MATH 3J04: Home Assignment \# 2

Due to: October 10, 2000

Note: Numbers for problems refer to the main textbook, e.g. problem 7.1: \#14 stands for exercise \# 14 from section 7.1. Screen or graphical outputs of computer programs such as Matlab programs are allowed provided they are accompanied by clear explanation and details of the method.

Problem 3.3\#8: Find a real general solution of the system:

$$
\begin{aligned}
y_{1}^{\prime} & =-3 y_{1}-y_{2}+2 y_{3}, \\
y_{2}^{\prime} & =-4 y_{2}+2 y_{3}, \\
y_{3}^{\prime} & =y_{2}-5 y_{3} .
\end{aligned}
$$

Problem 3.3\#14: Solve the initial value problem for the system:

$$
\begin{aligned}
y_{1}^{\prime} & =2 y_{1}+3 y_{2}, \\
y_{2}^{\prime} & =\frac{1}{3} y_{1}+2 y_{2}, \\
y_{1}(0) & =0, \quad y_{2}(0)=2 .
\end{aligned}
$$

Problem 3.4 \#8: Determine the type and stability of the critical point. Then find a real general solution of the system:

$$
\begin{aligned}
& y_{1}^{\prime}=-y_{1}+4 y_{2} \\
& y_{2}^{\prime}=3 y_{1}-2 y_{2} .
\end{aligned}
$$

Problem 3.5\#8: Determine the location and type of all critical points of the differential equation:

$$
\frac{d^{2} y}{d t^{2}}+y-y^{3}=0
$$

Problem 18.8 \#6: Use power method with scaling of eigenvectors to find an approximation for dominant eigenvalue (show $3 ; 5 ; 10$ iterations):

$$
\left(\begin{array}{llll}
2 & 4 & 0 & 1 \\
4 & 1 & 2 & 8 \\
0 & 2 & 5 & 2 \\
1 & 8 & 2 & 0
\end{array}\right)
$$

Problem 18.9\#8: Use QR-factorization algorithm to compute eigenvalues of the matrix (show 3;5;10 iterations):

$$
\left(\begin{array}{ccc}
14.2 & -0.1 & 0 \\
-0.1 & -6.3 & 0.2 \\
0 & 0.2 & 2.1
\end{array}\right)
$$

