
2.2. General first-order and second-order differential equations

2.2.1. Important theorem on a system of ODEs

Consider the system of linear homogeneous equations with variable

coefficients:
dy

dx
= A(x)y, t = x,

where y ∈ Rn, A : Rn 7→ Rn, and y(0) = y0.

Theorem: Let {y1(x),y2(x), ...,yn(x)} be a set of n linearly

independent solutions of the system for x ≥ 0. Then,

1. The matrix of fundamental solutions

S(x) = [y1(x),y2(x), ...,yn(x)]

is non-singular for x ≥ 0

2. The Wronskian determinant W (x) = det(S(x)) satisfies the

first-order equation:

dW (x)

dx
= tr(A)(x)W (x)

3. The general solution of the system is

y(x) = c1y1(x) + c2y2(x) + ... + cnyn(x),

where (c1, c2, ..., cn) are constants in x

4. The vector of constants c = (c1, c2, ..., cn)T is uniquely defined

from y(0) = y0 as c = S−1(0)y0.

Example:

A(x) =

(
0 1

4/x2 −1/x

)



2.2.2. Important theorem on a scalar ODE

Consider a scalar linear homogeneous n-th order equation with

variable coefficients:

dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ ... + a1(x)

dy

dx
+ a0(x)y = 0,

where y = y(x) such that

y(0) = y0, y′(0) = y′0, ... y(n−1)(0) = y
(n−1)
0 .

Theorem: Let {y1(x), y2(x), ..., yn(x)} be a set of n linearly in-

dependent solutions of the scalar equation for x ≥ 0. Then,

1. The Wronskian matrix is non-singular for x ≥ 0:

S(x) =


y1 y2 ... yn

y′1 y′2 ... y′n
... ... ... ...

y
(n−1)
1 y

(n−1)
2 ... y

(n−1)
n


2. The Wronskian determinant W (x) = det(S(x)) satisfies the

first-order equation:

dW (x)

dx
= −an−1(x)W (x)

3. The general solution of the scalar equation is

y(x) = c1y1(x) + c2y2(x) + ... + cnyn(x),

where (c1, c2, ..., cn) are constants in x

4. The vector of constants c = (c1, c2, ..., cn)T is uniquely defined

from the vector of initial values y(0) = (y0, y
′
0, ..., y

(n−1)
0 )T as

c = S−1(0)y0.

Example:

x2y′′ + xy′ − 4y = 0

y′′ + 3y′ + 2y = 0



2.2.3. Recipe # 7: Solution of a scalar n-order ODE with constant coefficients

Consider a scalar linear homogeneous n-th order equation with

constant coefficients:

dny

dxn
+ an−1

dn−1y

dxn−1
+ ... + a1

dy

dx
+ a0y = 0,

where y = y(x) such that

y(0) = y0, y′(0) = y′0, ... y(n−1)(0) = y
(n−1)
0 .

1. Look for particular solutions by separating the variables:

y(x) = eλx : D(λ) = 0

2. Find all roots of the characteristic equation D(λ) = 0:

λ = λ1, λ = λ2, ... λ = λn

3. If all roots are distinct, construct a general solution by the

Linear Superposition Principle:

y(x) = c1e
λ1x + c2e

λ2x + ... + cne
λnx

4. Find the unique solution from the initial values:

c1 + c2 + ... + cn = y0

λ1c1 + λ2c2 + ... + λncn = y′0
· · · · · ·

λn−1
1 c1 + λn−1

2 c2 + ... + λn−1
n cn = y

(n−1)
0

or in the vector form: c = V −1y0, where V is the Vander-

monde determinant of (λ1, λ2, ..., λn).

Example:

y′′ − p2y = 0

y′′ + ω2
0y = 0

y′′ = 0



2.2.4. General solution of an inhomogeneous first-order ODE

Consider the linear inhomogeneous first-order equation:

dy

dx
+ p(x)y = q(x), y(0) = y0,

where p(x) and q(x) are given smooth functions of x ≥ 0

1. When q(x) = 0, the solution is found by method of separation

of variables:

y(x) = y0 exp

(
−

∫ x

0

p(s)ds

)
.

2. When q(x) 6= 0, the solution is found by method of variation

of constants:

y(x) = y0 exp

(
−

∫ x

0

p(s)ds

)
+

(∫ x

0

q(s) exp

(∫ s

0

p(s′)ds′
)

ds

)
exp

(
−

∫ x

0

p(s)ds

)
.

3. General solution of the inhomogeneous problem is

y(x) = yc(x) + yp(x),

where yc(x) is a general solution of the homogeneous prob-

lem and yp(x) is a particular solution of the inhomogeneous

problem

Example:

xy′ + (1 + x)y = e−x, y(1) = 3.

Note that x = 0 is a singular point of the ODE.



2.2.5. General solution of an inhomogeneous second-order ODE

Consider the linear inhomogeneous second-order equation:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x), y(0) = y0, y′(0) = y′0,

where p(x), q(x) and r(x) are given smooth functions of x ≥ 0

1. When r(x) = 0, the general solution is uniquely defined by

two fundamental solutions y1(x) and y2(x):

y(x) = c1y1(x) + c2y2(x),

such that

W (x) =

(
y1 y2

y′1 y′2

)
6= 0, x ≥ 0

2. When r(x) = 0 and one fundamental solution y1(x) is found,

then the other other solution y2(x) is found from:

y2(x) = y1(x)

∫ x

0

W (s)ds

y2
1(s)

where

W (x) = exp

(
−

∫ x

0

p(s)ds

)
3. When r(x) 6= 0, the particular solution of the inhomogeneous

problem:

yp(x) =

∫ x

0

r(s) (y1(s)y2(x)− y1(x)y2(s)) ds

W (s)

and the general solution is

y(x) = c1y1(x) + c2y2(x) + yp(x),

where c1 and c2 are constants.

Example:

x2y′′ − 2y = x, y(1) = 1, y′(1) = −1

Note that x = 0 is a singular point of the ODE.



2.2.6. Recipe # 8: Solution of a Euler ODE

Consider a scalar linear homogeneous Euler equation:

xndny

dxn
+ an−1x

n−1d
n−1y

dxn−1
+ ... + a1x

dy

dx
+ a0y = 0,

where y = y(x)

1. Look for particular solutions by separating the variables:

y(x) = xσ : D(σ) = 0

2. Find all roots of the characteristic equation D(σ) = 0:

σ = σ1, σ = σ2, ... σ = σn

3. If all roots are distinct, construct a general solution by the

Linear Superposition Principle:

y(x) = c1x
σ1 + c2x

σ2 + ... + cnx
σn

Example:

x2y′′ − 2y = 0

x2y′′ + xy′ − n2y = 0


