Stability of smooth travelling waves and instability of peaked travelling waves in the Camassa-Holm models

Dmitry E. Pelinovsky

joint work with Anna Geyer (TU Delft),
Fabio Natali (Brazil), Stephane Lafortune (USA)

Conference on Mathematics of Wave Phenomena (Karlsruhe)
February 14-18, 2022

Introduction

The Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

models the propagation of unidirectional shallow water waves, where $u=u(t, x)$ represents the water surface. [Camassa \& Holm, 1993]

Introduction

It was extended as the Degasperis-Procesi equation

$$
\begin{equation*}
u_{t}-u_{t x x}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x} \tag{DP}
\end{equation*}
$$

at the same asymptotic accuracy [Degasperis \& Procesi, 1999]

Introduction

It was further extended as the b-Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x} \tag{b-CH}
\end{equation*}
$$

by using transformations of integrable KdV equation
[Dullin, Gottwald, \& Holm, 2001] [Degasperis, Holm \& Hone, 2002]

Introduction

It was further extended as the b-Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x} \tag{b-CH}
\end{equation*}
$$

by using transformations of integrable KdV equation
[Dullin, Gottwald, \& Holm, 2001] [Degasperis, Holm \& Hone, 2002]

\triangleright BBM equation at small amplitudes: $u_{t}-u_{t x x}+(b+1) u u_{x}=0$
$\triangleright \mathrm{CH}$ and DP cases are integrable for $b=2$ and $b=3$.

Solitary waves in $b-\mathrm{CH}$ model

Similations of the b-family of Camassa-Holm equations

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

starting with Gaussian initial data $u(0, x)$ [Holm \& Staley, 2003]

Peaked solitary waves (peakons) are observed for $b>1$

Solitary waves in $b-\mathrm{CH}$ model

Similations of the b-family of Camassa-Holm equations

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

starting with Gaussian initial data $u(0, x)$ [Holm \& Staley, 2003]

Rarefactive waves are observed for $b \in(-1,1)$

Solitary waves in $b-\mathrm{CH}$ model

Similations of the b-family of Camassa-Holm equations

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

starting with Gaussian initial data $u(0, x)$ [Holm \& Staley, 2003]

Smooth solitary waves (leftons) are observed for $b<-1$

Stability of solitary waves: state of the art

For solitary waves satisfying $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$
\triangleright Orbital stability of peakons in energy space
$b=2$: [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001]
$b=3$: [Lin \& Liu, 2009]

Stability of solitary waves: state of the art

For solitary waves satisfying $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$
\triangleright Orbital stability of peakons in energy space $b=2$: [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001]
$b=3$: [Lin \& Liu, 2009]
\triangleright Orbital stability of leftons in weighted spaces $b<-1$: [Hone \& Lafortune, 2014]

Stability of solitary waves: state of the art

For solitary waves satisfying $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$
\triangleright Orbital stability of peakons in energy space $b=2$: [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001]
$b=3$: [Lin \& Liu, 2009]
\triangleright Orbital stability of leftons in weighted spaces $b<-1$: [Hone \& Lafortune, 2014]

For solitary waves satisfying $u(x) \rightarrow k$ as $|x| \rightarrow \infty$ with $k>0$:
\triangleright Orbital stability of smooth solitons in energy space $b=2$: [Constantin \& Strauss, 2002]
$b=3$: [Li \& Liu \& Wu, 2020]

Stability of solitary waves: state of the art

For solitary waves satisfying $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$
\triangleright Orbital stability of peakons in energy space $b=2$: [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001]
$b=3$: [Lin \& Liu, 2009]
\triangleright Orbital stability of leftons in weighted spaces $b<-1$: [Hone \& Lafortune, 2014]

For solitary waves satisfying $u(x) \rightarrow k$ as $|x| \rightarrow \infty$ with $k>0$:
\triangleright Orbital stability of smooth solitons in energy space $b=2$: [Constantin \& Strauss, 2002]
$b=3$: [Li \& Liu \& Wu, 2020]

Similar studies were developed for travelling periodic waves (smooth or peaked) [Lenells, 2004-2006]

Stability of solitary waves: new results

\triangleright Linear and nonlinear instability of peakons in $H^{1} \cap W^{1, \infty}$ $b=2$: [Natali \& P., 2020] [Madiyeva \& P., 2021]

Stability of solitary waves: new results

\triangleright Linear and nonlinear instability of peakons in $H^{1} \cap W^{1, \infty}$ $b=2$: [Natali \& P., 2020] [Madiyeva \& P., 2021]
\triangleright Spectral instability of peakons any $b \in \mathbb{R}$: [Lafortune \& P., 2021]

Stability of solitary waves: new results

\triangleright Linear and nonlinear instability of peakons in $H^{1} \cap W^{1, \infty}$ $b=2$: [Natali \& P., 2020] [Madiyeva \& P., 2021]
\triangleright Spectral instability of peakons any $b \in \mathbb{R}$: [Lafortune \& P., 2021]
\triangleright Spectral and orbital stability of smooth solitary waves in H^{3} $b>1$: [Lafortune \& P., 2022]

Stability of solitary waves: new results

\triangleright Linear and nonlinear instability of peakons in $H^{1} \cap W^{1, \infty}$ $b=2$: [Natali \& P., 2020] [Madiyeva \& P., 2021]
\triangleright Spectral instability of peakons any $b \in \mathbb{R}$: [Lafortune \& P., 2021]
\triangleright Spectral and orbital stability of smooth solitary waves in H^{3} $b>1$: [Lafortune \& P., 2022]
\triangleright Spectral and orbital stability of smooth periodic waves in $H_{\text {per }}^{3}$ $b=2$ [Geyer, Martins, Natali, \& P., 2022]

Stability of solitary waves: new results

\triangleright Linear and nonlinear instability of peakons in $H^{1} \cap W^{1, \infty}$ $b=2$: [Natali \& P., 2020] [Madiyeva \& P., 2021]
\triangleright Spectral instability of peakons any $b \in \mathbb{R}$: [Lafortune \& P., 2021]
\triangleright Spectral and orbital stability of smooth solitary waves in H^{3} $b>1$: [Lafortune \& P., 2022]
\triangleright Spectral and orbital stability of smooth periodic waves in $H_{\text {per }}^{3}$ $b=2$ [Geyer, Martins, Natali, \& P., 2022]

More work is needed for stability analysis of smooth travelling waves.

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\frac{1}{4} \varphi^{\prime} *\left(b u^{2}+(3-b) u_{x}^{2}\right)=0
$$

where $\varphi:=2\left(1-\partial_{x}^{2}\right)^{-1} \delta=e^{-|x|}$ is the Green function.

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\frac{1}{4} \varphi^{\prime} *\left(b u^{2}+(3-b) u_{x}^{2}\right)=0
$$

where $\varphi:=2\left(1-\partial_{x}^{2}\right)^{-1} \delta=e^{-|x|}$ is the Green function.
The model may feature wave breaking:

$$
\|u(t, \cdot)\|_{L^{\infty}}<\infty, \quad\left\|u_{x}(t, \cdot)\right\|_{L^{\infty}} \rightarrow \infty \quad \text { as } t \rightarrow T<\infty
$$

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\frac{1}{4} \varphi^{\prime} *\left(b u^{2}+(3-b) u_{x}^{2}\right)=0
$$

where $\varphi:=2\left(1-\partial_{x}^{2}\right)^{-1} \delta=e^{-|x|}$ is the Green function.
Solutions of the Burgers equation $v_{t}+v v_{x}=0$ with $v(0, x)=f(x)$ feature the same wave breaking:

$$
v(t, x)=f(x-t v(t, x)) \quad \Rightarrow \quad v_{x}=\frac{f^{\prime}(x-t v)}{1+f^{\prime}(x-t v)}
$$

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\frac{1}{4} \varphi^{\prime} *\left(b u^{2}+(3-b) u_{x}^{2}\right)=0
$$

where $\varphi:=2\left(1-\partial_{x}^{2}\right)^{-1} \delta=e^{-|x|}$ is the Green function.
\triangleright locally well-posed in $H^{s}, s>3 / 2$ [Escher \& Yin, 2008; Zhou, 2010]
\triangleright no continuous dependence in $H^{s}, s \leq 3 / 2$
[Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]
\triangleright locally well-posed in $H^{1} \cap W^{1, \infty}$.
[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]

Hamiltonian structure of the CH equations

For $b=2$, the Camassa-Holm equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

has the first three conserved quantities

$$
M(u)=\int u d x, \quad E(u)=\frac{1}{2} \int\left(u^{2}+u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int\left(u^{3}+u u_{x}^{2}\right) d x
$$

Hamiltonian structure of the CH equations

For $b=2$, the Camassa-Holm equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

has the first three conserved quantities
$M(u)=\int u d x, \quad E(u)=\frac{1}{2} \int\left(u^{2}+u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int\left(u^{3}+u u_{x}^{2}\right) d x$.
(CH) can be written in Hamiltonian form in two ways:

$$
u_{t}=J F^{\prime}(u), \quad J=-\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x}
$$

and

$$
m_{t}=J_{m} E^{\prime}(m), \quad J_{m}=-\left(m \partial_{x}+\partial_{x} m\right),
$$

where $m=u-u_{x x}$.

Hamiltonian structure of the $b-\mathrm{CH}$ equations

For general $b \neq 1$, the b-Camassa-Holm equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

has three conserved quantities
$M(m)=\int m d x, E(m)=\int m^{\frac{1}{b}} d x, \quad F(m)=\int\left(\frac{m_{x}^{2}}{b^{2} m^{2}}+1\right) m^{-\frac{1}{b}} d x$,
where $m=u-u_{x x}$.

Hamiltonian structure of the $b-\mathrm{CH}$ equations

For general $b \neq 1$, the b-Camassa-Holm equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

has three conserved quantities

$$
M(m)=\int m d x, \quad E(m)=\int m^{\frac{1}{b}} d x, \quad F(m)=\int\left(\frac{m_{x}^{2}}{b^{2} m^{2}}+1\right) m^{-\frac{1}{b}} d x
$$

where $m=u-u_{x x}$.
$b-\mathrm{CH}$ can be written in Hamiltonian form:

$$
\frac{d m}{d t}=J_{m} \frac{\delta M}{\delta m}
$$

associated with

$$
J_{m}:=-\frac{1}{b-1}\left(b m \partial_{x}+m_{x}\right)\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x}^{-1}\left(b \partial_{x} m-m_{x}\right)
$$

Stability of solitary waves: new results

\triangleright Linear and nonlinear instability of peakons in $H^{1} \cap W^{1, \infty}$ $b=2$: [Natali \& P., 2020] [Madiyeva \& P., 2021]
\triangleright Spectral instability of peakons any $b \in \mathbb{R}$: [Lafortune \& P., 2021]
\triangleright Spectral and orbital stability of smooth solitary waves in H^{3} $b>1$: [Lafortune \& P., 2022]
\triangleright Spectral and orbital stability of smooth periodic waves in $H_{\text {per }}^{3}$ $b=2$ [Geyer, Martins, Natali, \& P., 2022]

Existence of peakons

Peakons exist in the weak form in $H^{1} \cap W^{1, \infty}$

$$
u(t, x)=c e^{-|x-c t|}
$$

Without loss of generality, we can set $c=1$. The normalized profile $\varphi(x)=e^{-|x|}$ satisfies the integral equation

$$
-\varphi+\frac{1}{2} \varphi^{2}+\frac{1}{4} \varphi *\left(b \varphi^{2}+(3-b)\left(\varphi^{\prime}\right)^{2}\right)=0
$$

which follows from integration of

$$
u_{t}+u u_{x}+\frac{1}{4} \varphi^{\prime} *\left(b u^{2}+(3-b) u_{x}^{2}\right)=0
$$

after the traveling wave reduction $u(t, x)=\varphi(x-t)$.

Orbital stability of peakons: $b=2$

Theorem (Constantin-Molinet (2001); Lenells (2005))

φ is a unique (up to translation) minimizer of $F(u)$ in H^{1} subject to $E(u)$ and $M(u)$.

Theorem (Constantin-Strauss (2000); Lenells (2005))

For every small $\varepsilon>0$, if the initial data satisfies

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}<\left(\frac{\varepsilon}{3}\right)^{4}
$$

then the solution satisfies

$$
\|u(t, \cdot)-\varphi(\cdot-\xi(t))\|_{H^{1}}<\varepsilon, \quad t \in(0, T)
$$

where $\xi(t)$ is a point of maximum for $u(t, \cdot)$.

Nonlinear instability of peakons: $b=2$

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\frac{1}{4} \varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Nonlinear instability of peakons: $b=2$

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\frac{1}{4} \varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Theorem (Natali-P. (2020); Madiyeva-P (2021))

For every $\delta>0$, there exist $t_{0}>0$ and $u_{0} \in H^{1} \cap W^{1, \infty}$ satisfying

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}+\left\|u_{0}^{\prime}-\varphi^{\prime}\right\|_{L^{\infty}}<\delta
$$

s.t. the unique solution $u \in C\left([0, T), H^{1} \cap W^{1, \infty}\right)$ with $T>t_{0}$ satisfies

$$
\left\|u_{x}\left(t_{0}, \cdot\right)-\varphi^{\prime}\left(\cdot-\xi\left(t_{0}\right)\right)\right\|_{L^{\infty}}>1,
$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in[0, T)$.

Nonlinear instability of peakons: $b=2$

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\frac{1}{4} \varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

\triangleright If $u \in H^{1}(\mathbb{R})$, then $Q[u] \in C(\mathbb{R})$.
\triangleright If $u \in H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$, then $Q[u]$ is Lipschitz continuous.

Nonlinear instability of peakons: $b=2$

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\frac{1}{4} \varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

If $u(t, \cdot) \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{\xi(t)\})$ for $t \in[0, T)$. Then, $\xi(t) \in C^{1}(0, T)$ and

$$
\frac{d \xi}{d t}=u(t, \xi(t)), \quad t \in(0, T)
$$

For the peaked traveling wave $u(t, x)=\varphi(x-c t)$, this gives $c=\varphi(0):=\max _{x \in \mathbb{R}} \varphi(x)$.

Nonlinear instability of peakons: $b=2$

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\frac{1}{4} \varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Peaked solitary wave with a single peak:

Decomposition near a single peakon

Consider a decomposition:
$u(t, x)=\varphi(x-t-a(t))+v(t, x-t-a(t)), \quad t \in[0, T), \quad x \in \mathbb{R}$, with the peak at $\xi(t)=t+a(t)$ for $v(t, \cdot) \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{\xi(t)\})$.

Then, $a^{\prime}(t)=v(t, 0)$ and
$v_{t}=(1-\varphi) v_{x}+\left(\left.v\right|_{x=0}-v\right) \varphi^{\prime}+\left(\left.v\right|_{x=0}-v\right) v_{x}-\varphi^{\prime} *\left(\varphi v+\frac{1}{2} \varphi^{\prime} v_{x}\right)-Q[v]$.

Decomposition near a single peakon

Consider a decomposition:

$$
u(t, x)=\varphi(x-t-a(t))+v(t, x-t-a(t)), \quad t \in[0, T), \quad x \in \mathbb{R},
$$ with the peak at $\xi(t)=t+a(t)$ for $v(t, \cdot) \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{\xi(t)\})$.

Due to

$$
[v(0)-v(x)] \varphi^{\prime}(x)-\varphi^{\prime} * \varphi v-\frac{1}{2} \varphi^{\prime} * \varphi^{\prime} v_{x}=\varphi(x) \int_{0}^{x} v(y) d y
$$

the evolution of $v(t, x)$ simplifies to

$$
v_{t}=(1-\varphi) v_{x}+\varphi \int_{0}^{x} v(t, y) d y+\left(\left.v\right|_{x=0}-v\right) v_{x}-Q[v]
$$

Nonlinear evolution

For the evolution problem:

$$
\left\{\begin{array}{l}
v_{t}=(c-\varphi) v_{x}+\varphi \int_{0}^{x} v(t, y) d y+\left(\left.v\right|_{x=0}-v\right) v_{x}-Q[v], \quad t \in(0, T), \\
\left.v\right|_{t=0}=v_{0}(x)
\end{array}\right.
$$

we can look for solutions with the method of characteristic curves:

$$
x=X(t, s), \quad v(t, X(t, s))=V(t, s)
$$

Nonlinear evolution

For the evolution problem:

$$
\left\{\begin{array}{l}
v_{t}=(c-\varphi) v_{x}+\varphi \int_{0}^{x} v(t, y) d y+\left(\left.v\right|_{x=0}-v\right) v_{x}-Q[v], \quad t \in(0, T) \\
\left.v\right|_{t=0}=v_{0}(x)
\end{array}\right.
$$

we can look for solutions with the method of characteristic curves:

$$
x=X(t, s), \quad v(t, X(t, s))=V(t, s)
$$

The characteristic coordinates $X(t, s)$ satisfies

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=\varphi(X)-1+v(t, X)-v(t, 0), \quad t \in(0, T) \\
\left.X\right|_{t=0}=s
\end{array}\right.
$$

Since φ is Lipschitz, there exists the unique characteristic function $X(t, s)$ for each $s \in \mathbb{R}$ if $v(t, \cdot)$ remains in $H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$ The peak location $X(t, 0)=0$ is invariant in time.

Nonlinear evolution

For the evolution problem:

$$
\left\{\begin{array}{l}
v_{t}=(c-\varphi) v_{x}+\varphi \int_{0}^{x} v(t, y) d y+\left(\left.v\right|_{x=0}-v\right) v_{x}-Q[v], \quad t \in(0, T) \\
\left.v\right|_{t=0}=v_{0}(x)
\end{array}\right.
$$

we can look for solutions with the method of characteristic curves:

$$
x=X(t, s), \quad v(t, X(t, s))=V(t, s)
$$

From the right side of the peak, $V_{0}(t)=v(t, 0), W_{0}(t)=v_{x}\left(t, 0^{+}\right):$

$$
\frac{d W_{0}}{d t}=W_{0}+V_{0}+V_{0}^{2}-\frac{1}{2} W_{0}^{2}-P[v](0), \quad P[v]:=\varphi *\left(v^{2}+\frac{1}{2} v_{x}^{2}\right) .
$$

We will show that $W_{0}(t)$ grows and may diverge in a finite time.

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon .
$$

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon
$$

From the equation on the right side of the peak:

$$
\frac{d W_{0}}{d t}=W_{0}+V_{0}+V_{0}^{2}-\frac{1}{2} W_{0}^{2}-P[v](0)
$$

and since $P[v]>0$, we have

$$
\frac{d W_{0}}{d t} \leq W_{0}+C \varepsilon \quad \Rightarrow \quad W_{0}(t) \leq\left[W_{0}(0)+C \varepsilon\right] e^{t}
$$

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon
$$

If $W_{0}(0)=-2 C \varepsilon$, then

$$
W_{0}(t) \leq-C \varepsilon e^{t},
$$

hence $\left|W_{0}\left(t_{0}\right)\right| \geq 1$ for $t_{0}:=-\log (C \varepsilon)$.

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon
$$

If $W_{0}(0)=-2 C \varepsilon$, then

$$
W_{0}(t) \leq-C \varepsilon e^{t},
$$

hence $\left|W_{0}\left(t_{0}\right)\right| \geq 1$ for $t_{0}:=-\log (C \varepsilon)$.
The initial constraint $\left\|v_{0}\right\|_{L^{\infty}}+\left\|v_{0}^{\prime}\right\|_{L^{\infty}}<\delta$, is satisfied if $\forall \delta>0, \exists \varepsilon>0$ such that

$$
\left(\frac{\varepsilon}{3}\right)^{4}+2 C \varepsilon<\delta
$$

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon .
$$

For the strong instability, we estimate

$$
\frac{d W_{0}}{d t}=W_{0}+V_{0}+V_{0}^{2}-\frac{1}{2} W_{0}^{2}-P[v](0) \leq W_{0}-\frac{1}{2} W_{0}^{2}+C \varepsilon .
$$

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon .
$$

By the ODE comparison theory, $W_{0}(t) \leq \bar{W}(t)$, where the supersolution satisfies

$$
\frac{d \bar{W}}{d t}=\bar{W}-\frac{1}{2} \bar{W}^{2}+C \varepsilon
$$

with $W_{0}(0)=\bar{W}(0)=-C \varepsilon$ and $\bar{W}(t) \rightarrow-\infty$ as $t \rightarrow \bar{T}$.

Illustration of the peakon instability (periodic case)

Figure: The plots of perturbation $v(t, x)$ to the peaked wave versus x on $[-2 \pi, 2 \pi]$ for different values of t in the case $v_{0}(x)=\sin (x)$.

Illustration of the peakon instability (periodic case)

Figure: The plots of perturbation $v(t, x)$ to the peaked wave versus x on $[-2 \pi, 2 \pi]$ for different values of t in the case $v_{0}(x)=\cos (x)$.

Linearized evolution: any $b \in \mathbb{R}$

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$:

$$
\begin{aligned}
v_{t}= & (1-\varphi) v_{x}+(b-2)\left(\left.v\right|_{x=0}-v\right) \varphi^{\prime} \\
& +\frac{1}{2}(b-3) \varphi *\left(\varphi^{\prime} v\right)-\frac{1}{2}(2 b-3) \varphi^{\prime} *(\varphi v)
\end{aligned}
$$

Question: Can we predict instability of peakons for any b from analysis of the linearized operator in $L^{2}(\mathbb{R})$?

Linearized evolution: any $b \in \mathbb{R}$

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$:

$$
\begin{aligned}
v_{t}= & (1-\varphi) v_{x}+(b-2)\left(\left.v\right|_{x=0}-v\right) \varphi^{\prime} \\
& +\frac{1}{2}(b-3) \varphi *\left(\varphi^{\prime} v\right)-\frac{1}{2}(2 b-3) \varphi^{\prime} *(\varphi v),
\end{aligned}
$$

Question: Can we predict instability of peakons for any b from analysis of the linearized operator in $L^{2}(\mathbb{R})$?
The linearized operator is

$$
L=(1-\varphi) \partial_{x}-(b-2) \varphi^{\prime}+K
$$

where $K: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$ is a compact (Hilbert-Schmidt) operator. Since $\varphi \in H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$, the natural domain of L in $L^{2}(\mathbb{R})$ is

$$
\operatorname{Dom}(L)=\left\{v \in L^{2}(\mathbb{R}): \quad(1-\varphi) v^{\prime} \in L^{2}(\mathbb{R})\right\}
$$

Linearized evolution: any $b \in \mathbb{R}$

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$:

$$
\begin{aligned}
v_{t}= & (1-\varphi) v_{x}+(b-2)\left(\left.v\right|_{x=0}-v\right) \varphi^{\prime} \\
& +\frac{1}{2}(b-3) \varphi *\left(\varphi^{\prime} v\right)-\frac{1}{2}(2 b-3) \varphi^{\prime} *(\varphi v),
\end{aligned}
$$

Question: Can we predict instability of peakons for any b from analysis of the linearized operator in $L^{2}(\mathbb{R})$?
Since

$$
\left\|(1-\varphi) v^{\prime}\right\|_{L^{2}} \leq\left\|v^{\prime}\right\|_{L^{2}}
$$

$H^{1}(\mathbb{R})$ is continuously embedded into $\operatorname{Dom}(L)$. However, it is not equivalent to $\operatorname{Dom}(L)$ because $\varphi^{\prime} \in \operatorname{Dom}(L)$ but $\varphi^{\prime} \notin H^{1}(\mathbb{R})$.
Question: How can we get redefine L from $H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$ to $\operatorname{Dom}(L) \subset L^{2}(\mathbb{R})$ to study spectral stability of peakons?

Resolution of these questions

It can be checked directly that

$$
L \varphi=(2-b) \varphi^{\prime} \text { and } L \varphi^{\prime}=0
$$

Resolution of these questions

It can be checked directly that

$$
L \varphi=(2-b) \varphi^{\prime} \text { and } L \varphi^{\prime}=0
$$

Starting with $v \in H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$, we write

$$
v=\left.v\right|_{x=0} \varphi+\tilde{v} \quad \text { such that } \tilde{v}(t, 0)=0
$$

and obtain the linearized equation

$$
\tilde{v}_{t}=L \tilde{v}-\frac{3}{2}(b-2)\left\langle\varphi \varphi^{\prime}, \tilde{v}\right\rangle \varphi
$$

Linear evolution is now well-defined for $\tilde{v} \in \operatorname{Dom}(L) \subset L^{2}(\mathbb{R})$ for which $\tilde{v}(t, 0)$ may not exist.

Resolution of these questions

It can be checked directly that

$$
L \varphi=(2-b) \varphi^{\prime} \text { and } L \varphi^{\prime}=0
$$

In order to reduce the linear evolution to the homogeneous equation, we use the secondary decomposition

$$
\tilde{v}(t, x)=\alpha(t) \varphi(x)+\beta(t) \varphi^{\prime}(x)+w(t, x)
$$

and obtain $w_{t}=L w$ and

$$
\frac{d \alpha}{d t}=(2-b) \beta+\frac{3}{2}(2-b)\left\langle\phi \phi^{\prime}, w\right\rangle, \quad \frac{d \beta}{d t}=(2-b) \alpha .
$$

For $b \neq 2$, we have instability of peakons in $\operatorname{Dom}(L)$ with $w=0$. For $b=2$, we have to analyze the spectrum of L in $L^{2}(\mathbb{R})$.

Spectrum of a linear operator in a Hilbert space

Let A be a linear operator on a Banach space X with $\operatorname{Dom}(A) \subset X$. The complex plane \mathbb{C} is decomposed into the resolvent set $\rho(A)$ and the spectrum $\sigma(A)=\mathbb{C} \backslash \rho(A)$, the latter consists of the following three disjoint sets:

1. the point spectrum

$$
\sigma_{\mathrm{p}}(A)=\{\lambda: \quad \operatorname{Ker}(A-\lambda I) \neq\{0\}\}
$$

2. the residual spectrum

$$
\sigma_{\mathrm{r}}(A)=\{\lambda: \quad \operatorname{Ker}(A-\lambda I)=\{0\}, \quad \operatorname{Ran}(A-\lambda I) \neq X\}
$$

3. the continuous spectrum

$$
\begin{aligned}
& \sigma_{\mathrm{c}}(A)=\{\lambda: \quad \operatorname{Ker}(A-\lambda I)=\{0\}, \quad \operatorname{Ran}(A-\lambda I)=X, \\
&\left.(A-\lambda I)^{-1}: X \rightarrow X \text { is unbounded }\right\} .
\end{aligned}
$$

Spectrum of a linear operator in a Hilbert space

Theorem (Lafortune-P, 2021)

The spectrum of L with $\operatorname{Dom}(L) \subset L^{2}(\mathbb{R})$

$$
\sigma(L)=\left\{\lambda \in \mathbb{C}: \quad|\operatorname{Re}(\lambda)| \leq\left|\frac{5}{2}-b\right|\right\} .
$$

Moreover,
$\triangleright \sigma_{p}(L)$ is located for $0<|\operatorname{Re}(\lambda)|<\frac{5}{2}-b$ if $b<\frac{5}{2}$
$\triangleright \sigma_{r}(L)$ is located for $0<|\operatorname{Re}(\lambda)|<b-\frac{5}{2}$ if $b>\frac{5}{2}$
$\triangleright \sigma_{c}(L)$ is located for $\operatorname{Re}(\lambda)=0$ and $\operatorname{Re}(\lambda)= \pm\left|\frac{5}{2}-b\right|$
$\triangleright \lambda=0$ is the embedded eigenvalue for every b.
\Rightarrow the peakon is linearly unstable in $\operatorname{Dom}(L)$ for every $b \neq \frac{5}{2}$.

How do we obtain this result?

Recall that $L=L_{0}+K$, where $L_{0}:=(1-\varphi) \partial_{x}-(b-2) \varphi^{\prime}$ with

$$
\operatorname{Dom}(L)=\operatorname{Dom}\left(L_{0}\right)=\left\{v \in L^{2}(\mathbb{R}):(1-\varphi) v^{\prime} \in L^{2}(\mathbb{R})\right\}
$$

and $K: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$ is a compact (Hilbert-Schmidt) operator.

How do we obtain this result?

Recall that $L=L_{0}+K$, where $L_{0}:=(1-\varphi) \partial_{x}-(b-2) \varphi^{\prime}$ with

$$
\operatorname{Dom}(L)=\operatorname{Dom}\left(L_{0}\right)=\left\{v \in L^{2}(\mathbb{R}):(1-\varphi) v^{\prime} \in L^{2}(\mathbb{R})\right\}
$$ and $K: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$ is a compact (Hilbert-Schmidt) operator.

Theorem (Geyer \& P (2020))

Let $L: \operatorname{dom}(L) \subset X \rightarrow X$ and $L_{0}: \operatorname{dom}\left(L_{0}\right) \subset X \rightarrow X$ be linear operators on Hilbert space X with the same domain such that $L-L_{0}=K$ is a compact operator in X. Assume that the intersections $\sigma_{\mathrm{p}}(L) \cap \rho\left(L_{0}\right)$ and $\sigma_{\mathrm{p}}\left(L_{0}\right) \cap \rho(L)$ are empty. Then, $\sigma(L)=\sigma\left(L_{0}\right)$.

How do we obtain this result?

Recall that $L=L_{0}+K$, where $L_{0}:=(1-\varphi) \partial_{x}-(b-2) \varphi^{\prime}$ with

$$
\operatorname{Dom}(L)=\operatorname{Dom}\left(L_{0}\right)=\left\{v \in L^{2}(\mathbb{R}):(1-\varphi) v^{\prime} \in L^{2}(\mathbb{R})\right\}
$$

and $K: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$ is a compact (Hilbert-Schmidt) operator.

Theorem (Bühler \& Salamon (2018))

Let $L: \operatorname{dom}(L) \subset X \rightarrow X$ be a linear operator on Hilbert space X and $L^{*}: \operatorname{dom}\left(L^{*}\right) \subset X \rightarrow X$ be the adjoint operator. Assume that $\sigma_{\mathrm{p}}(L)$ is empty. Then, $\sigma_{\mathrm{r}}(L)=\sigma_{\mathrm{p}}\left(L^{*}\right)$.

How do we obtain this result?

Recall that $L=L_{0}+K$, where $L_{0}:=(1-\varphi) \partial_{x}-(b-2) \varphi^{\prime}$ with

$$
\operatorname{Dom}(L)=\operatorname{Dom}\left(L_{0}\right)=\left\{v \in L^{2}(\mathbb{R}):(1-\varphi) v^{\prime} \in L^{2}(\mathbb{R})\right\}
$$

and $K: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$ is a compact (Hilbert-Schmidt) operator.
$L_{0} v=\lambda v$ is the first-order equation

$$
(1-\varphi) \frac{d v}{d x}+(2-b) \varphi^{\prime} v=\lambda v
$$

with the exact solution

$$
v(x)= \begin{cases}v_{+} e^{\lambda x}\left(1-e^{-x}\right)^{2+\lambda-b}, & x>0, \\ v_{-} e^{\lambda x}\left(1-e^{x}\right)^{2-\lambda-b}, & x<0,\end{cases}
$$

If $\operatorname{Re}(\lambda)>0$, then $v_{+}=0$ and $\operatorname{Re}(\lambda)<\frac{5}{2}-b$.

How do we obtain this result?

Recall that $L=L_{0}+K$, where $L_{0}:=(1-\varphi) \partial_{x}-(b-2) \varphi^{\prime}$ with

$$
\operatorname{Dom}(L)=\operatorname{Dom}\left(L_{0}\right)=\left\{v \in L^{2}(\mathbb{R}):(1-\varphi) v^{\prime} \in L^{2}(\mathbb{R})\right\}
$$

and $K: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$ is a compact (Hilbert-Schmidt) operator.
$L_{0}^{*} v=\lambda v$ is the first-order equation

$$
-(1-\varphi) \frac{d v}{d x}+(3-b) \varphi^{\prime} v=\lambda v
$$

with the exact solution

$$
v(x)= \begin{cases}v_{+} e^{-\lambda x}\left(1-e^{-x}\right)^{b-3-\lambda}, & x>0 \\ v_{-} e^{-\lambda x}\left(1-e^{x}\right)^{b-3+\lambda}, & x<0\end{cases}
$$

If $\operatorname{Re}(\lambda)>0$, then $v_{-}=0$ and $\operatorname{Re}(\lambda)<b-\frac{5}{2}$.

CH and DP have different types of peakon instability

Theorem (Lafortune-P, 2021)

The spectrum of L with $\operatorname{Dom}(L) \subset L^{2}(\mathbb{R})$

$$
\sigma(L)=\left\{\lambda \in \mathbb{C}: \quad|\operatorname{Re}(\lambda)| \leq\left|\frac{5}{2}-b\right|\right\} .
$$

Moreover,

$$
\begin{aligned}
& \triangleright \sigma_{p}(L) \text { is located for } 0<|\operatorname{Re}(\lambda)|<\frac{5}{2}-b \text { if } b<\frac{5}{2} \\
& \triangleright \sigma_{r}(L) \text { is located for } 0<|\operatorname{Re}(\lambda)|<b-\frac{5}{2} \text { if } b>\frac{5}{2} \\
& \triangleright \sigma_{c}(L) \text { is located for } \operatorname{Re}(\lambda)=0 \text { and } \operatorname{Re}(\lambda)= \pm\left|\frac{5}{2}-b\right| \\
& \triangleright \lambda=0 \text { is the embedded eigenvalue for every } b \text {. }
\end{aligned}
$$

$b=2:\|v(t, \cdot)\|_{L^{2}(-\infty, 0)}$ grows due to point spectrum $b=3:\|v(t, \cdot)\|_{L^{2}(0, \infty)}$ grows due to residual spectrum

Stability of solitary waves: new results

\triangleright Linear and nonlinear instability of peakons in $H^{1} \cap W^{1, \infty}$ $b=2$: [Natali \& P., 2020] [Madiyeva \& P., 2021]
\triangleright Spectral instability of peakons any $b \in \mathbb{R}$: [Lafortune \& P., 2021]
\triangleright Spectral and orbital stability of smooth solitary waves in H^{3} $b>1$: [Lafortune \& P., 2022]
\triangleright Spectral and orbital stability of smooth periodic waves in $H_{\text {per }}^{3}$ $b=2$ [Geyer, Martins, Natali, \& P., 2022]

Standard approach to orbital stability

\triangleright Construct an augmented Hamiltonian $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$

Standard approach to orbital stability

\triangleright Construct an augmented Hamiltonian $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$
\triangleright Compute the spectrum of the linearized operator $\mathcal{L}=\Lambda^{\prime \prime}(\phi)$ and control the number of negative eigenvalues in L^{2}.

Standard approach to orbital stability

\triangleright Construct an augmented Hamiltonian $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$
\triangleright Compute the spectrum of the linearized operator $\mathcal{L}=\Lambda^{\prime \prime}(\phi)$ and control the number of negative eigenvalues in L^{2}.
\triangleright If \mathcal{L} has only one negative simple eigenvalue and a simple zero eigenvalue, then we need to prove that the traveling wave ϕ is a constrained minimizer of Hamiltonian under fixed momentum, i.e. $\left.\mathcal{L}\right|_{X_{0}} \geq 0$, where X_{0} is a constrained subspace of L^{2}

Standard approach to orbital stability

\triangleright Construct an augmented Hamiltonian $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$
\triangleright Compute the spectrum of the linearized operator $\mathcal{L}=\Lambda^{\prime \prime}(\phi)$ and control the number of negative eigenvalues in L^{2}.
\triangleright If \mathcal{L} has only one negative simple eigenvalue and a simple zero eigenvalue, then we need to prove that the traveling wave ϕ is a constrained minimizer of Hamiltonian under fixed momentum, i.e. $\left.\mathcal{L}\right|_{X_{0}} \geq 0$, where X_{0} is a constrained subspace of L^{2}
\triangleright The traveling wave ϕ is orbitally stable in energy space.

Existence of smooth solitary waves

Smooth traveling waves of the form $u(x, t)=\phi(x-c t)$ satisfy

$$
-(c-\phi)\left(\phi^{\prime \prime \prime}-\phi^{\prime}\right)+b \phi^{\prime}\left(\phi^{\prime \prime}-\phi\right)=0 .
$$

Existence of smooth solitary waves

Smooth traveling waves of the form $u(x, t)=\phi(x-c t)$ satisfy

$$
-(c-\phi)\left(\phi^{\prime \prime \prime}-\phi^{\prime}\right)+b \phi^{\prime}\left(\phi^{\prime \prime}-\phi\right)=0
$$

After multiplication by $(c-\phi)^{b-1}$, the equation can be integrated into

$$
-(c-\phi)^{b}\left(\phi^{\prime \prime}-\phi\right)=a, \quad a \in \mathbb{R}
$$

Existence of smooth solitary waves

Smooth traveling waves of the form $u(x, t)=\phi(x-c t)$ satisfy

$$
-(c-\phi)\left(\phi^{\prime \prime \prime}-\phi^{\prime}\right)+b \phi^{\prime}\left(\phi^{\prime \prime}-\phi\right)=0 .
$$

After multiplication by $(c-\phi)^{b-1}$, the equation can be integrated into

$$
-(c-\phi)^{b}\left(\phi^{\prime \prime}-\phi\right)=a, \quad a \in \mathbb{R}
$$

Further integration gives

$$
\frac{1}{2}(b-1)\left[\left(\phi^{\prime}\right)^{2}-\phi^{2}\right]+\frac{a}{(c-\phi)^{b-1}}=g, \quad g \in \mathbb{R}
$$

Smooth waves with $c>0$ exist if $\phi<c$.

Existence of smooth solitary waves from the phase portrait

Newton's particle with mass $m=b-1$ and potential energy $U(\phi)$

$$
\frac{1}{2}(b-1)\left(\phi^{\prime}\right)^{2}+U(\phi)=g, \quad U(\phi)=-\frac{1}{2}(b-1) \phi^{2}+\frac{a}{(c-\phi)^{b-1}}
$$

For $b>1$ and $a \in\left(0, a_{0}\right)$ two critical points of $U(\phi)$ exists with ordering $0<\phi_{1}<\phi_{2}<c$.

Properties of smooth solitary waves

For fixed $b>1$ and $c>0$, the family of solitary waves have one parameter, which can be chosen as $k \in\left(0, k_{0}\right)$ such that

$$
\phi(x) \rightarrow k \quad \text { as } \quad|x| \rightarrow \infty \text { exponentially, }
$$

where $k_{0}:=(b+1)^{-1} c$. Moreover, $0<\phi<c$ and

$$
\mu=\phi-\phi^{\prime \prime}=k \frac{(c-k)^{b}}{(c-\phi)^{b}}
$$

satisfies $0<\mu<\infty$.
Note that $u(t, x)=k+v(t, x-k t)$ brings the $b-\mathrm{CH}$ equation to

$$
v_{t}-v_{t x x}+(b+1) v v_{x}=k v_{x}+b v_{x} v_{x x}+v v_{x x x}
$$

for which solitary waves with $v(t, x) \rightarrow 0$ as $|x| \rightarrow \infty$ were considered in the literature for $b=2$ and $b=3$.

Hamiltonian structure of the $b-\mathrm{CH}$ equations

Recall that the b-Camassa-Holm equation with $b \neq 1$

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

has three conserved quantities
$M(m)=\int m d x, E(m)=\int m^{\frac{1}{b}} d x, F(m)=\int\left(\frac{m_{x}^{2}}{b^{2} m^{2}}+1\right) m^{-\frac{1}{b}} d x$,
where $m=u-u_{x x}$.

Hamiltonian structure of the $b-\mathrm{CH}$ equations

Recall that the b-Camassa-Holm equation with $b \neq 1$

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

has three conserved quantities

$$
M(m)=\int m d x, \quad E(m)=\int m^{\frac{1}{b}} d x, \quad F(m)=\int\left(\frac{m_{x}^{2}}{b^{2} m^{2}}+1\right) m^{-\frac{1}{b}} d x
$$

where $m=u-u_{x x}$.
The conserved quantities can be redefined as

$$
\hat{E}(m)=\int_{\mathbb{R}}\left[m^{\frac{1}{b}}-k^{\frac{1}{b}}\right] d x, \quad \hat{F}(m)=\int_{\mathbb{R}}\left[\left(\frac{m_{x}^{2}}{b^{2} m^{2}}+1\right) m^{-\frac{1}{b}}-k^{-\frac{1}{b}}\right] d x
$$

in the set of functions with fixed $k>0$:

$$
X_{k}=\left\{m-k \in H^{1}(\mathbb{R}): \quad m(x)>0, \quad x \in \mathbb{R}\right\}
$$

Stability of smooth solitary waves

Let $m(t, x)=\mu(x-c t)$ with $\mu \in X_{k}$. We say that the travelling wave is orbitally stable in X_{k} if for every $\varepsilon>0$ there exists $\delta>0$ such that for every $m_{0} \in X_{k}$ satisfying $\left\|m_{0}-\mu\right\|_{H^{1}}<\delta$, there exists a unique solution $m \in C^{0}\left(\mathbb{R}, X_{k}\right)$ of the b-CH equation satisfying

$$
\inf _{x_{0} \in \mathbb{R}}\left\|m(t, \cdot)-\mu\left(\cdot-x_{0}\right)\right\|_{H^{1}}<\varepsilon, \quad t \in \mathbb{R}
$$

Theorem (Lafortune-P, 2022)

For fixed $b>1, c>0$, and $k \in\left(0, k_{0}\right)$, there exists a unique solitary wave $m(t, x)=\mu(x-c t)$ of the b-CH equation, which is orbitally stable in X_{k} if the mapping

$$
k \mapsto Q(\phi):=\int_{\mathbb{R}}\left[b\left(\frac{c-k}{c-\phi}\right)-\left(\frac{c-k}{c-\phi}\right)^{b}-b+1\right] d x
$$

is strictly increasing.

How do we obtain this result?

1. We verify that the solitary wave $\mu \in X_{k}$ is a critical point of the augmented Hamiltonian

$$
\Lambda_{\omega_{1}, \omega_{2}}(m):=\hat{M}(m)-\omega_{1} \hat{E}(m)-\omega_{2} \hat{F}(m)
$$

for some $\left(\omega_{1}, \omega_{2}\right)$ that depend on (b, c, k).

How do we obtain this result?

1. We verify that the solitary wave $\mu \in X_{k}$ is a critical point of the augmented Hamiltonian

$$
\Lambda_{\omega_{1}, \omega_{2}}(m):=\hat{M}(m)-\omega_{1} \hat{E}(m)-\omega_{2} \hat{F}(m)
$$

for some $\left(\omega_{1}, \omega_{2}\right)$ that depend on (b, c, k).
2. Then, we expand

$$
\Lambda_{\omega_{1}, \omega_{2}}(\mu+\tilde{m})-\Lambda_{\omega_{1}, \omega_{2}}(\mu)=\langle\mathcal{L} \tilde{m}, \tilde{m}\rangle+\|\tilde{m}\|_{H^{1}}^{3}
$$

for every small $\tilde{m} \in H^{1}(\mathbb{R})$ where \mathcal{L} is the Sturm-Liouville operator in $L^{2}(\mathbb{R})$ with the dense domain $H^{2}(\mathbb{R})$. Since $\mathcal{L} \mu^{\prime}=0$ and $\mu^{\prime}(x)$ has only one zero on \mathbb{R}, \mathcal{L} admits exactly one simple negative eigenvalue and a simple zero eigenvalue.

How do we obtain this result?

3. We add the constraint of a conserved quantity

$$
b \hat{E}(m)-k^{\frac{1}{b}-1} \hat{M}(m)
$$

which restricts perturbations \tilde{m} to the class

$$
\left\langle\mu^{\frac{1}{b}-1}-k^{\frac{1}{b}-1}, \tilde{m}\right\rangle=0 .
$$

How do we obtain this result?

3. We add the constraint of a conserved quantity

$$
b \hat{E}(m)-k^{\frac{1}{b}-1} \hat{M}(m)
$$

which restricts perturbations \tilde{m} to the class

$$
\left\langle\mu^{\frac{1}{b}-1}-k^{\frac{1}{b}-1}, \tilde{m}\right\rangle=0 .
$$

4. To prove that $\left.\mathcal{L}\right|_{\left\{v_{0}\right\}^{\perp}} \geq 0$, we need to show that $\left\langle\mathcal{L}^{-1} v_{0}, v_{0}\right\rangle<0$, where $v_{0}:=\mu^{\frac{1}{b}-1}-k^{\frac{1}{b}-1}$. This is true if and only if the mapping

$$
k \mapsto Q(\phi):=\int_{\mathbb{R}}\left[b\left(\frac{c-k}{c-\phi}\right)-\left(\frac{c-k}{c-\phi}\right)^{b}-b+1\right] d x
$$

is strictly increasing.

Verification of the stability criterion

Smooth solitary waves are solutions $\phi(x) \rightarrow k$ as $|x| \rightarrow \infty$ of

$$
(c-\phi)\left(\phi-\phi^{\prime \prime}\right)+\frac{1}{2}(b-1)\left(\phi^{\prime 2}-\phi^{2}\right)=c k-\frac{1}{2}(b+1) k^{2} .
$$

Verification of the stability criterion

Smooth solitary waves are solutions $\phi(x) \rightarrow k$ as $|x| \rightarrow \infty$ of

$$
(c-\phi)\left(\phi-\phi^{\prime \prime}\right)+\frac{1}{2}(b-1)\left(\phi^{\prime 2}-\phi^{2}\right)=c k-\frac{1}{2}(b+1) k^{2} .
$$

Transformations

$$
\phi(x)=\psi(z), \quad z=\int_{0}^{x}[c-\phi(x)]^{-\frac{b-1}{2}} d x
$$

and

$$
\psi(z)=k+(c-k) \varphi(\zeta), \quad \zeta=\sqrt{c-k(b+1)}(c-k)^{\frac{b-2}{2}} z
$$

bring the second-order equation to the semi-linear term
$-\varphi^{\prime \prime}(\zeta)+\varphi(1-\varphi)^{b-2}\left[1-(2 \gamma)^{-1}(b+1) \varphi\right]=0, \quad \gamma:=\frac{c-k(b+1)}{c-k}$,
where $\gamma \in(0,1)$ replaces $k \in\left(0,(b+1)^{-1} c\right)$.

Verification of the stability criterion

Smooth solitary waves are solutions $\phi(x) \rightarrow k$ as $|x| \rightarrow \infty$ of

$$
(c-\phi)\left(\phi-\phi^{\prime \prime}\right)+\frac{1}{2}(b-1)\left(\phi^{\prime 2}-\phi^{2}\right)=c k-\frac{1}{2}(b+1) k^{2} .
$$

Since

$$
\frac{d \gamma}{d k}=\frac{-b c}{(c-k)^{2}}<0
$$

the stability criterion is $\frac{d}{d \gamma} Q(\phi)<0$.

Verification of the stability criterion

Smooth solitary waves are solutions $\phi(x) \rightarrow k$ as $|x| \rightarrow \infty$ of

$$
(c-\phi)\left(\phi-\phi^{\prime \prime}\right)+\frac{1}{2}(b-1)\left(\phi^{\prime 2}-\phi^{2}\right)=c k-\frac{1}{2}(b+1) k^{2} .
$$

For general $b>1$, we have proven it asymptotically as $\gamma \rightarrow 0$ and $\gamma \rightarrow 1$ and confirmed numerically:

Verification of the stability criterion

Smooth solitary waves are solutions $\phi(x) \rightarrow k$ as $|x| \rightarrow \infty$ of

$$
(c-\phi)\left(\phi-\phi^{\prime \prime}\right)+\frac{1}{2}(b-1)\left(\phi^{\prime 2}-\phi^{2}\right)=c k-\frac{1}{2}(b+1) k^{2} .
$$

For $b=2(\mathrm{CH})$, this can be proven for every $\gamma \in(0,1)$:

$$
-\varphi^{\prime \prime}(\zeta)+\varphi\left[1-\frac{3}{2 \gamma} \varphi\right]=0, \quad \Rightarrow \quad \varphi(\zeta)=\gamma \operatorname{sech}^{2}\left(\frac{1}{2} \zeta\right)
$$

so that

$$
\frac{d}{d \gamma} Q(\phi)=-\frac{3}{2} \gamma^{1 / 2} \int_{\mathbb{R}} \frac{\operatorname{sech}^{4}\left(\frac{1}{2} \zeta\right)}{\left(1-\gamma \operatorname{sech}^{2}\left(\frac{1}{2} \zeta\right)\right)^{5 / 2}} d \zeta<0
$$

This result complements the proof in [Constantin \& Strauss, 2002]

Verification of the stability criterion

Smooth solitary waves are solutions $\phi(x) \rightarrow k$ as $|x| \rightarrow \infty$ of

$$
(c-\phi)\left(\phi-\phi^{\prime \prime}\right)+\frac{1}{2}(b-1)\left(\phi^{\prime 2}-\phi^{2}\right)=c k-\frac{1}{2}(b+1) k^{2} .
$$

For $b=3$ (DP), this can also be proven for every $\gamma \in(0,1)$:

$$
-\varphi^{\prime \prime}(\zeta)+\varphi(1-\varphi)\left[1-\frac{2}{\gamma} \varphi\right]=0
$$

with the exact solution

$$
\varphi(\zeta)=\frac{3 \gamma}{2+\gamma+\sqrt{(1-\gamma)(4-\gamma)} \cosh (\zeta)}
$$

This result complements the proof in [Li \& Liu \& Wu, 2020]

Summary

We have considered the b-Camassa-Holm equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

which models unidirectional small-amplitude shallow water waves.

Summary

We have considered the b-Camassa-Holm equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

which models unidirectional small-amplitude shallow water waves.
\triangleright Peaked traveling waves are unstable in $H^{1} \cap W^{1, \infty}$
\triangleright LWP only holds in $H^{1} \cap W^{1, \infty}$.
\triangleright Perturbations are bounded in H^{1} (at least for $b=2$).
\triangleright Perturbations grow in $W^{1, \infty}$ norm.
\triangleright Spectral instability holds for every b.
\triangleright Smooth traveling waves are stable in H^{3} for $b>1$
\triangleright LWP and GWP hold for perturbations with $m=u-u^{\prime \prime}>0$
\triangleright Hamiltonian formulation exists for every b
\triangleright TW is constrained minimizer of the augmented Hamiltonian.

Summary

We have considered the b-Camassa-Holm equation

$$
u_{t}-u_{t x x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

which models unidirectional small-amplitude shallow water waves.

Further directions:

\triangleright Stability of smooth traveling solitary waves for $b \leq 1$.
\triangleright Stability of smooth traveling periodic waves for $b \neq 2$.
\triangleright Robustness of peaked traveling waves in spite their instability.
\triangleright Universality of instability of peaked traveling waves.
\triangleright Proof of instability of cusped travelling waves.

