<u>Vectors</u>

A **vector** is an arrow between two points, referred to as the **initial** and **terminal** points. The distance between the initial and terminal points for a vector **a** is called the **length** (or **magnitude** or **norm**) of the vector and it is denoted by $\|\mathbf{a}\|$.

Properties of a vector

- 1. Two vectors are **equal** if they have the same length and the same direction.
- 2. The vector is **zero** if it has the zero length.
- 3. Two vectors are **parallel** if they have the same or opposite directions.
- 4. The vector is **negative** of another vector if it is obtained by exchanging the initial and terminal points. The negative vector has the same length and the opposite direction.

Vectors are added using the **parallelogram rule**.

Properties of vector addition

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

3.
$$v + 0 = v$$

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

Example: Show that

$$\mathbf{v} + (\mathbf{u} - \mathbf{v}) = \mathbf{u}$$

The scalar multiple $k\mathbf{v}$ of a vector \mathbf{v} by a scalar k is the vector that is parallel to \mathbf{v} in the same direction if k > 0 or in the opposite direction if k < 0 and it has the length $|k| ||\mathbf{v}||$.

Properties of scalar multiplication

1.
$$||k\mathbf{v}|| = |k|||\mathbf{v}||$$

2.
$$1v = v$$

3.
$$0\mathbf{v} = \mathbf{0}, k\mathbf{0} = \mathbf{0}$$

Example: Prove that the diagonals of a parallelogram intersect at exactly mid-points.

A vector \mathbf{v} is called a **unit** vector if it has the unit length: $\|\mathbf{v}\| = 1$.

Example

If $\mathbf{v} \neq \mathbf{0}$, then $\frac{1}{\|\mathbf{v}\|}\mathbf{v}$ is a unit vector in the same direction as \mathbf{v} .

<u>Theorem</u>: Two vectors are parallel if and only if one vector is a scalar multiple of the other vector.