MATH 3J04: Solutions to Home Assignment \# 1

Problem 7.1 \#14: The spectrum consists of a single eigenvalue $\lambda_{1}=-2$ and a double eigenvalue $\lambda_{2}=\lambda_{3}=0$. The eigenvectors are

$$
\mathrm{x}_{1}=\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right) ; \quad \mathrm{x}_{2}=\mathrm{x}_{3}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)
$$

Geometric multiplicity of the double eigenvalue is one, while algebraic multiplicity is two.

Problem 7.3 \#12: The skew-symmetric matrices of $3 \times 3,5 \times 5$, etc. are always singular, while the skew-symmetric matrices of $2 \times 2,4 \times 4$, etc. may generally be non-singular. The simplest way to show this is to use the form,

$$
\operatorname{det}(A)=(-1)^{n} \lambda_{1} \lambda_{2} \ldots \lambda_{n}
$$

The eigenvalues of skew-symmetric matrices are pure imaginary and complex conjugate. Therefore, if there is an odd number of eigenvalues ($n=3,5$,etc), one eigenvalue is always zero, i.e. $\operatorname{det}(A)=0$.

Problem 7.5 \#10: The basis of eigenvectors is

$$
X=\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)
$$

and the diagonal matrix of eigenvalues $D=X^{-1} A X$ is

$$
D=\left(\begin{array}{cc}
-5 & 0 \\
0 & 2
\end{array}\right)
$$

Problem 18.1 \#12: The Gauss elimination algorithm shows that the system has no solutions.

Problem 18.2 \#4: With no row interchanges, the LU factorization of A is

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
5 & 4 & 1
\end{array}\right), \quad U=\left(\begin{array}{lll}
2 & 2 & 4 \\
0 & 1 & 5 \\
0 & 0 & 3
\end{array}\right) .
$$

The linear system has a unique solution: $x_{1}=-1, x_{2}=2, x_{3}=-1$.

Problem 18.3 \#4: The iterative scheme is

$$
\begin{gathered}
x_{1}^{(m+1)}=\frac{1}{8}\left(-11.5-2 x_{2}^{(m)}-x_{3}^{(m)}\right), \\
x_{2}^{(m+1)}=\frac{1}{6}\left(18.5-x_{1}^{(m+1)}-2 x_{3}^{(m)}\right), \\
x_{3}^{(m+1)}=\frac{1}{5}\left(12.5-4 x_{1}^{(m+1)}\right),
\end{gathered}
$$

The scheme converges to an exact solution: $x_{1}=-2.5, x_{2}=2, x_{3}=4.5$.

