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Introduction

Density waves in cigar—shaped Bose—Einstein condensates are modeled by
the Gross-Pitaevskii equation

iUy + €2 Uxx + (1 — x?)u — [u?u =0,
where ¢ is a small parameter.

Limit e — 0 is referred to as the semi-classical limit or the Thomas—Fermi
approximation since the work of L.H. Thomas (1927) and E. Fermi (1928).

Theorem (Ignat & Milot, 2006): For sufficiently small € > 0, there exists a
real-valued, positive-definite global minimizer of the Gross—Pitaevskii energy

_ } 2 2 l 2 2 l 4
Es(u)—/R(zs 0el? + 502~ 1)Jul® + 7|uf*) dx
in the energy space
Hy = {ueH'(R): xuel?R)}.
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Ground state in the variational theory

Let 7. be a global minimizer of E.. From Euler—Lagrange equations, it solves
—enl(x) + (2 +x* = 1) n(x) =0, Vx €R.
The formal limit for the ground state is

(x) = (L—-x?)Y2 for |x| <1,
0 = 0, for |x| > 1,

By variational analysis via sub- and super-solutions, it is true that

0<n.(x)<CeY3exp (j;}i) for x| > 1,
0<(1—-x?)Y2 —p(x) <Cel3(1—x2)12 for x| <1—¢e'/3,

where C is e-independent.
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Ground state in the asymptotic theory

@ Asymptotic solution is constructed on the three scales:
x| <1—e%3 |x|e(@—-e*31+6%3), and |x|>1+¢e%/3.
with the WKB solutions, Painleve solutions, and Airy function solutions.
o Let

1/3 1—x2

n:(X) = e/ ve(y), YZW

and write an equation on 7.(y):
41—y (y) - 222l (y) +yre(y) = 2(y) =0, y € (—o0,e7%).

@ The formal limit ¢ — 0 gives the Painleve—Il equation

4"(y) +yv(y) = v*(y) =0, yEeR,
that admits a unique Hasting—McLeod (1986) solution (Y ) satisfying
1/2

v(y) ~y as y—+oo and wu(y)—0 as y — —oo.

Boscolo, et al. (2002); Konotop & Kevrekidis (2003); Zezyulin et al. (2008)
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Spectral stability

Linearization of the Gross—Pitaevskii equation with
u(x,t) = 1) + [u(x) + iw(x)] e + [a(x) — iw(x)] X + O(Jul® + |w]]?)
results in the non-self-adjoint eigenvalue problem

—2U" 4+ (X2 =143 )u = —w,
2w’ +(x2-1+n2)w = Au,

or, equivalently, in the generalized eigenvalue problem
-1
(-2 +x2—1+mf)w =~ (-2 +x*-1+3n?) "w,

where v = —\2.
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Introduction

Eigenvalues in the formal Thomas—Fermi limit

@ Restrict the generalized eigenvalue problem on (—1,1) and drop
e-dependent terms in the right hand side:
YW

(—5283+X2—1+T]§)W:m, XE(—l,l)

@ Let v = 22T and use the definition of 1. in the left hand side:

—w”(x) + ng’i)(\)/(v)(x) = (ivz()):g), x € (—1,1).

@ Substitution of w(x) = v(X)n.(x) and taking the limit ¢ — 0 result in the
Legendre equation

—(1 = x®)V"(x) +2xv'(x) =Tv(x), x € (-1,1),
with eigenvalues atl' =n(n+1),n € N.

Stringari (1996); Fliesser et al. (1997); Eberlein et al. (2005)
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Main objectives and results

@ Obtain the uniform asymptotic approximation of the ground state 7. in
terms of solutions of the Painleve—Il equation

@ Study distribution of eigenvalues of the spectral stability for small ¢ > 0

@ Extend the results to excited states with zeros on R that includes
“one-dimensional vortices” (dark solitons).

Gallo & P, J. Math. Anal. Appl. 355, 495 (2009)
Gallo & P, preprint (2009).
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Introduction

Possible application: oscillations of 1-dim vortices

u(x,100)|?

P. & Kevrekidis, Cont.Math. 473, 159 (2008)
P. & Kevrekidis, ZAMP 59, 559 (2008)

Thomas—Fermi ground state
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Introduction

Possible application: stability of m-node vortices

Zezulin, Alfimov, Konotop, & Perez—Garcia, PRA (2008)
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Uniform asymptotic expansions

Asymptotic construction of the ground state

Let )
1/3 1-x

ne(X) =" ve(y), y:W

and write an equation on 7. (y):
41— 2Ry)l(y) - 2e2BUl(y) +yre(y) - v2(y) =0, y €.,

where
J. = (—00,e72/3)

and v.(y) decays to zero as y — —oo and satisfies the Neumann boundary
condition at e =2/3:

'(0) = i _22/3v (v) —
7.(0)=0 <= yxllrfnm\/l e23yvi(y)=0.
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Uniform asymptotic expansions

Asymptotic construction of the ground state

Fix N > 0 and look for solutions in the form

N
ve(y) =Y 2" Bun(y) + 2NDBRy (y), v €.,
n=0
where
@ 1y solves the Painlevé-Il equation
4ug(y)+yw(y) —15(y) =0, y€R,
@ for1 <n <N, v, solves
Movn := —4uy(y) + (348(Y) —¥) ta(y) = Fa(y), Y €R,
@ Ry . solves
_4(1_62/3y)Rl/\;,e+2 62/3 Rl/\l,e+(3yg(y) - y) RN,*S = FN,€(y7 RN,€)7 y e ‘-]67

Note: vy(y) does not depend on ¢ and is defined on R, whereas the
remainder term Ry . is only defined on J..
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Uniform asymptotic expansions
Main result

Theorem
Let 1o be the unique solution of the Painlevé Il equation such that

vo(y) ~y¥? as y —+oco and w(y)—0 as y — —o.

For n > 1, vy, is the unique solution of the linearized Painlevé equation in
C?(R) N L2(R). For every N > 0, there exists ey > 0 and Cy > 0 such that for
every 0 < € < ey, there is

Rne € L(J:), with  ||Rn.el[Le(.) < Cn, yjrpoo Rne(y) =0,

such that for every x € R,

1/3 /3, 1 - 2N /3+1 1-x?
_5 ZE +e RN75 W o
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Step |: Hasting-McLeod solution

Ref: Fokas, Its, Kapaev, Novokshenov, AMS Monographs (2006)
The Painlevé-II equation

4" (y)+yv(y) —13(y)=0, yeR,
admits a unique solution vy € C*°(R) such that

1/4,—2(—2y)%? —3/4 —~
w(y) = 5—=(-2y) Ve s (1 oy )~ o,
2\/_ y——00
o0

1/2 bn

voly) ~ y"*y :

——+00 2 3n/2
y —(2y)
12. Hastings-McLeod solution of the Paintevé II equation.
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Uniform asymptotic expansions

Step II: Linearized Painlevé-Il equation

Let us consider the operator Mg on L2(R), defined by

Mo = _485 +Wo(y), Wo(y)=315(y) V.

From the asymptotic behaviors of 1y(y) asy — oo, we infer that

Wo(y)~2y a y—+oco and Wo(y)~-y a y — —oo.

Moreover, we prove that

yllgﬂl;Wo(y) >0

and Wy(y) has the only extremum at the global minimum neary = 0.

Forany n € {1,2,...,N}, corrections v, € C?>(R) N L(R) are found from the
inhomogeneous equations Movy = f, such that

m(y) = YN gamy 2 wn(y) = O

y—-+o00 o y——00
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Step lll: Remainder term

The remainder term satisfies

l:N s(y7RN s)

€ . 3 3

TRy (Y) = Tioany Y€ Je,
where

Wo(y)
€ = _ — 2/3 _—
T 431 = 2Rydy + 2 -

and Fy (Y, R) = Fn,o(Y) + Gn < (Y, R) with

IFnollie S 1, IGN.ellne S ?% 4+ NI R|Z, + M3 RIS,

Here the norm in H? is defined by

Julfy, = [ [7Wj(y_)sz(/ya); +ayfi- 62/3y<u'(y))2] dy

and we show that H? is a Banach algebra with Sobolev's embedding
[ullee(a.y < Clluflug,
where C is e-independent.
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Uniform asymptotic expansions
Grand finale

@ The map

f
v, f = (T 00—
=19 o

is continuous from L2 into H! and the norm of W, is uniformly bounded in
E.

@ By the Fixed Point Theorem, there exists a unique fixed point Ry . € H?
such that
RN, = R o[l S £2/% BNV,

@ We prove that v.(y) > 0 forally € J. so that it is the ground state 7. by
uniqueness of the positive solution ..

D.Pelinovsky (McMaster University) Thomas—Fermi ground state 16 /20



Operators of the linearized problem

The spectral problem is given by

Liu=—-Aw, LZw =)\u,

where
LS = — 202 + Ve (X), Ve(x)=3nZ(x)—1+x2
and )
LS = —e282 +V.(x), Vo(x)=n?(x)—1+x2= ene (X))
1e(X)
// \
OrE o INENEE UErsh) TS FEm oG STars T



Eigenvalues of linearized operators

Semi-classical limit for eigenvalues of L%

Consider the eigenvalue problem
(=% +e72Ve(x)) un(x) = e 2Antin(x), X €R,

where
@ V.(x) € C>*(R) for any small ¢ > 0,
° IimOVE(x) = Vo(x) € C(R) given by

_[2(1-x%),  [x[<1,
VO(X)_{ x? -1, x| > 1

@ V.(x) takes its absolute minimum near x = +1, and
® V. (X) — +o0 as |x| — oo.

By the Bohr—Sommerfeld rule,
1 1
- VA=V.(X)dx ~e|ln—=), a €—0, n>1,
™ X< 2
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Eigenvalues of linearized operators

Reduction to the linearized Painlevé equation

Changing variables

_1-x?

e A=l Vi =ePwa(y),

where W_(y) = 3v2(y) —y, we obtain

v AVE WE(y)

dy ~ 27 n—l , a8 —0, n>1
ye 1-¢2/3y

2

Claim: The quantization formula above does not give a correct limit ¢ — O at
least for small n > 1. Instead, the eigenvalues {u§}n>1 converge to
eigenvalues of the linearized Painlevé operator

Mou(y) = —4u”(y) + Wo(y)u(y) = uu(y).
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Convergence of eigenvalues

For € > 0 sufficiently small, the spectrum of LS consists of an increasing
sequence of positive eigenvalues {3 }n>1 such that for each n > 1,

Aon_1 A5
lim == = lim =1 = 1
elo g2/3 10 g2/3 @)

Further news: The same results can be extended in the space of d
dimensions for radially symmetric parabolic traps:

i +e2Au+ (1 — x*)u —ufu=0, x€RY,

forany d > 1.
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