MATH 3J04: Home Assignment \# 1

Due to: September 26, 2000
Note: Numbers for problems refer to the main textbook, e.g. problem 7.1: \#14 stands for exercise \# 14 from section 7.1. Screen or graphical outputs of computer programs such as Matlab programs are allowed provided they are accompanied by clear explanation and details of the method.

Problem 7.1 \#14: Find the spectrum and eigenvectors of the matrix:

$$
\left(\begin{array}{ccc}
0 & 7 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Problem 7.3\#12: Matrix A is called non-singular if $\operatorname{det} A \neq 0$. Do there exist nonsingular skew-symmetric $3 x 3$ matrices? $4 x 4$? $5 x 5$? Prove it or give details!

Problem 7.5 \#10: Find a basis of eigenvectors and diagonalize the matrix:

$$
\left(\begin{array}{cc}
-19 & 7 \\
-42 & 16
\end{array}\right)
$$

Problem 18.1 \#12: Solve the system by the Gauss elimination algorithm:

$$
\begin{aligned}
5 x_{1}+3 x_{2}+x_{3} & =2 \\
-4 x_{2}+8 x_{3} & =-3 \\
10 x_{1}-6 x_{2}+26 x_{3} & =-0
\end{aligned}
$$

Problem 18.2 \#4: Find the $L U$ - factorization of the system and solve it by Doolittle's method:

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =-2 \\
4 x_{1}+5 x_{2}+13 x_{3} & =-7 \\
10 x_{1}+14 x_{2}+43 x_{3} & =-25
\end{aligned}
$$

Problem 18.3 \#6: Find an approximate solution of the system by doing $3 ; 5 ; 10$ iterations of the Gauss-Seidel method. Is the method convergent for this system?

$$
\begin{aligned}
4 x_{1}+5 x_{3} & =12.5 \\
x_{1}+6 x_{2}+2 x_{3} & =18.5 \\
8 x_{1}+2 x_{2}+x_{3} & =-11.5
\end{aligned}
$$

