
2.3. Power series solutions of second-order ODEs

Consider the linear homogeneous second-order equation:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0,

where p(x) and q(x) are given smooth functions of x ∈ R

2.3.1. Classification of points in the second-order ODE

The point x = 0 is:

• ordinary if p(0) and q(0) exist

• regular singular if p(0) or q(0) do not exist

but limx→0 xp(x) and limx→0 x2q(x) exist

• irregular singular if limx→0 xp(x) or

limx→0 x2q(x) do not exist

Examples:

y′′ + y = 0

x2y′′ + y = 0

x4y′′ + y = 0



2.3.2. List of important theorems

Theorem: Let x = 0 be an ordinary point. Two linearly inde-

pendent solutions y1(x) and y2(x) can be found in the power series

form:

y1,2(x) =

∞∑
k=0

akx
k,

where {ak}∞k=0 are numerical coefficients. The power series con-

verge for |x| < R, where R > 0 is a distance to the closest singular

point.

Theorem: Let x = 0 be a regular singular point. At least one

solution y1(x) can be found in the Frobenius series form:

y1(x) = xp1

∞∑
k=0

akx
k,

where {ak}∞k=0 are numerical coefficients and p1 is the largest index

of the Euler singular equation. The Frobenius series converges for

|x| < R, where R > 0 is a distance to the closest singular point.

Remarks:

• If p1 − p2 is not an integer, the other solution y2(x) can also

be found in the Frobenius series form.

• If p1 − p2 is an integer, the second solution has a modified

Frobenius series form:

y2(x) = c0 ln |x|y1(x) + xp2

∞∑
k=0

bkx
k,

where {bk}∞k=0 are numerical coefficients and c0 is constant,

which can be zero.

• If p1 = p2, the second solution y2(x) has always a logarithmic

term (i.e. c0 6= 0)



2.3.3. Recipe # 9: Power series solution of second-order ODEs

Assume that x = 0 is an ordinary point of the second-order ODE:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0,

1. Look for power series solution near x = 0:

y(x) =

∞∑
k=0

akx
k,

2. Find a recursive equation for numerical coefficients {ak}∞k=0

3. Identify two linearly independent solutions for y1(x) and y2(x)

4. Find radius R of convergence of the power series solution

5. Find an explicit expression for an, n = 0, 1, ... for each solu-

tion, if possible

6. Find closed analytical expressions for the fundamental solu-

tions y1(x) and y2(x), if possible

Example: the harmonic oscillation equation

y′′ + ω2
0y = 0



2.3.4. Recipe # 10: Frobenius series solution of second-order ODEs

Assume that x = 0 is a regular singular point of the second-order

ODE:
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0,

1. Find the indices p1 and p2 (p1 ≥ p2) of the Euler singular

equation

2. Look for Frobenius series solution near x = 0:

y(x) = xp1

∞∑
k=0

akx
k,

3. Find a recursive equation for numerical coefficients {ak}∞k=0

4. Find radius R of convergence of the Frobenius series solution

5. Find an explicit expression for an, n = 0, 1, ..., if possible

6. Find a closed analytical expression for y1(x), if possible

7. Construct the second solution y2(x) from a Wronskian equa-

tion and a modified Frobenius series

Example: the Bessel’s equation

x2y′′ + xy′ + (x2 − n2)y = 0, n ∈ N, x ≥ 0


