

## 5.2 Laplace transform and applications

### 5.2.1 Theorem on the Laplace transform

**Theorem:** Let  $f(t)$  be a continuous function on  $t \geq 0$ , which may grow at most exponentially at infinity:

$$\exists \alpha > 0, \quad |f_\infty| < \infty : \quad \lim_{t \rightarrow +\infty} e^{-\alpha t} f(t) = f_\infty.$$

Then, the Laplace transform  $F(s)$  exists for any  $s \in \mathbb{R}$ :

$$F(s) = \int_0^\infty f(t) e^{-st} dt.$$

The function  $f(t)$  can be replaced by the inverse Laplace transform:

$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) e^{st} ds, \quad c > \alpha$$

where  $c \in \mathbb{R}$  is located to the right of any singularities of  $F(s)$ .

### Examples:

Exponential function:

$$f(t) = e^{\alpha t}, \quad F(s) = \frac{1}{s - \alpha}$$

Power function:

$$f(t) = t^n, \quad F(s) = \frac{n!}{s^{n+1}}$$

Trigonometric functions:

$$f(t) = \sin(\omega t), \quad F(s) = \frac{\omega}{\omega^2 + s^2}$$

$$f(t) = \cos(\omega t), \quad F(s) = \frac{s}{\omega^2 + s^2}$$

### 5.2.2 Properties of the Laplace transform

- Laplace transform is a linear operator

$$(i) \quad \mathcal{L}[f(t) + g(t)] = \mathcal{L}[f(t)] + \mathcal{L}[g(t)]$$

$$(ii) \quad \mathcal{L}[\lambda f(t)] = \lambda \mathcal{L}[f(t)]$$

- exponential factor

$$\mathcal{L}[e^{at} f(t)] = F(s - a)$$

- shift

$$g(t) = \begin{cases} 0, & 0 \leq t \leq a \\ f(t - a), & t \geq a \end{cases} \quad \mathcal{L}[g(t)] = e^{-as} F(s)$$

- first derivative

$$\mathcal{L}[f'(t)] = sF(s) - f(0)$$

- second derivative

$$\mathcal{L}[f''(t)] = s^2 F(s) - sf(0) - f'(0)$$

- convolution

$$\mathcal{L}[f(t) * g(t)] = \mathcal{L} \left[ \int_0^t f(\tau)g(t - \tau)d\tau \right] = F(s)G(s)$$

### 5.2.3 Recipe # 15: Solutions of PDEs with the Laplace transform

$$u_t = u_{xx}, \quad x \geq 0, \quad t \geq 0$$

such that

$$u(0, t) = f(t), \quad t \geq 0$$

and

$$u(x, 0) = 0, \quad x \geq 0$$

where  $f(t)$  is continuous and bounded for any  $t \geq 0$ .

1. Apply Laplace transform to  $f(t)$ :

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

2. Apply the time-dependent Laplace transform to  $u(x, t)$ :

$$U(x, s) = \int_0^\infty u(x, t)e^{-st}dt$$

such that  $U(0, s) = F(s)$ .

3. Apply Laplace transform to the PDE and obtain the initial-value problem for  $U(x, s)$  in  $x$ :

$$\mathcal{L}[u_t(x, t)] = sU(x, s) - U(x, 0), \quad \mathcal{L}[u_{xx}(x, t)] = \frac{\partial^2 U(x, s)}{\partial x^2},$$

4. Find a unique solution for  $U(s, t)$ :

$$U(s, t) = F(s)e^{-x\sqrt{s}}$$

5. Invert the Laplace transform and obtain a unique solution for  $u(x, t)$ :

$$u(x, t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s)e^{-x\sqrt{s}}e^{st}ds$$