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Introduction

The Camassa-Holm equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx (CH)

models the propagation of unidirectional shallow water waves, where
u = u(t, x) represents the horizontal velocity at the free surface.
[Camassa & Holm, 1993] Johnson (2000) [Constantin & Lannes, 2009]
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Introduction

It was extended as the Degasperis–Procesi equation

ut − utxx + 4 u ux = 3 uxuxx + u uxxx (DP)

at the same asymptotic accuracy.
[Degasperis & Procesi, 1999] [Constantin & Lannes, 2009]

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 3 / 31



Introduction

It was further extended as the b-Camassa–Holm equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx (b-CH)

by using transformations of integrable KdV equation
[Dullin, Gottwald, & Holm, 2001] [Degasperis, Holm & Hone, 2002]

. CH and DP cases are integrable for b = 2 and b = 3.

. BBM equation for slowly varying waves:

ut − utxx + (b + 1) u ux = 0

. Purely quadratic in the evolution form:

ut = (1− ∂2
x )−1 [b uxuxx + u uxxx − (b + 1)uux] .
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Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Peaked solitary waves (peakons) are observed for b > 1
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Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Rarefactive waves are observed for b ∈ (−1, 1)

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 4 / 31



Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Smooth solitary waves (leftons) are observed for b < −1
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Stability of solitary waves: state of the art

For solitary waves satisfying u(x)→ 0 as |x| → ∞

. Orbital stability of peakons in energy space
b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]

b = 3: [Lin & Liu, 2009]

. Orbital stability of leftons in weighted Sobolev spaces
b < −1: [Hone & Lafortune, 2014]

For solitary waves satisfying u(x)→ k as |x| → ∞ with k > 0:

. Orbital stability of smooth solitons in energy space
b = 2: [Constantin & Strauss, 2002]

b = 3: [Li & Liu & Wu, 2020]

Similar studies were developed for travelling periodic waves
(smooth or peaked) [Lenells, 2004-2006]
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Stability of solitary waves: new results

. Linear and nonlinear instability of peakons in H1 ∩W1,∞

b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]

. Linear and spectral instability of peakons in L2

any b ∈ R: [Lafortune & P., 2022a]

[Charalampidis, Parker, Kevrekidis, Lafortune, 2023]

. Spectral and orbital stability of smooth solitary waves in H3

b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]

. Spectral stability of smooth periodic waves in L2
per

b = 2 [Geyer, Martins, Natali, & P., 2022]

b = 3 [Geyer & P., 2023]
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Section 2

Properties of b-Camassa–Holm equation
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

We say that the dynamics leads to the wave breaking if

‖u(t, ·)‖L∞ <∞, ‖ux(t, ·)‖L∞ →∞ as t→ T <∞
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

Solutions of the Burgers equation vt + vvx = 0 with v(0, x) = f (x)
admit wave breaking if f ∈ H1(R) ∩W1,∞(R):

v(t, x) = f (x− tv(t, x)) ⇒ vx =
f ′(x− tv)

1 + tf ′(x− tv)
.
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

. locally well-posed in Hs, s > 3/2 [Escher & Yin, 2008; Zhou, 2010]

. no continuous dependence in Hs, s ≤ 3/2
[Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]

. locally well-posed in H1 ∩W1,∞.
[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]
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Hamiltonian structure of the b-CH equations

For b = 2, the Camassa–Holm equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx

has the first three conserved quantities

M(u) =

∫
udx, E(u) =

1
2

∫
(u2+u2

x)dx, F(u) =
1
2

∫
(u3+uu2

x) dx.

(CH) can be written in Hamiltonian form in three ways:

ut = JF′(u), J = −(1− ∂2
x )−1∂x,

mt = JmE′(m), Jm = − (m∂x + ∂xm) ,

mt = JmM′(m), Jm = −(2m∂x + mx)(1− ∂2
x )−1∂−1

x (2∂xm− mx).

where m = u− uxx.
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Hamiltonian structure of the b-CH equations

For b = 3, the Degasperis–Procesi equation

ut − utxx + 4 u ux = 3 uxuxx + u uxxx

has the first three conserved quantities

M(u) =

∫
udx, E(u) =

1
2

∫
u(1−∂2

x )(4−∂2
x )−1udx, F(u) =

1
6

∫
u3dx.

(DH) can be written in Hamiltonian form in two ways:

ut = JF′(u), J = −(1− ∂2
x )−1(4− ∂2

x )∂x,

mt = JmM′(m), Jm = −1
2

(3m∂x + mx)(1− ∂2
x )−1∂−1

x (3∂xm− mx).

where m = u− uxx.
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Hamiltonian structure of the b-CH equations

For general b 6= 1, the b-Camassa–Holm equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be written in Hamiltonian form:

mt = JmM′(m), Jm := − 1
b− 1

(bm∂x+mx)(1−∂2
x )−1∂−1

x (b∂xm−mx).

where m = u− uxx. In addition to the conservation of mass
M(m) =

∫
mdx, it has two more conserved quantities:

E(m) =

∫
m

1
b dx, F(m) =

∫ (
m2

x

b2m2 + 1
)

m−
1
b dx,

These are Casimir functionals satisfying

JmE′(m) = 0 and JmF′(m) = 0.
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Section 3

Linear and nonlinear instabilities of peakons
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Existence of peakons

Peakons exist in the weak form in H1(R) ∩W1,∞(R)

u(t, x) = ce−|x−ct|.

Without loss of generality, we can set c = 1. The normalized profile
ϕ(x) = e−|x| satisfies the integral equation

−ϕ+
1
2
ϕ2 +

1
4
ϕ ∗

(
bϕ2 + (3− b)(ϕ′)2) = 0,

which follows from integration of

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

after the traveling wave reduction u(t, x) = ϕ(x− t).
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Orbital stability of peakons: b = 2

Theorem (Constantin–Molinet (2001))

ϕ is a unique (up to translation) minimizer of F(u) in H1(R) subject
to fixed E(u).

Theorem (Constantin–Strauss (2000))

For every small ε > 0, if the initial data satisfies

‖u0 − ϕ‖H1 <
(ε

3

)4
,

then the solution satisfies

‖u(t, ·)− ϕ(· − ξ(t))‖H1 < ε, t ∈ (0,T),

where ξ(t) is a point of maximum for u(t, ·).
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Nonlinear instability of peakons: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.
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Nonlinear instability of peakons: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Theorem (Natali–P. (2020))

For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

s.t. the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0 satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 13 / 31



Nonlinear instability of peakons: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

. If u ∈ H1(R), then Q[u] ∈ C(R).

. If u ∈ H1(R) ∩W1,∞(R), then Q[u] is Lipschitz continuous.

. If u ∈ H1(R) ∩W1,∞(R), method of characteristics can be used
to analyze dynamics of the perturbed Burgers equation.

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 13 / 31



Nonlinear instability of peakons: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

If u(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}) for t ∈ [0,T). Then,
ξ(t) ∈ C1(0,T) and

dξ
dt

= u(t, ξ(t)), t ∈ (0,T).

For the peaked traveling wave u(t, x) = ϕ(x− ct),
this gives c = ϕ(0) := max

x∈R
ϕ(x).
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Nonlinear instability of peakons: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Peaked solitary wave with a single peak:

-5 0 5
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0.2
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0.6

0.8

1

c = u(0)
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = t + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Then, a′(t) = v(t, 0) and

vt = (1−ϕ)vx+(v|x=0−v)ϕ′+(v|x=0−v)vx−ϕ′∗(ϕv+
1
2
ϕ′vx)−Q[v].
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = t + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Due to

[v(0)− v(x)]ϕ′(x)− ϕ′ ∗ ϕv− 1
2
ϕ′ ∗ ϕ′vx = ϕ(x)

∫ x

0
v(y)dy,

the evolution of v(t, x) simplifies to

vt = (1− ϕ)vx + ϕ

∫ x

0
v(t, y)dy + (v|x=0 − v)vx − Q[v].
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Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 15 / 31



Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

The characteristic coordinates X(t, s) satisfies{ dX
dt = ϕ(X)− 1 + v(t,X)− v(t, 0), t ∈ (0,T),
X|t=0 = s.

Since ϕ is Lipschitz, there exists the unique characteristic function
X(t, s) for each s ∈ R if v(t, ·) remains in H1(R) ∩W1,∞(R)
The peak location X(t, 0) = 0 is invariant in time.
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Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

From the right side of the peak, V0(t) = v(t, 0), W0(t) = vx(t, 0+):

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0), P[v] := ϕ ∗

(
v2 +

1
2

v2
x

)
.

We will show that W0(t) grows and may diverge in a finite time.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

To show instability, we use eq. on the right side of the peak:

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0)

and since P[v] > 0, we have

dW0

dt
≤ W0 + Cε ⇒ W0(t) ≤ [W0(0) + Cε] et
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).

The initial constraint ‖v0‖L∞ + ‖v′0‖L∞ < δ, is satisfied
if ∀δ > 0, ∃ε > 0 such that(ε

3

)4
+ 2Cε < δ.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

To show the finite-time wave breaking, we estimate

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0) ≤ W0 −

1
2

W2
0 + Cε.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

By the ODE comparison theory, W0(t) ≤ W(t), where the
supersolution satisfies

dW
dt

= W − 1
2

W2
+ Cε

with W0(0) = W(0) = −Cε and W(t)→ −∞ as t→ T .
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Illustration of the peakon instability (periodic case)

-6 -4 -2 0 2 4 6

x

-1

-0.5

0

0.5

1

1.5

2

2.5

v

t=2

t=1

t=4

t=0

Figure: The plots of perturbation v(t, x) to the peaked wave versus x on
[−2π, 2π] for different values of t in the case v0(x) = sin(x).
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Linear instability: any b ∈ R

Truncation of the quadratic terms yields the linearized problem for
perturbations in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),
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perturbations in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

Question: Can we predict instability of peakons for any b from
analysis of the linearized operator in L2(R)?
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2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

The linearized operator is

L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.
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L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.

H1(R) is continuously embedded into Dom(L). However, it is not
equivalent to Dom(L) because ϕ′ ∈ Dom(L) but ϕ′ /∈ H1(R).

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 18 / 31



Linear instability: any b ∈ R

Truncation of the quadratic terms yields the linearized problem for
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L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.

Question: How can we get redefine L from H1(R) ∩ W1,∞(R) to
Dom(L) ⊂ L2(R) to study spectral stability of peakons?
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Answering of these questions

It can be checked directly that

Lϕ = (2− b)ϕ′ and Lϕ′ = 0.
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Answering of these questions

It can be checked directly that

Lϕ = (2− b)ϕ′ and Lϕ′ = 0.

Starting with v ∈ H1(R) ∩W1,∞(R), we write

v = v|x=0ϕ+ ṽ such that ṽ(t, 0) = 0.

Then,

vt = Lv + (b− 2)v|x=0ϕ
′ ⇒ ṽt = Lṽ− 3

2
(b− 2)〈ϕϕ′, ṽ〉ϕ

Linear evolution is now well-defined for ṽ ∈ Dom(L) ⊂ L2(R) for
which ṽ(t, 0) may not exist.
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Answering of these questions

It can be checked directly that

Lϕ = (2− b)ϕ′ and Lϕ′ = 0.

Moreover, we can use the secondary decomposition

ṽ(t, x) = α(t)ϕ(x) + β(t)ϕ′(x) + w(t, x)

and obtain the homogeneous equation wt = Lw and

dα
dt

= (2− b)β +
3
2

(2− b)〈φφ′,w〉, dβ
dt

= (2− b)α.

For b 6= 2, we have instability of peakons in Dom(L) with w = 0. For
b = 2, we have to analyze the spectrum of L in L2(R).
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Spectrum of a linear operator

Let A be a linear operator on a Banach space X with Dom(A) ⊂ X.
The complex plane C is decomposed into the resolvent set ρ(A) and
the spectrum σ(A) = C \ ρ(A), the latter consists of the following
three disjoint sets:

1. the point spectrum

σp(A) = {λ : Ker(A− λI) 6= {0}},

2. the residual spectrum

σr(A) = {λ : Ker(A− λI) = {0}, Ran(A− λI) 6= X},

3. the continuous spectrum

σc(A) = {λ : Ker(A− λI) = {0}, Ran(A− λI) = X,

(A− λI)−1 : X → X is unbounded}.
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Spectrum of a linear operator

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

⇒ the peakon is linearly unstable in Dom(L) for every b 6= 5
2 .
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∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

CH and DP have different types of peakon instability

b = 2: ‖v(t, ·)‖L2(−∞,0) grows due to point spectrum

b = 3: ‖v(t, ·)‖L2(0,∞) grows due to residual spectrum
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Spectrum of a linear operator

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

Instability in the vertical strip holds for peaked waves in the reduced
Ostrovsky equation ut + uux = ∂−1

x u [Geyer & P. (2020)] and for Euler
flows [Shvidkoy & Latushkin (2003)]
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
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Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Theorem (Geyer & P (2020))

Let L : Dom(L) ⊂ X → X and L0 : Dom(L0) ⊂ X → X be linear
operators on Hilbert space X with the same domain such that
L− L0 = K is a compact operator in X. Assume that the intersections
σp(L) ∩ ρ(L0) and σp(L0) ∩ ρ(L) are empty. Then, σ(L) = σ(L0).
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Theorem (Bühler & Salamon (2018))

Let L : Dom(L) ⊂ X → X be a linear operator on Hilbert space X
and L∗ : Dom(L∗) ⊂ X → X be the adjoint operator. Assume that
σp(L) is empty. Then, σr(L) = σp(L∗).
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Truncated equation L0v = λv is the first-order equation

(1− ϕ)
dv
dx

+ (2− b)ϕ′v = λv

with the exact solution

v(x) =

{
v+eλx(1− e−x)2+λ−b, x > 0,
v−eλx(1− ex)2−λ−b, x < 0,

If Re(λ) > 0, then v+ = 0 and Re(λ) < 5
2 − b.
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Truncated equation L∗0v = λv is the first-order equation

−(1− ϕ)
dv
dx

+ (3− b)ϕ′v = λv

with the exact solution

v(x) =

{
v+e−λx(1− e−x)b−3−λ, x > 0,
v−e−λx(1− ex)b−3+λ, x < 0,

If Re(λ) > 0, then v− = 0 and Re(λ) < b− 5
2 .
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Section 4

Stability of smooth solitary waves
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Standard approach to orbital stability

. Construct an augmented Hamiltonian Λ(u), such that the
traveling wave solution φ is a critical point of Λ: Λ′(φ) = 0︸ ︷︷ ︸

TW-eq

. Compute the spectrum of the linearized operator L = Λ′′(φ) and
control the number of negative eigenvalues in L2(R).

. If L has only one negative simple eigenvalue and a simple zero
eigenvalue, then we need to prove that the traveling wave φ is a
constrained minimizer of Hamiltonian under fixed momentum,
i.e. L|X0 ≥ 0, where X0 is a constrained subspace of L2

. The traveling wave φ is orbitally stable in energy space if local
well-posedness has been proven in the energy space.
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Existence of smooth solitary waves: b > 1

Smooth traveling waves of the form u(x, t) = φ(x− ct) satisfy

−(c− φ)(φ′′′ − φ′) + bφ′(φ′′ − φ) = 0.

After multiplication by (c− φ)b−1, the equation can be integrated into

−(c− φ)b(φ′′ − φ) = a, a ∈ R.

Further integration gives

1
2

(b− 1)[(φ′)2 − φ2] +
a

(c− φ)b−1 = g, g ∈ R.

Smooth waves with c > 0 exist if φ < c.
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Existence of smooth solitary waves: b > 1

Newton’s particle with mass m = b− 1 and potential energy U(φ)

1
2

(b− 1)(φ′)2 + U(φ) = g, U(φ) = −1
2

(b− 1)φ2 +
a

(c− φ)b−1 .

There exists a0 > 0 such that for every a ∈ (0, a0) two critical points
of U(φ) exists with ordering 0 < φ1 < φ2 < c.

-0.5 0 0.5 1

-0.2

-0.1

0

0.1

0.2

-0.5 0 0.5 1

-1

-0.5

0

0.5

1

'

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 25 / 31



Properties of smooth solitary waves: b > 1

For every c > 0, the family of solitary waves has one additional
parameter, which can be chosen as k ∈ (0, k0) such that

φ(x)→ k as |x| → ∞ exponentially,

where k0 := (b + 1)−1c. Moreover, 0 < φ < c and

µ = φ− φ′′ = k
(c− k)b

(c− φ)b

satisfies 0 < µ <∞.
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Hamiltonian structure of the b-CH equations

Recall that the b-Camassa–Holm equation with b 6= 1

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

has three conserved quantities

M(m) =

∫
mdx, E(m) =

∫
m

1
b dx, F(m) =

∫ (
m2

x

b2m2 + 1
)

m−
1
b dx,

where m = u− uxx.

The conserved quantities can be redefined as

Ê(m) =

∫
R

[
m

1
b − k

1
b

]
dx, F̂(m) =

∫
R

[(
m2

x

b2m2 + 1
)

m−
1
b − k−

1
b

]
dx

in the set of functions with fixed k > 0:

Xk =
{

m− k ∈ H1(R) : m(x) > 0, x ∈ R
}
.
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Stability of smooth solitary waves: b > 1

Let m(t, x) = µ(x− ct) with µ ∈ Xk. We say that the travelling wave
is orbitally stable in Xk if for every ε > 0 there exists δ > 0 such that
for every m0 ∈ Xk satisfying ‖m0 − µ‖H1 < δ, there exists a unique
solution m ∈ C0(R,Xk) of the b-CH equation satisfying

inf
x0∈R
‖m(t, ·)− µ(· − x0)‖H1 < ε, t ∈ R.

Theorem (Lafortune–P, Physica D 440 (2022) 133477)

For every c > 0 and k ∈ (0, k0), there exists a unique solitary wave
m(t, x) = µ(x− ct) of the b-CH equation, which is orbitally stable in
Xk if the mapping

k 7→ Q(φ) :=

∫
R

[
b
(

c− k
c− φ

)
−
(

c− k
c− φ

)b

− b + 1

]
dx

is strictly increasing.
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for every m0 ∈ Xk satisfying ‖m0 − µ‖H1 < δ, there exists a unique
solution m ∈ C0(R,Xk) of the b-CH equation satisfying

inf
x0∈R
‖m(t, ·)− µ(· − x0)‖H1 < ε, t ∈ R.

For general b > 1, we confirmed the stability criterioin numerically:
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Stability of smooth solitary waves: b > 1

Let m(t, x) = µ(x− ct) with µ ∈ Xk. We say that the travelling wave
is orbitally stable in Xk if for every ε > 0 there exists δ > 0 such that
for every m0 ∈ Xk satisfying ‖m0 − µ‖H1 < δ, there exists a unique
solution m ∈ C0(R,Xk) of the b-CH equation satisfying

inf
x0∈R
‖m(t, ·)− µ(· − x0)‖H1 < ε, t ∈ R.

Monotonicity k 7→ Q(φ) was recently proven in [Long & Liu, 2023] by
using the period function for planar ODEs.

Dmitry Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 28 / 31



How do we obtain this result?

1. We verify that the solitary wave µ ∈ Xk is a critical point of the
augmented Hamiltonian

Λω1,ω2(m) := M̂(m)− ω1Ê(m)− ω2F̂(m),

for some (ω1, ω2) that depend on (b, c, k).

2. Then, we expand

Λω1,ω2(µ+ m̃)− Λω1,ω2(µ) = 〈Lm̃, m̃〉+ ‖m̃‖3
H1

for every small m̃ ∈ H1(R) where L is the Sturm–Liouville
operator in L2(R) with the dense domain H2(R). Since Lµ′ = 0
and µ′(x) has only one zero on R, L admits exactly one simple
negative eigenvalue and a simple zero eigenvalue.
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How do we obtain this result?

3. We add the constraint of a conserved quantity

bÊ(m)− k
1
b−1M̂(m)

which restricts perturbations m̃ to the class

〈µ
1
b−1 − k

1
b−1, m̃〉 = 0.

4. To prove that L|{v0}⊥ ≥ 0, we need to show that

〈L−1v0, v0〉 < 0, where v0 := µ
1
b−1 − k

1
b−1. This is true if and

only if the mapping

k 7→ Q(φ) :=

∫
R

[
b
(

c− k
c− φ

)
−
(

c− k
c− φ

)b

− b + 1

]
dx

is strictly increasing.
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which restricts perturbations m̃ to the class

〈µ
1
b−1 − k

1
b−1, m̃〉 = 0.

4. To prove that L|{v0}⊥ ≥ 0, we need to show that

〈L−1v0, v0〉 < 0, where v0 := µ
1
b−1 − k

1
b−1. This is true if and

only if the mapping

k 7→ Q(φ) :=

∫
R

[
b
(

c− k
c− φ

)
−
(

c− k
c− φ

)b

− b + 1

]
dx

is strictly increasing.
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Summary

We have considered the b-Camassa–Holm equation

ut − utxx + (b + 1)uux = buxuxx + uuxxx

which models unidirectional small-amplitude shallow water waves.

. Peaked traveling waves are unstable in H1 ∩W1,∞

. LWP only holds in H1 ∩W1,∞.

. Perturbations are bounded in H1 (at least for b = 2).

. Perturbations grow in W1,∞ norm.

. Spectral instability holds for every b.

. Smooth traveling waves are stable in H3 for b > 1
. LWP and GWP hold for perturbations with m = u− u′′ > 0
. Hamiltonian formulation exists for every b > 1
. TW is constrained minimizer of the augmented Hamiltonian.
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Summary

We have considered the b-Camassa–Holm equation

ut − utxx + (b + 1)uux = buxuxx + uuxxx

which models unidirectional small-amplitude shallow water waves.

Further directions:
. Stability of smooth traveling solitary waves for b ≤ 1.

. Stability of smooth traveling periodic waves for b 6= 2, 3.

. Robustness of peaked traveling waves in spite their instability.

. Universality of instability of peaked traveling waves.

. Proof of instability of cusped travelling waves.
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MANY THANKS FOR YOUR ATTENTION!
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