{y}(t)=c_{1}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) e^{-6 t}+c_{2}\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) e^{-3 t}+c_{3}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right) e^{-3 t}
$$

Problem 3.3 \#14: The general solution of the system is

$$
\mathbf{y}(t)=c_{1}\binom{3}{1} e^{3 t}+c_{2}\binom{-3}{1} e^{t}
$$

Matching with the initial condition $\mathbf{y}(0)=(0,2)^{t}$, one can find $c_{1}=c_{2}=1$.

Problem 3.4 \#8: Since the underlying matrix has two real eigenvalues of opposite signs: $\lambda_{1}=2$ and $\lambda_{2}=-5$, the critical point $y_{1}=y_{2}=0$ is a saddle point. The real general solution is

$$
\mathbf{y}(t)=c_{1}\binom{4}{3} e^{2 t}+c_{2}\binom{1}{-1} e^{-5 t}
$$

Problem 3.5 \#8: There are three critical points at $y=0$ (center), $y=1$ (saddle point), and $y=-1$ (saddle point). The nonlinear equation can be linearized either as the second-order scalar equation or as a system of two differential equations.

Problem 18.8 \#6: The power method with scaling predicts the following values for the dominant eigenvalue: $\lambda^{(1)}=9.93, \lambda^{(2)}=12.37, \lambda^{(3)}=10.52, \lambda^{(4)}=10.52, \lambda^{(5)}=11.77$, $\lambda^{(6)}=10.86, \lambda^{(7)}=11.50, \lambda^{(8)}=11.05, \lambda^{(9)}=11.36, \lambda^{(10)}=11.14$. The convergence is very slow. The scaled eigenvector for the dominant eigenvalue after $3,5,10$ iterations is

$$
\mathrm{x}^{(3)}=\left(\begin{array}{c}
0.49 \\
1 \\
0.58 \\
0.79
\end{array}\right), \quad \mathrm{x}^{(5)}=\left(\begin{array}{c}
0.51 \\
1 \\
0.58 \\
0.83
\end{array}\right), \quad \mathrm{x}^{(10)}=\left(\begin{array}{c}
0.53 \\
1 \\
0.60 \\
0.87
\end{array}\right)
$$

Problem 18.9 \#8: After 3,5 iterations of the QR factorization algorithm, the matrix A is

$$
A^{(3)}=\left(\begin{array}{ccc}
14.20 & 0.01 & 0 \\
0.01 & -6.31 & 0.007 \\
0 & 0.007 & 2.105
\end{array}\right), \quad A^{(5)}=\left(\begin{array}{ccc}
14.20 & 0.002 & 0 \\
0.002 & -6.305 & 0.0008 \\
0 & 0.0008 & 2.1048
\end{array}\right)
$$

After 10 iterations, the matrix $A^{(10)}$ is diagonal with the following approximation for eigenvalues: $\lambda_{1} \approx 14.2, \lambda_{2} \approx-6.305$, and $\lambda_{3} \approx 2.105$.

