
MATH 3J04: Solutions to Home Assignment # 1

Problem 7.1 #14: The spectrum consists of a single eigenvalue �1 = �2 and a double

eigenvalue �2 = �3 = 0. The eigenvectors are
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Geometric multiplicity of the double eigenvalue is one, while algebraic multiplicity is two.

Problem 7.3 #12: The skew-symmetric matrices of 3x3, 5x5, etc. are always singular,

while the skew-symmetric matrices of 2x2, 4x4, etc. may generally be non-singular. The

simplest way to show this is to use the form,

det(A) = (�1)
n�1�2:::�n

The eigenvalues of skew-symmetric matrices are pure imaginary and complex conjugate.

Therefore, if there is an odd number of eigenvalues (n = 3; 5,etc), one eigenvalue is always

zero, i.e. det(A) = 0.

Problem 7.5 #10: The basis of eigenvectors is
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and the diagonal matrix of eigenvalues D = X�1AX is
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Problem 18.1 #12: The Gauss elimination algorithm shows that the system has no

solutions.

Problem 18.2 #4: With no row interchanges, the LU factorization of A is
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The linear system has a unique solution: x1 = �1, x2 = 2, x3 = �1.

Problem 18.3 #4: The iterative scheme is
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The scheme converges to an exact solution: x1 = �2:5, x2 = 2, x3 = 4:5.


