MATH 3J04: Home Assignment \# 3

Due to: October 24, 2000
Note: Numbers for problems refer to the main textbook, e.g. problem 7.1: \#14 stands for exercise \# 14 from section 7.1. Screen or graphical outputs of computer programs such as Matlab programs are allowed provided they are accompanied by clear explanation and details of the method.

Problem 19.1 \#6: Solve the initial problem for the logistic equation by the improved Euler (predictor-corrector) method for 10 steps.

$$
\frac{d y}{d t}=y-y^{2}, \quad y(0)=0.5, \quad \Delta t=0.1
$$

Verify the solution $y(t)=1 /\left(1+e^{-t}\right)$. Compute the error.
Problem 19.3\#4: Solve the initial value problem by the Euler method for 5 steps:

$$
\frac{d^{2} y}{d t^{2}}=t \frac{d y}{d t}-3 y, \quad y(0)=0, \quad y^{\prime}(0)=-3, \quad \Delta t=0.05
$$

Verify the solution $y(t)=t^{3}-3 t$. Compute the error.
Problem 19.3 \#8: Solve the initial value problem for the Bessel equation by the RungeKutta method for 10 steps:

$$
t \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+t y=0, \quad y(1)=0.765198, \quad y^{\prime}(1)=-0.440051, \quad \Delta t=0.5
$$

Plot the graph of the function, which is the fundamental Bessel function $y(t)=J_{0}(t)$.
Problem 10.3 \#6: Find the Fourier series of the function $f(x)=1-x^{2}$ at $x \in[-1,1]$ that is extended periodically with the period of 2 .

Problem 10.8 \#16: Represent the function $f(x)=\pi-x$ for $x \in[0, \pi]$ and $f(x)=0$ for $x \in[\pi, \infty)$ in the form of the Fourier Sine Transform.

Problem 10.10 \#8: Find the Fourier transform of the function $f(x)=e^{x}$ for $x<0$ and $f(x)=e^{-x}$ for $x>0$.

