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I. Integrable Hamiltonian PDEs

An abstract Hamiltonian PDE can be written in the form

du

dt
= J H ′(u), u(t) ∈ X

where X ⊂ L2 is the phase space, J∗ = −J represents the symplectic
structure, and H : X → R is the Hamilton function.

Example: Korteweg–de Vries (KdV) equation

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0, u(t, x) : R× R → R

Hamiltonian system in the form

du

dt
=

∂

∂x

δH

δu
, where H(u) =

1

2

∫

R

[

(

∂u

∂x

)2

− 2u3

]

dx .
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du

dt
= J H ′(u), u(t) ∈ X

where X ⊂ L2 is the phase space, J∗ = −J represents the symplectic
structure, and H : X → R is the Hamilton function.

Example: nonlinear Schrödinger (NLS) equation

i
∂u

∂t
+
∂2u

∂x2
+ 2|u|2u = 0, u(t, x) : R× R → C

Hamiltonian system in the form

du

dt
= i

δH

δū
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1

2

∫

R

[

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

− 2|u|4
]

dx .
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Class of integrable Hamiltonian PDEs
Korteweg–de Vries (KdV) equation

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0, u(t, x) : R× R → R

is integrable in the sense of the inverse scattering transform method

The (smooth) solution u(t, x) is a potential of the Lax operator pair

L(u)ψ = λψ,
∂ψ

∂t
= A(u, λ)ψ,

such that λ is (t, x)-independent. The Cauchy problem can be solved
by a sequence of direct and inverse scattering transforms.

Infinitely many conserved quantities exist for smooth solutions.

Bäcklund–Darboux transformation allows to construct many exact
solutions (solitary waves, periodic waves, rogue waves, etc.)

Ablowitz–Kaup–Newell–Segur, Zakharov–Shabat, Fokas, + ∞.
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New developments for integrable Hamiltonian PDEs

Many classical PDE problems, which were opened in the functional-analytic
framework, have been recently solved for the integrable nonlinear PDEs.

Example 1 : Global existence for the derivative NLS equation

{

iut + uxx + i(|u|2u)x = 0, t > 0,
u|t=0 = u0 ∈ X ,

where X is some Banach space.

Definition

The Cauchy problem is locally well-posed in X if there exists an unique
solution u(t, ·) ∈ X for t ∈ (−T ,T ) with finite T > 0 and the solution
map u0 7→ u(t, ·) is continuous. It is globally well-posed if T can be
arbitrarily large.
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Example 1: Global existence for the DNLS equation

Tsutsumi & Fukuda (1980) established local well-posedness in Hs(R)
with s > 3

2
and extended solutions globally in H2(R) for small data in

H1(R)

Hayashi (1993) used gauge transformation of DNLS to a system of
semi-linear NLS and established local and global well-posedness in
H1(R) under the constraint ‖u0‖L2 <

√
2π.

Global existence was proved in Hs(R) for s > 32

33
(Takaoka, 2001),

s > 1

2
(Colliander et al, 2002), and s = 1

2
(Mio-Wu-Xu, 2011) under

the same constraint ‖u0‖L2 <
√

2π.

Recent development:
global existence without restriction on the L2(R) norm.
Liu–Perry–Sulem (2016); P–Shimabukuro (2017).
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New developments for integrable nonlinear PDEs
Example 2 : Orbital stability in spaces of low regularity

{

iut + uxx + |u|2u = 0, t > 0,
u|t=0 = u0 ∈ X .

The Cauchy problem is globally well-posed for X = L2(R)
(Tsutsumi, 1986).

The family of stationary solitary waves

uω(t, x) :=
√

2ω sech
(√
ωx

)

e iωt ,

where ω > 0 is arbitrary parameter.

Definition

The solitary wave uω is said to be orbitally stable in X if for any ǫ > 0
there is a δ > 0 such that if ‖u(0, ·)− uω(0, ·)‖X < δ then

inf
θ∈R

‖u(t, ·)− e iθuω(t, ·)‖X < ǫ for all t > 0.
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Example 2 : Orbital stability in spaces of low regularity

Orbital stability in H1(R) is proved with the energy method
(Lyapunov functions and constrained minimization)
Weinstein (1985), Shatah–Strauss (1985), Grillakis et al. (1987).

Energy methods do not work in L2(R) due to lack of control.

With the Bäcklund–Darboux transformation, orbital and asymptotic
stability of solitary waves can be obtained for the NLS equation.
Mizumachi–P. (2012); Cuccagna–P. (2014); Contreras–P (2014).
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New developments for integrable nonlinear PDEs

Example 3 : stability of non-stationary solutions

N-soliton solutions are orbitally stable in HN(R)
◮ KdV [Sachs - Maddocks (1993)]
◮ NLS [Kapitula (2006)]
◮ Derivative NLS [Le Coz–Wu (2016)]

Breathers are orbitally stable in H2(R)
◮ modified KdV [Alejo–Munoz (2013)]
◮ sine-Gordon [Alejo–Munoz (2016)]

In the rest of my talk, I will restrict attention to stability of relative
equilibria in Hamiltonian systems (solitary waves, periodic waves) by using
energy methods.
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II. Stability of relative equilibria in Hamiltonian systems

Consider again an abstract Hamiltonian dynamical system

du

dt
= J H ′(u), u(t) ∈ X

where X ⊂ L2 is the phase space, J is a skew-adjoint operator with a
bounded inverse, and H : X → R is the Hamilton function.

Assume existence of the equilibrium u0 ∈ X such that H ′(u0) = 0.

Perform linearization u(t) = u0 + veλt , where λ is the spectral
parameter and v ∈ X satisfies the spectral problem

JH ′′(u0)v = λv ,

where H ′′(u0) : X → L2 is a self-adjoint Hessian operator.
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Main Question

Consider the spectral problem:

JH ′′(u0)v = λv , v ∈ X .

Question: Is there a relation between unstable eigenvalues of JH ′′(u0) and
eigenvalues of H ′′(u0)?

Assumptions of the negative index theory:

The spectrum of H ′′(u0) is strictly positive except for finitely many
negative and zero eigenvalues of finite multiplicity.

The spectrum of JH ′′(u0) is purely imaginary except for finitely many
unstable eigenvalues.

Multiplicity of the zero eigenvalue of JH ′′(u0) is given by the number
of parameters in u0 (symmetries).

Dmitry Pelinovsky (McMaster University) Stability of nonlinear waves 11 / 32



Answer for gradient systems

For a gradient system:

du

dt
= −F ′(u) ⇒ λv = −F ′′(u0)v ,

there exists the exact relation between unstable eigenvalues of −F ′′(u0)
and negative eigenvalues of F ′′(u0).

Theorem

The number of unstable eigenvalues of −F ′′(u0) is equal to the number of

negative eigenvalues of F ′′(u0).

What is about Hamiltonian systems?

λv = JH ′′(u0)v , v ∈ X .

Quadruple Symmetry: If λ is an eigenvalue, so is −λ, λ̄, and −λ̄.
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Stability Theorems for Hamiltonian Systems

Consider the spectral stability problem:

JH ′′(u0)v = λv , v ∈ X ,

under the assumptions above on J and H ′′(u0).

Orbital Stability Theorem [Grillakis–Shatah–Strauss (1990)]

Assume no symmetries/zero eigenvalues of H ′′(u0). If H ′′(u0) has no
negative eigenvalues, then JH ′′(u0) has no unstable eigenvalues and u0

is linearly and nonlinearly stable.

Assume zero eigenvalue of H ′′(u0) of multiplicity N and related N

symmetries/conserved quantities. If H ′′(u0) has no negative
eigenvalues under N constraints, then JH ′′(u0) has no unstable
eigenvalues and u0 is orbitally stable.

Dmitry Pelinovsky (McMaster University) Stability of nonlinear waves 13 / 32



Stability Theorems for Hamiltonian Systems

Consider the spectral stability problem:

JH ′′(u0)v = λv , v ∈ X ,

under the assumptions above on J and H ′′(u0).

Orbital Stability Theorem [Grillakis–Shatah–Strauss (1990)]

Assume no symmetries/zero eigenvalues of H ′′(u0). If H ′′(u0) has no
negative eigenvalues, then JH ′′(u0) has no unstable eigenvalues and u0

is linearly and nonlinearly stable.

Assume zero eigenvalue of H ′′(u0) of multiplicity N and related N

symmetries/conserved quantities. If H ′′(u0) has no negative
eigenvalues under N constraints, then JH ′′(u0) has no unstable
eigenvalues and u0 is orbitally stable.

Dmitry Pelinovsky (McMaster University) Stability of nonlinear waves 13 / 32



Negative Index Theorem [Kapitula–Kevrekidis–Sandstede (2004)]

Assume no symmetries/zero eigenvalues of H ′′(u0). Then,

Nre(JH
′′(u0)) + 2Nc(JH

′′(u0)) + 2N−
im(JH ′′(u0)) = Nneg(H

′′(u0)) <∞,

where

Nre - number of real unstable eigenvalues;

2Nc - number of complex unstable eigenvalues;

2N−
im - number neutrally stable eigenvalues of negative Krein signature.

Definition

Suppose that λ ∈ iR is a simple isolated eigenvalue of JH ′′(u0) with the
eigenvector v . Then, the sign of the quadratic form

〈H ′′(u0)v , v〉L2 = λ〈J−1v , v〉L2

is called the Krein signature of the eigenvalue λ.
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III. Massive Thirring Model (MTM)
The nonlinear Dirac equation (MTM) in the space of one dimension are:

{

i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v , or

{

iψt − ϕx − ψ = (ψ2 + ϕ2)ψ̄,
iϕt + ψx + ϕ = (ψ2 + ϕ2)ϕ̄.

Global solutions exist in H1(R) [Goodman et al. (2003)]
or in L2(R) [Candy (2011), Huh-Moon (2015)].

Three conserved quantities related to symmetries:

Q =

∫

R

(

|u|2 + |v |2
)

dx ,

P =
i

2

∫

R

(uūx − ux ū + v v̄x − vx v̄) dx ,

H =
i

2

∫

R

(uūx − ux ū − v v̄x + vx v̄) dx +

∫

R

(

−v ū − uv̄ + 2|u|2|v |2
)

dx ,

where H is Hamiltonian. The quadratic part of H is sign-indefinite.
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Existence of solitary waves

Time-periodic space-localized solutions

u(x , t) = Uω(x)e
−iωt , v(x , t) = Vω(x)e

−iωt

satisfy a system of stationary Dirac equations. They are known in the
closed analytic form

{

u(x , t) = i sin(γ) sech
[

x sin γ − i γ
2

]

e−it cos γ ,

v(x , t) = −i sin(γ) sech
[

x sin γ + i γ
2

]

e−it cos γ .

Translations in x and t can be added as free parameters.

Constraint ω = cos γ ∈ (−1, 1) exists because of the gap in the linear
spectrum (−∞,−1] ∪ [1,∞).

Moving solitons can be obtained from the stationary solitons with the
Lorentz transformation.

Dmitry Pelinovsky (McMaster University) Stability of nonlinear waves 16 / 32



Orbital stability of Dirac solitons in H
1

The Dirac soliton can not be a constrained minimizer of H.

However, another higher-order Hamiltonian R exists in H1(R):

R =

∫

R

[

|ux |2 + |vx |2 −
i

2
(uxu − uxu)(|u|2 + 2|v |2) + . . .

−(uv + uv)(|u|2 + |v |2) + 2|u|2|v |2(|u|2 + |v |2)
]

dx ,

in addition to the other conserved quantities H, Q, and P .

Theorem (P–Shimabukuro (2014))

There is ω0 ∈ (0, 1] such that for any fixed ω = cos γ ∈ (−ω0, ω0), the

Dirac soliton is a local non-degenerate minimizer of R in H1(R) under the

constraints of fixed values of Q and P.
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The energy functionals

Critical points of H + ωQ for a fixed ω ∈ (−1, 1) satisfy the stationary
MTM equations. After the reduction (u, v) = (U,U), we obtain the
first-order equation

i
dU

dx
− ωU + U = 2|U|2U.

The MTM soliton U = Uω satisfies the first-order equation.

Critical points of R +ΩQ for some fixed Ω ∈ R satisfy another system
of equations. After the reduction (u, v) = (U,U), we obtain the
second-order equation

d2U

dx2
+ 6i |U|2 dU

dx
− 6|U|4U + 3|U|2Ū + U3 = ΩU.

U = Uω also satisfies the second-order equation if Ω = 1 − ω2.
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The Lyapunov functional for MTM solitons

We define the conserved energy functional in H1(R) by

Λω := R + (1 − ω2)Q, ω ∈ (−1, 1),

where Q = ‖u‖2

L2 + ‖v‖2

L2 .

Uω is a critical point of Λω.

The second variation of Λω can be block-diagonalized

STΛ′′
ω(Uω)S =

[

L+ 0
0 L−

]

,

where L+ and L− are 2 × 2 matrix Schrödinger operators.
Chugunova–P (2006); P–Shimabukuro (2014);

Λ′′
ω(Uω) has one negative eigenvalue and a double zero eigenvalue for
ω > 0 and ω < 0. The zero eigenvalue is quadruple for ω = 0.
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Convexity of the energy functional

Two constraints are added to fix the values of Q and P .

Two constraints are added to eliminate translation and rotation.

The Hessian operator Λ′′
ω(Uω) is strictly positive under the four

constraints. The conserved energy functional Λω becomes convex at
Uω in the constrained H1(R) space.

The four constraints can be realized by the choice of four modulation
parameters in the soliton orbit:

{

u(x , t) = i sin(γ) sech
[

x sin(γ)− i γ
2
− α

]

e−it cos(γ)−iβ ,

v(x , t) = −i sin(γ) sech
[

x sin(γ) + i γ
2
− α

]

e−it cos(γ)−iβ ,

with parameters α, β, frequency ω := cos γ, and speed c.
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IV. The defocusing nonlinear Schrödinger equation
The cubic NLS equation

iψt + ψxx − |ψ|2ψ = 0

has long been known for modulational stability of periodic waves.

Periodic waves are of the form ψ(x , t) = u0(x)e
−it , where

u′′
0 (x) + (1 − |u0|2)u0 = 0

has the exact solution u0(x) =
√

1 − Esn

(

x
√

1+E√
2

;
√

1−E
1+E

)

with E ∈ (0, 1).

−1 −0.5 0 0.5 1
−0.8

−0.4

0

0.4

0.8

u
0

du
0/d

 x
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Orbital stability of periodic waves in H
1
per or H

2
per

Periodic waves are constrained minimizers of energy in H1
per:

E (ψ) =

∫
[

|ψx |2 +
1

2
(1 − |ψ|2)2

]

dx

under fixed values of

Q(ψ) =

∫

|ψ|2dx , M(ψ) =
i

2

∫

(ψ̄ψx − ψψ̄x)dx ,

if the period of perturbations coincides with the period of waves.
[Gallay–Haragus (2007)]

Periodic waves are also constrained minimizers of the higher-order energy

R(ψ) =

∫
[

|ψxx |2 + 3|ψ|2|ψx |2 +
1

2
(ψ̄ψx + ψψ̄x)

2 +
1

2
|ψ|6

]

dx ,

under fixed values of Q and M under the same assumption on the period.
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Orbital stability of periodic waves in H
2
Nper

Periodic waves are not constrained minimizers of neither E nor R

if the period of perturbations is multiple to the period of waves.

Nevertheless, there exists a range of values for parameter c such that the
energy functional Λc := R − cE is positively definite at u0.
[Bottman–Deconinck–Nivala (2011)]

Theorem (Gallay–P (2015))

For all E ∈ (0, 1), the second variation of Λc at the periodic wave u0 is

nonnegative for perturbations in H2

Nper only if c ∈ [c−, c+] with

c± := 2 ± 2κ

1 + κ2
, κ =

√

1 − E
1 + E .

Moreover, it is strictly positive up to symmetries in (c−, c+) if E is small.

Dmitry Pelinovsky (McMaster University) Stability of nonlinear waves 23 / 32



0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

E

c
+

c
−

Figure : (E , c)-plane for positivity of the second variation of Λc .
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A simple perturbative argument

Using the decomposition ψ = u0 + u + iv with real-valued perturbation
functions u and v , we can write

Λc(ψ)− Λc(u0) = 〈K+(c)u, u〉L2 + 〈K−(c)v , v〉L2 + cubic terms

where
K+(c)∂xu0 = 0 and K−(c)u0 = 0.

If u0 = 0 (periodic wave of zero amplitude), then

〈K±(c)u, u〉L2 =

∫

R

[

u2

xx − cu2

x + (c − 1)u2
]

dx

=

∫

(

uxx +
c

2
u
)2

dx −
(

1 − c

2

)2
∫

u2dx .

Then, 〈K±(c)u, u〉L2 ≥ 0 if c = 2. By perturbative computations, one can
find (c−, c+) near c = 2 for E < 1.
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Orbital stability of periodic waves in H
2
Nper

Theorem (Gallay–P (2015))

Assume that ψ0 ∈ H2

Nper and consider the global-in-time solution ψ to the

cubic NLS equation with initial data ψ0. For any ǫ > 0, there is δ > 0 s.t. if

‖ψ0 − u0‖H2

Nper
≤ δ,

then, for any t ∈ R, there exist numbers ξ(t) and θ(t) such that

‖e i(t+θ(t))ψ(·+ ξ(t), t)− u0‖H2

Nper
≤ ǫ.

Moreover, ξ, θ are continuous and |ξ̇(t)|+ |θ̇(t)| ≤ Cǫ.
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V. The Kadomtsev–Petviashvili (KP) equation
The 2D generalization of the KdV equation is the KP equation:

(ut + 6uux + uxxx)x = ±uyy ,

where the plus/minus sign corresponds to KP-I/KP-II equations.

Periodic waves u = v(x + ct) of the cnoidal form satisfies the 1D KdV
equation. Transverse stability is determined for small 2D perturbations w :

(wt + cwx + 6(vw)x + wxxx)x = ±wyy .

KP-I: Periodic and solitary waves are transversely unstable
[Johnson–Zumbrun (2010); Rousset–Tzvetkov (2011); Hakkaev (2012)]

KP-II: Solitary waves are transversely stable [Mizumachi–Tzvetkov (2012);
Mizumachi (2015) (2016)]

KP-II: Stability of periodic waves is open [Haragus (2010)].
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Conserved quantities for KP-II equation
The momentum of KP-II equation is

Q(u) =

∫

u2dxdy

The energy of KP-II equation is sign-indefinite near zero:

E (u) =

∫

[

u2

x − 2u3 − (∂−1

x uy )
2
]

dxdy .

The higher-order energy is still sign-indefinite near zero:

R(u) =

∫
[

u2

xx
− 10uu2

x
+ 5u4 − 10

3
u2

y
+

5

9
(∂−2

x
uyy )

2 +
10

3
u2∂−2

x
uyy + ...

]

dxdy .

Molinet–Saut–Tzvetkov (2007)

The previous approach to characterization periodic waves as constrained
energy minimizers for a linear combination of E (u) and R(u) fails.
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Commuting operators via symplectic operators
1D periodic waves u(t, x) = v(x + ct) are critical points of E (u) + cQ(u)
with the Hessian operator

Lc,p = −∂2

x − c − 6v(x) + p2∂−2

x ,

where p is the transverse wave number for the 2D perturbation
w(x , y) = W (x)e ipy .

Search for the commuting self-adjoint operator Mc,p in

Lc,p∂xMc,p = Mc,p∂xLc,p,

where ∂x defines the symplectic operator for the KP-II equation.

Theorem (Haragus–Li-P (2017))

Assume that Mc,p ≥ 0 and the kernel of Mc,p is contained in the kernel of

Lc,p. The spectrum of ∂xLc,p is purely imaginary.
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Algorithmic search of the commuting operator
We are looking for an operator Mc,p to satisfy the commutability relation

Lc,p∂xMc,p = Mc,p∂xLc,p.

Since 1D periodic waves u = v(x + ct) are also critical points of R(u), the
Hessian operator Mc,p related to R(u) satisfies this commutability relation.
The operator Mc,p is given by

Mc,p = ∂4

x + 10∂xv(x)∂x − 10cv(x)− c2

−10

3
p2

(

1 + v(x)∂−2

x + ∂−1

x v(x)∂−1

x + ∂−2

x v(x)
)

+
5

9
p4∂−4

x .

Lemma

For every p 6= 0, no value of b ∈ R exists such that Mc,p − bLc,p is

positive. Moreover, the number of negative eigenvalues quickly grows in

L2

Nper with larger N.
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Algorithmic search of the commuting operator

We are looking for an operator Mc,p to satisfy the commutability relation

Lc,p∂xMc,p = Mc,p∂xLc,p.

By using symbolic computations, we have found another choice of the
commuting operator

Mc,p = ∂4

x + 10∂xv(x)∂x − 10cv(x)− c2 +
5

3
p2

(

1 + c∂−2

x

)

.

Lemma

The operator Mc,p + 2cLc,p is positive in L2

Nper for every p ∈ R and N ∈ N.

The periodic travelling wave v of the KP-II equation is spectrally stable
with respect to two-dimensional bounded perturbations.
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Conclusion

Spectral stability theory is well-developed for relative equilibria in
Hamiltonian systems, when the Hessian operators have finitely many
negative eigenvalues.

Orbital stability holds in Hamiltonian systems if the relative
equilibrium is a non-degenerate minimum of energy under constraints
of fixed mass and momentum.

For many integrable PDEs (MTM, NLS, KdV), one can use
higher-order Hamiltonians to conclude on orbital stability of nonlinear
waves.

For the KP-II equation (in 2D), one can find positive-definite operator
unrelated to conserved quantities in order to conclude on spectral
stability of nonlinear waves.

The END.
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