Rogue periodic waves for mKdV and NLS equations

Jinbing Chen and Dmitry Pelinovsky

Department of Mathematics, McMaster University, Hamilton, Ontario, Canada http://dmpeli.math.mcmaster.ca

AMS Sectional meeting, Buffalo NY, September 16-17 2017

The rogue wave of the cubic NLS equation

The focusing nonlinear Schrödinger (NLS) equation

$$i\psi_t + \psi_{xx} + 2(|\psi|^2 - 1)\psi = 0$$

admits the exact solution

$$\psi(x,t)=1-\frac{4(1+4it)}{1+4x^2+16t^2}.$$

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Properties of the rogue wave:

- It is developed due to modulational instability of the constant wave background $\psi_0(x,t)=1$.
- It comes from nowhere: $|\psi(x,t)| \to 1$ as $|x| + |t| \to \infty$.
- It is magnified at the center: $M_0 := |\psi(0,0)| = 3$.

Periodic waves of the modified KdV equation

The modified Korteweg-de Vries (mKdV) equation

$$u_t + 6u^2u_x + u_{xxx} = 0$$

appears in many physical applications, e.g., in models for internal waves.

The mKdV equation admits two families of the travelling periodic waves:

positive-definite periodic waves

$$u_{dn}(x,t) = dn(x - ct; k), \quad c = c_{dn}(k) := 2 - k^2,$$

sign-indefinite periodic waves

$$u_{cn}(x,t) = kcn(x - ct; k), \quad c = c_{cn}(k) := 2k^2 - 1,$$

where $k \in (0, 1)$ is elliptic modulus.

As $k \to 1$, the periodic waves converge to the soliton $u(x,t) = \operatorname{sech}(x-t)$. As $k \to 0$, the periodic waves converge to the small-amplitude waves.

Modulation theory for the Gardner equation

References: E. Parkes, J. Phys. A 20, 2025-2036 (1987); R. Grimshaw *et al.*, Physica D 159, 35-57 (2001)

Start with the following Gardner equation with the parameter α :

$$u_t + \alpha u u_x + 6u^2 u_x + u_{xxx} = 0$$

and use the small-amplitude slowly-varying approximation

$$u(x,t) = \epsilon^{1/2} \left[\psi(\sqrt{\epsilon}(x+c_0t),\epsilon t) e^{i(k_0x+\omega_0t)} + \text{c.c.} \right] + \mathcal{O}(\epsilon),$$

where $\omega_0 = \omega(k_0) = k_0^3$, $c_0 = \omega'(k_0) = 3k_0^2$, and ψ in scaled variables X and T satisfies the cubic NLS equation

$$i\psi_T + \frac{1}{2}\omega''(k_0)\psi_{XX} + \beta|\psi|^2\psi = 0,$$

where $\omega''(k_0) = 6k_0$ and $\beta = 6k_0 - \frac{\alpha^2}{6k_0}$.

Application of the modulation theory

The cubic NLS equation with $\omega''(k_0) = 6k_0$ and $\beta = 6k_0 - \frac{\alpha^2}{6k_0}$:

$$i\psi_{\mathcal{T}} + \frac{1}{2}\omega''(k_0)\psi_{XX} + \beta|\psi|^2\psi = 0.$$

sign-indefinite periodic waves

$$u_{cn}(x,t) = kcn(x - ct; k), \quad c = c_{cn}(k) := 2k^2 - 1,$$

As $k \to 0$, $u_{\rm cn}(x,t) \sim k\cos(x+t)$, hence $k_0 = 1$, $\alpha = 0$ and $\beta > 0$. *cn* periodic waves are modulationally unstable.

positive-definite periodic waves

$$u_{\rm dn}(x,t) = {\rm dn}(x-ct;k), \quad c = c_{\rm dn}(k) := 2-k^2,$$

As $k \to 0$, $u_{\rm dn}(x,t) \sim 1 + k^2 cos2(x-2t)$, hence $k_0 = 2$, $\alpha = 12$, $\beta = 0$. dn periodic waves are modulationally stable. (See also Bronski–Johnson–Kapitula, 2011 and Deconinck–Nivala, 2011)

Main questions

- 1. Can one construct rogue waves for periodic waves of mKdV?
- 2. Can one compute the magnification factor for such rogue waves?

$$u_t + 6u^2u_x + u_{xxx} = 0$$

Background for these questions:

- Numerically constructed rogue periodic waves for NLS (Kedziora–Ankiewicz–Akhmediev, 2014)
- Numerically constructed rogue waves for two-phase solutions of NLS (Calini–Schober, 2017)
- Rogue waves from a superposition of nearly identical solitons for mKdV (Shurgalina–E.Pelinovsky, 2016) two solitons
 (Slunyaev–E.Pelinovsky, 2016) N solitons
 The magnification factor for such N-soliton rogue waves = N.

Main results

MKdV equation for $u(x, t) \in \mathbb{R}$

$$u_t + 6u^2u_x + u_{xxx} = 0$$

is a compatibility condition of the Lax pair $\varphi(x, t) \in \mathbb{C}^2$:

$$\varphi_{\mathsf{X}} = \mathsf{U}(\lambda, \mathsf{u})\varphi, \quad \varphi_{\mathsf{t}} = \mathsf{V}(\lambda, \mathsf{u})\varphi.$$

- For periodic waves u, we compute explicitly the periodic eigenfunctions φ for four particular eigenvalues λ .
- ② For each periodic eigenfunction φ , we construct the second linearly independent non-periodic solution ψ for the same values of λ .
- **3** By using Darboux transformations of mKdV with non-periodic function ψ , we define the rogue periodic waves in the closed (implicit) form.
- we define the rogue periodic waves in the closed (implicit) form.
 From the implicit solutions, we compute the magnification factor explicitly.

For dn-periodic waves

$$u_{dn}(x,t) = dn(x - ct; k), \quad c = c_{dn}(k) := 2 - k^2,$$

the magnification factor is

$$M_{dn}(k) = 2 + \sqrt{1 - k^2}, \quad k \in [0, 1].$$

The "rogue" *dn*-periodic wave is a superposition of the (modulationally stable) *dn*-periodic wave and a travelling algebraic soliton.

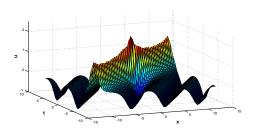


Figure: The "rogue" *dn*-periodic wave of the mKdV for k = 0.99.

For cn-periodic waves

$$u_{\rm cn}(x,t) = k {\rm cn}(x-ct;k), \quad c = c_{\rm cn}(k) := 2k^2 - 1,$$

the magnification factor is

$$M_{dn}(k) = 3, \quad k \in [0, 1].$$

The rogue *cn*-periodic wave is a result of the modulational instability of the *cn*-periodic wave.

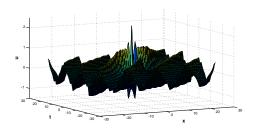


Figure: The rogue *cn*-periodic wave of the mKdV for k = 0.99.

How did we complete the job?

1. For periodic waves u, we compute explicitly the periodic eigenfunctions φ for four particular eigenvalues λ .

The AKNS spectral problem for $\varphi(x, t) \in \mathbb{C}^2$:

$$\varphi_{\mathsf{X}} = \mathsf{U}(\lambda, \mathsf{u})\varphi, \quad \mathsf{U}(\lambda, \mathsf{u}) := \left(\begin{array}{cc} \lambda & \mathsf{u} \\ -\mathsf{u} & -\lambda \end{array} \right),$$

where $u \in \mathbb{R}$ is any solution of the mKdV.

An algebraic technique based on the "nonlinearization" of Lax pair. Cao-Geng, 1990; Cao-Wu-Geng, 1999; Zhou, 2009; Chen, 2012;

Fix $\lambda = \lambda_1 \in \mathbb{C}$ with an eigenfunction $\varphi = (\varphi_1, \varphi_2) \in \mathbb{C}^2$. Set $u = \varphi_1^2 + \varphi_2^2 \in \mathbb{R}$ and consider the Hamiltonian system

$$\begin{cases} \frac{d\varphi_1}{dx} = \lambda_1 \varphi_1 + (\varphi_1^2 + \varphi_2^2) \varphi_2 = \frac{\partial H}{\partial \varphi_2}, \\ \frac{d\varphi_2}{dx} = -\lambda_1 \varphi_2 - (\varphi_1^2 + \varphi_2^2) \varphi_1, = -\frac{\partial H}{\partial \varphi_1} \end{cases}$$

related to the Hamiltonian function $H(\varphi_1, \varphi_2) = \frac{1}{4}(\varphi_1^2 + \varphi_2^2)^2 + \frac{1}{2}(\varphi_1^2 + \varphi_2^2 + \varphi_2^2 + \varphi_2^2)^2 + \frac{1}{2}(\varphi_1^2 + \varphi_2^2$

How did we complete the job?

1. For periodic waves u, we compute explicitly the periodic eigenfunctions φ for four particular eigenvalues λ .

The AKNS spectral problem for $\varphi(x, t) \in \mathbb{C}^2$:

$$\varphi_{\mathsf{X}} = \mathsf{U}(\lambda, \mathsf{u})\varphi, \quad \mathsf{U}(\lambda, \mathsf{u}) := \left(\begin{array}{cc} \lambda & \mathsf{u} \\ -\mathsf{u} & -\lambda \end{array} \right),$$

where $u \in \mathbb{R}$ is any solution of the mKdV.

An algebraic technique based on the "nonlinearization" of Lax pair. Cao-Geng, 1990; Cao-Wu-Geng, 1999; Zhou, 2009; Chen, 2012;

Fix $\lambda = \lambda_1 \in \mathbb{C}$ with an eigenfunction $\varphi = (\varphi_1, \varphi_2) \in \mathbb{C}^2$. Set $u = \varphi_1^2 + \varphi_2^2 \in \mathbb{R}$ and consider the Hamiltonian system

$$\begin{cases} \frac{d\varphi_1}{dx} = \lambda_1 \varphi_1 + (\varphi_1^2 + \varphi_2^2) \varphi_2 = \frac{\partial H}{\partial \varphi_2}, \\ \frac{d\varphi_2}{dx} = -\lambda_1 \varphi_2 - (\varphi_1^2 + \varphi_2^2) \varphi_1, = -\frac{\partial H}{\partial \varphi_1} \end{cases}$$

related to the Hamiltonian function $H(\varphi_1, \varphi_2) = \frac{1}{4}(\varphi_1^2 + \varphi_2^2)^2 + \lambda_1 \varphi_1 \varphi_2$.

Periodic eigenfunctions

Besides $u=\varphi_1^2+\varphi_2^2$, we also have constraints $u_x=2\lambda_1(\varphi_1^2-\varphi_2^2)$ and $E_0-u^2=4\lambda_1\varphi_1\varphi_2$, where $E_0=4H(\varphi_1,\varphi_2)$ is conserved.

Moreover, the nonlinear Hamiltonian system satisfies the compatibility condition of the Lax pair if and only if $\mu:=-\frac{u_x}{2u}$ satisfies the following (Dubrovin ?) equation

$$\frac{1}{4} \left(\frac{d\mu}{dx} \right)^2 = (\mu^2 - \lambda_1^2)(\mu^2 - \lambda_1^2 - E_0).$$

This ODE is satisfied if *u* satisfies the travelling wave reduction of the mKdV:

$$\frac{d^2u}{dx^2}+2u^3=cu, \quad \left(\frac{du}{dx}\right)^2+u^4=cu^2+d,$$

where with real constants c and d given by

$$c = 4\lambda_1^2 + 2E_0$$
, $d = -E_0^2$.

Moreover, if u(x-ct), then $\varphi(x-ct)$ is compatible with the time evolution.

dn-periodic waves

The connection formulas:

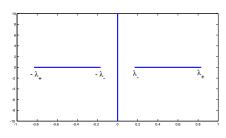
$$c = 4\lambda_1^2 + 2E_0, \quad d = -E_0^2.$$

For dn-periodic waves

$$u_{\rm dn}(x,t) = {\rm dn}(x-ct;k), \quad c = c_{\rm dn}(k) := 2-k^2,$$

we have $d = k^2 - 1 \le 0$. Hence $E_0 = \pm \sqrt{1 - k^2}$ and

$$\lambda_1^2 = \frac{1}{4} \left[2 - k^2 \mp 2\sqrt{1 - k^2} \right].$$



cn-periodic waves

The connection formulas:

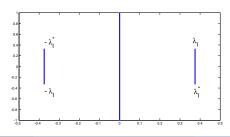
$$c = 4\lambda_1^2 + 2E_0, \quad d = -E_0^2.$$

For cn-periodic waves

$$u_{cn}(x,t) = kcn(x - ct; k), \quad c = c_{cn}(k) := 2k^2 - 1,$$

we have $d = k^2(1 - k^2) \ge 0$. Hence $E_0 = \pm ik\sqrt{1 - k^2}$ and

$$\lambda_1^2 = \frac{1}{4} \left[2k^2 - 1 \mp 2ik\sqrt{1 - k^2} \right]$$



How did we complete the job?

2. For each periodic eigenfunction φ , we construct the second linearly independent non-periodic solution ψ for the same values of λ .

For $\lambda = \lambda_1 \in \mathbb{C}$, we have one periodic solution $\varphi = (\varphi_1, \varphi_2)$ of

$$\varphi_{x} = U(\lambda, u)\varphi, \quad U(\lambda, u) := \begin{pmatrix} \lambda & u \\ -u & -\lambda \end{pmatrix},$$

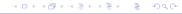
where $u \in \mathbb{R}$ is any solution of the mKdV.

Let us define the second solution $\psi = (\psi_1, \psi_2)$ by

$$\psi_1 = \frac{\theta - 1}{\varphi_2}, \quad \psi_2 = \frac{\theta + 1}{\varphi_1},$$

such that $\varphi_1\psi_2-\varphi_2\psi_1=2$ (Wronskian is constant). Then, θ satisfies the first-order reduction

$$\frac{d\theta}{dx} = u\theta \frac{\varphi_2^2 - \varphi_1^2}{\varphi_1 \varphi_2} + u \frac{\varphi_1^2 + \varphi_2^2}{\varphi_1 \varphi_2}.$$



Non-periodic solutions

Because $u = \varphi_1^2 + \varphi_2^2$, $u_x = 2\lambda_1(\varphi_1^2 - \varphi_2^2)$, and $E_0 - u^2 = 4\lambda_1\varphi_1\varphi_2$, we can rewrite the ODE for θ as

$$\frac{d\theta}{dx} = \theta \frac{2uu'}{u^2 - E_0} - \frac{4\lambda_1 u^2}{u^2 - E_0},$$

where $u^2 - E_0 \neq 0$ is assumed. Integration yields

$$\theta(x) = -4\lambda_1(u(x)^2 - E_0) \int_0^x \frac{u(y)^2}{(u(y)^2 - E_0)^2} dy.$$

Moreover, if u(x-ct) and $\varphi(x-ct)$, then the time evolution yields

$$\theta(x,t) = -4\lambda_1(u(x-ct)^2 - E_0) \left[\int_0^{x-ct} \frac{u(y)^2}{(u(y)^2 - E_0)^2} dy - t \right].$$

up to translation in t.

How did we complete the job?

3. By using Darboux transformations of mKdV with non-periodic function ψ , we define the rogue periodic waves in the closed form.

One-fold Darboux transformation:

$$\widetilde{u}=u+\frac{4\lambda_1pq}{p^2+q^2},$$

where u and \widetilde{u} are solutions of the mKdV and $\varphi = (p,q)$ is a nonzero solution of the Lax pair with $\lambda = \lambda_1$ and u.

Two-fold Darboux transformation:

$$\tilde{u} = u + \frac{4(\lambda_1^2 - \lambda_2^2) \left[\lambda_1 p_1 q_1 (p_2^2 + q_2^2) - \lambda_2 p_2 q_2 (p_1^2 + q_1^2)\right]}{(\lambda_1^2 + \lambda_2^2) (p_1^2 + q_1^2) (p_2^2 + q_2^2) - 2\lambda_1 \lambda_2 \left[4p_1 q_1 p_2 q_2 + (p_1^2 - q_1^2)(p_2^2 - q_2^2)\right]}$$

where (p_1, q_1) and (p_2, q_2) are nonzero solutions of the Lax pair with λ_1 and λ_2 such that $\lambda_1 \neq \pm \lambda_2$.

Using one-fold transformation with periodic eigenfunction (φ_1, φ_2) yields

$$\tilde{u}=u+\frac{4\lambda_1\varphi_1\varphi_2}{\varphi_1^2+\varphi_2^2}=-\frac{\sqrt{1-k^2}}{\mathrm{dn}(x-ct;k)}=-\mathrm{dn}(x-ct+K(k);k),$$

which is a translation of the dn-periodic wave.

Using one-fold transformation with non-periodic (ψ_1, ψ_2) yields

$$\tilde{u} = u + \frac{4\lambda_1 \psi_1 \psi_2}{\psi_1^2 + \psi_2^2} = u + \frac{4\lambda_1 \varphi_1 \varphi_2 (\theta^2 - 1)}{(\varphi_1^2 + \varphi_2^2)(1 + \theta^2) - 2(\varphi_1^2 - \varphi_2^2)\theta},$$

which is not a translation of the *dn*-periodic wave.

• As $|\theta| \to \infty$ (as $|x| + |t| \to \infty$ almost everywhere):

$$\tilde{u}(x,t) \sim -\frac{\sqrt{1-k^2}}{\operatorname{dn}(x-ct;k)} = -\operatorname{dn}(x-ct+K(k);k).$$

• At $\theta = 0$ (at (x, t) = (0, 0)), the rogue wave is at the maximum point:

$$\tilde{u}(0,0) = 2 + \sqrt{1 - k^2}$$

Using one-fold transformation with periodic eigenfunction (φ_1, φ_2) yields

$$\tilde{u}=u+\frac{4\lambda_1\varphi_1\varphi_2}{\varphi_1^2+\varphi_2^2}=-\frac{\sqrt{1-k^2}}{\mathrm{dn}(x-ct;k)}=-\mathrm{dn}(x-ct+K(k);k),$$

which is a translation of the *dn*-periodic wave.

Using one-fold transformation with non-periodic (ψ_1, ψ_2) yields

$$\tilde{u} = u + \frac{4\lambda_1\psi_1\psi_2}{\psi_1^2 + \psi_2^2} = u + \frac{4\lambda_1\varphi_1\varphi_2(\theta^2 - 1)}{(\varphi_1^2 + \varphi_2^2)(1 + \theta^2) - 2(\varphi_1^2 - \varphi_2^2)\theta},$$

which is not a translation of the *dn*-periodic wave.

• As $|\theta| \to \infty$ (as $|x| + |t| \to \infty$ almost everywhere):

$$\tilde{u}(x,t) \sim -\frac{\sqrt{1-k^2}}{\operatorname{dn}(x-ct;k)} = -\operatorname{dn}(x-ct+K(k);k).$$

• At $\theta = 0$ (at (x, t) = (0, 0)), the rogue wave is at the maximum point:

$$\tilde{u}(0,0)=2+\sqrt{1-k^2}.$$

For dn-periodic waves

$$u_{dn}(x,t) = dn(x - ct; k), \quad c = c_{dn}(k) := 2 - k^2,$$

the magnification factor is

$$M_{dn}(k) = 2 + \sqrt{1 - k^2}, \quad k \in [0, 1].$$

The "rogue" *dn*-periodic wave is a superposition of the (modulationally stable) *dn*-periodic wave and a travelling algebraic soliton.

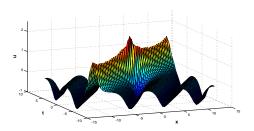


Figure: The "rogue" *dn*-periodic wave of the mKdV for k = 0.99.

18 / 24

Since $\lambda_1 \notin \mathbb{R}$, one-fold transformation yields complex solutions of the mKdV. Using two-fold transformation with periodic (φ_1, φ_2) and its conjugate yields

$$\tilde{u} = u + \frac{4k^2(1-k^2)u}{(2k^2-1)u^2 - u^4 - k^2(1-k^2) - (u')^2} = -u,$$

which is a translation of the cn-periodic wave.

Using two-fold transformation with non-periodic (ψ_1,ψ_2) and its conjugate:

$$\tilde{u} = u + \frac{4(\lambda_I^2 - \overline{\lambda}_I^2) \left[\lambda_I \psi_1 \psi_2 (\overline{\psi}_1^2 + \overline{\psi}_2^2) - \overline{\lambda}_I \overline{\psi}_1 \overline{\psi}_2 (\psi_1^2 + \psi_2^2) \right]}{(\lambda_I^2 + \overline{\lambda}_I^2) |\psi_1^2 + \psi_2^2|^2 - 2|\lambda_I|^2 \left[4|\psi_1|^2 |\psi_2|^2 + |\psi_1^2 - \psi_2^2|^2 \right]}.$$

• As $|\theta| \to \infty$ (as $|x| + |t| \to \infty$ everywhere):

$$\tilde{u}(x,t) \sim -u(x,t)$$
.

• At $\theta = 0$ (at (x, t) = (0, 0)), the rogue wave is at the maximum point:

$$\tilde{u}(0,0)=3k$$

Since $\lambda_1 \notin \mathbb{R}$, one-fold transformation yields complex solutions of the mKdV. Using two-fold transformation with periodic (φ_1, φ_2) and its conjugate yields

$$\tilde{u} = u + \frac{4k^2(1-k^2)u}{(2k^2-1)u^2 - u^4 - k^2(1-k^2) - (u')^2} = -u,$$

which is a translation of the cn-periodic wave.

Using two-fold transformation with non-periodic (ψ_1, ψ_2) and its conjugate:

$$\tilde{u} = u + \frac{4(\lambda_I^2 - \overline{\lambda}_I^2) \left[\lambda_I \psi_1 \psi_2 (\overline{\psi}_1^2 + \overline{\psi}_2^2) - \overline{\lambda}_I \overline{\psi}_1 \overline{\psi}_2 (\psi_1^2 + \psi_2^2) \right]}{(\lambda_I^2 + \overline{\lambda}_I^2) |\psi_1^2 + \psi_2^2|^2 - 2|\lambda_I|^2 \left[4|\psi_1|^2 |\psi_2|^2 + |\psi_1^2 - \psi_2^2|^2 \right]}.$$

• As $|\theta| \to \infty$ (as $|x| + |t| \to \infty$ everywhere):

$$\tilde{u}(x,t) \sim -u(x,t)$$
.

• At $\theta = 0$ (at (x, t) = (0, 0)), the rogue wave is at the maximum point:

$$\tilde{u}(0,0) = 3k$$
.

For cn-periodic waves

$$u_{\rm cn}(x,t) = k {\rm cn}(x-ct;k), \quad c = c_{\rm cn}(k) := 2k^2 - 1,$$

the magnification factor is

$$M_{cn}(k) = 3, \quad k \in [0, 1].$$

The rogue *cn*-periodic wave is a result of the modulational instability of the *cn*-periodic wave.

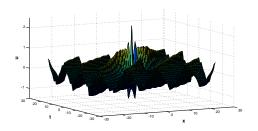


Figure: The rogue *cn*-periodic wave of the mKdV for k = 0.99.

Rogue periodic waves in NLS

The NLS equation

$$iu_t + u_{xx} + 2|u|^2u = 0$$

has a similar Lax pair, e.g.

$$\varphi_{\mathsf{X}} = \mathsf{U}\varphi, \qquad \qquad \mathsf{U} = \left(\begin{array}{cc} \lambda & \mathsf{U} \\ -\bar{\mathsf{U}} & -\lambda \end{array} \right).$$

The NLS equation admits two families of the periodic waves:

positive-definite periodic waves

$$u_{\mathrm{dn}}(x,t)=\mathrm{dn}(x;k)e^{ict}, \quad c=2-k^2,$$

sign-indefinite periodic waves

$$u_{cn}(x,t) = kcn(x;k)e^{ict}, \quad c = 2k^2 - 1,$$

where $k \in (0,1)$ is elliptic modulus.

Both periodic waves are modulationally unstable.

For dn-periodic waves

$$u_{\mathrm{dn}}(x,t)=\mathrm{dn}(x;k)e^{ict}, \quad c=2-k^2,$$

the magnification factor is still

$$M_{\rm dn}(k) = 2 + \sqrt{1 - k^2}, \quad k \in [0, 1].$$

The rogue *dn*-periodic wave is a generalization of the Peregrine's rogue wave.

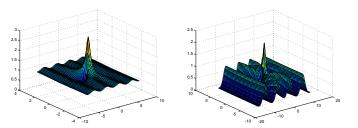


Figure: The rogue *dn*-periodic wave of the NLS for k = 0.5 and k = 0.99.

For cn-periodic waves

$$u_{\rm cn}(x,t) = k {\rm cn}(x;k) e^{ict}, \quad c = 2k^2 - 1,$$

the magnification factor is $M_{cn}(k) = 2$ for every $k \in (0,1)$ as the rogue wave is obtained from the one-fold Darboux transformation. Exact solutions are computed compared to the numerical approximation in (Kedziora–Ankiewicz–Akhmediev, 2014).

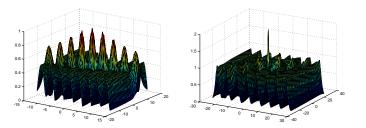


Figure: The rogue *cn*-periodic wave of the NLS for k = 0.5 and k = 0.99.

Summary

- New method to obtain eigenfunctions of the periodic spectral (AKNS) problem associated with the periodic waves.
- New exact solutions to generalize the Peregrine's rogue waves to the dn-periodic and cn-periodic waves in mKdV and NLS.