
3.2 Sturm–Liouville eigenvalue problem

3.2.1 Formalism of the Sturm–Liouville theory

The Sturm–Liouville eigenvalue problem:

d

dx

(
ρ(x)

dy

dx

)
+ u(x)y + λw(x)y = 0, a ≤ x ≤ b,

subject to the boundary conditions at x = a and x = b.

Parameters that are given:

functions ρ(x), u(x) and w(x), where w(x) ≥ 0 on x ∈ [a, b]

Parameters that are to be found:

eigenvalue λ, eigenfunction y(x), where y(x) 6= 0 on x ∈ [a, b]

Theorem: Any scalar second-order ODE can be transformed to

the form of the Sturm–Liouville eigenvalue problem.

Sturm–Liouville operator:

A = − d

dx

(
ρ(x)

d

dx

)
− u(x)

Vector space:

V = L2([a, b]) : (f, g) =

∫ b

a

f (x)g(x)dx

Example: Bessel equation

x2y′′ + xy′ + (λx2 − n2)y = 0



3.2.2 Symmetric Sturm–Lioiville problems

Theorem: The Sturm–Liouville operator is symmetric with re-

spect to the boundary conditions, such that

∀f (x), g(x) ∈ L2([a, b]) : (f,Ag) = (Af, g)

if and only if f (x) and g(x) satisfy symmetric boundary conditions:

ρ(x) (f (x)g′(x)− f ′(x)g(x))
∣∣x=b

x=a
= 0

Example of symmetric boundary conditions:

1. Dirichlet

y(a) = y(b) = 0

2. Neumann

y′(a) = y′(b) = 0

3. Periodic

y(a) = y(b), y′(a) = y′(b)

Theorem: LetA be a symmetric Sturm–Liouville operator. Then,

• All eigenvalues λ are real

• There exists infinitely many linearly independent eigenfunc-

tions y(x) in vector space L2([a, b])

• Eigenfunctions for distinct eigenvalues are orthogonal with re-

spect to the weight w(x) and those for multiple eigenvalues

can be orthogonalized with the Gram-Schmidt orthogonaliza-

tion procedure

• Eigenfunctions of A form an ortho-normal basis in L2([a, b])



3.2.3 Series of eigenfunctions

Theorem: Any function f (x) ∈ L2([a, b]) can be uniquely repre-

sented by the series of eigenfunctions {un(x)}∞n=1 of the symmetric

Sturm–Liouville eigenvalue problem:

∀f (x) ∈ L2([a, b]) : f (x) =

∞∑
n=1

cnun(x),

where the projection formula are:

cn =

∫ b

a w(x)f (x)un(x)dx∫ b

a w(x)u2
n(x)dx

, n ≥ 1.

The series converges in the mean-square sense, such that

lim
N→∞

∫ b

a

w(x)

(
f (x)−

N∑
n=1

cnun(x)

)2

dx = 0

Properties of the series of ortho-normalized eigenfunctions:∫ b

a

w(x)en(x)em(x)dx =

{
0, i 6= j

1, i = j

• Parseval’s equality:

∞∑
n=1

c2
n =

∫ b

a

w(x)f 2(x)dx

• Bessel’s inequality:

N∑
n=1

c2
n ≤

∫ b

a

w(x)f 2(x)dx



3.2.4 Recipe # 11: Solution of the boundary-value problem

y′′ + λy = 0, a ≤ x ≤ b

subject to two separated boundary conditions:

α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0,

where λ is an eigenvalue, y(x) is an eigenfunction (y(x) 6= 0),

and α1,2 and β1,2 are some constants. Assume that the boundary

conditions are symmetric.

1. Solve the problem for λ = ω2 > 0 as

y(x) = c1 cos ωx + c2 sin ωx

and find the values of (c1, c2) and ω from the boundary con-

ditions.

2. Solve the problem for λ = 0 as

y(x) = c1 + c2x

and find the values of (c1, c2) from the boundary conditions.

3. Solve the problem for λ = −p2 < 0 as

y(x) = c1e
px + c2e

−px

and find the values of (c1, c2) and p from the boundary condi-

tions.

4. Write a complete set of eigenvalues λ = {λn}∞n=1 and a com-

plete set of eigenfunctions y(x) = {un(x)}∞n=1.

5. Series of eigenfunctions is

f (x) ∈ L2([a, b]) : f (x) =

∞∑
n=1

cnun(x),

where

cn =
(f, un)

(un, un)
=

∫ b

a f (x)un(x)dx∫ b

a u2
n(x)dx




