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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

e+ P+ 2([9F — 1)y =0
admits the exact solution

4(1 + 4it)
1+4x2 +1612°

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

P(x,t) =1

Properties of the rogue wave:

@ |t is developed due to modulational instability of the constant wave
background o (x,t) = 1.

@ It comes from nowhere: |[¢(x,t)] — 1 as |x| + |t] = oo.
@ It is magnified at the center: My := [¢(0,0)| = 3.
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Periodic waves of the modified KdV equation

The modified Korteweg—de Vries (mKdV) equation
Up + BUPUy + Uy = 0

appears in many physical applications, e.g., in models for internal waves.

The mKdV equation admits two families of the travelling periodic waves:
@ positive-definite periodic waves

Ua(X, 1) = dn(x — ct; k), €= ca(k) =2 — K2,
@ sign-indefinite periodic waves
Uen(X, 1) = ken(x — ct; k), € = Cen(K) := 2k® — 1,
where k € (0, 1) is elliptic modulus.

As k — 1, the periodic waves converge to the soliton u(x, t) = sech(x — t).
As k — 0, the periodic waves converge to the small-amplitude waves.
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Modulation theory for the Gardner equation

References: E. Parkes, J. Phys. A 20, 2025-2036 (1987);
R. Grimshaw et al., Physica D 159, 35-57 (2001)

Start with the following Gardner equation with the parameter «:
Ur + aUly 4+ 6UP Uy + Uy = 0

and use the small-amplitude slowly-varying approximation
u(x,t) =€/ [¢(ﬁ(x + cot), et)koxFwol) ¢ el 4 O(e),

where wy = w(ko) = k3, co = w'(ko) = 3kZ, and ¢ in scaled variables X and T
satisfies the cubic NLS equation

. 1
T + éwn(ko)%/ixx + BlY[2y =0,

where w” (ko) = 6ky and 3 = 6ky — é%
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Application of the modulation theory

The cubic NLS equation with w”(kg) = 6ko and 3 = 6ky — %:

1
it + 5" (ko)uxx + Blu Py = 0.

@ sign-indefinite periodic waves
Un(X, 1) = ken(x — ct; k), € = Cen(K) := 2k® — 1,

As k — 0, Ue(x, t) ~ kcos(x + t), hence kp =1, =0and 3 > 0.
cn periodic waves are modulationally unstable.

@ positive-definite periodic waves
Ua(X, 1) = dn(x — ct; k), ¢ = cu(k) =2 — K2,

As k — 0, Ugn(X, 1) ~ 1+ k?cos2(x — 2t), hence kg =2, a = 12, 3 = 0.
dn periodic waves are modulationally stable.
(See also Bronski—Johnson—Kapitula, 2011 and Deconinck—Nivala, 2011)
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1. Can one construct rogue waves for periodic waves of mKdV?
2. Can one compute the magnification factor for such rogue waves?

Ut + BUP Uy + Uy = 0

Background for these questions:

@ Numerically constructed rogue periodic waves for NLS
(Kedziora—Ankiewicz—Akhmediev, 2014)

@ Numerically constructed rogue waves for two-phase solutions of NLS
(Calini—Schober, 2017)

@ Rogue waves from a superposition of nearly identical solitons for mKdV
(Shurgalina—E.Pelinovsky, 2016) - two solitons
(Slunyaev—E.Pelinovsky, 2016) - N solitons
The magnification factor for such N-soliton rogue waves = N.
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Main results

MKdV equation for u(x,t) € R
Ut + 6U2UX + UXXX == O
is a compatibility condition of the Lax pair ¢(x, t) € C?:

Px = U(Aa U)(,O, Ppt = V(>‘7 U)SO

@ For periodic waves u, we compute explicitly the periodic eigenfunctions ¢
for four particular eigenvalues \.

@ For each periodic eigenfunction ¢, we construct the second linearly
independent non-periodic solution ¢ for the same values of \.

@ By using Darboux transformations of mKdV with non-periodic function 5,
we define the rogue periodic waves in the closed (implicit) form.

@ From the implicit solutions, we compute the magnification factor explicitly.
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“‘Rogue” dn-periodic waves

For dn-periodic waves
Uin(X, 1) = dn(x — ct; k), €= Can(k) :=2 — k2,
the magnification factor is
Ma (k) =2+ V1 — K2, kel0,1].

The “rogue” dn-periodic wave is a superposition of the (modulationally stable)
dn-periodic wave and a travelling algebraic soliton.

Figure: The “rogue” dn-periodic wave of the mKdV for k = 0.99.
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Rogue cn-periodic waves

For cn-periodic waves
Uen(X, 1) = ken(x — ct; k), € = Cen(K) := 2k® — 1,
the magnification factor is
M (k) =3, ke€][0,1].

The rogue cn-periodic wave is a result of the modulational instability of the
cn-periodic wave.

Figure: The rogue cn-periodic wave of the mKdV for k = 0.99.
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How did we complete the job?

1. For periodic waves u, we compute explicitly the periodic
eigenfunctions ¢ for four particular eigenvalues ).

The AKNS spectral problem for ¢(x, t) € C2:

b= Ui, U= (0, 4 )

where u € R is any solution of the mKdV.

An algebraic technique based on the “nonlinearization” of Lax pair.
Cao—Geng, 1990; Cao—Wu—-Geng, 1999; Zhou, 2009; Chen, 2012;
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How did we complete the job?

1. For periodic waves u, we compute explicitly the periodic
eigenfunctions ¢ for four particular eigenvalues ).

The AKNS spectral problem for ¢(x, t) € C2:

A u
b= Ui, U= (0, 4 )
where u € R is any solution of the mKdV.

An algebraic technique based on the “nonlinearization” of Lax pair.
Cao—Geng, 1990; Cao—Wu—-Geng, 1999; Zhou, 2009; Chen, 2012;

Fix A\ = Ay € C with an eigenfunction ¢ = (1, p2) € C2. Set u = ¢ + p3 € R
and consider the Hamiltonian system

d§02 _ OH

d
Gt = M1+ (P + pB)pe = HL,
ax = —AMp2 — (@1 + @2)@17 ~ D1

related to the Hamiltonian function H(i1, 02) = 1(#% + ©3)2 + A1 1.
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Periodic eigenfunctions

Besides u = ¢% + 3, we also have constraints uy = 2\1(¢% — ¢3) and
Eo — U2 = 4>\1<p1 2, where Eo = 4H(<p1 s (pg) is conserved.

Moreover, the nonlinear Hamiltonian system satisfies the compatibility
condition of the Lax pair if and only if ;1 := — 2= satisfies the following
(Dubrovin ?) equation

LAY 2o - 8- )
4 \ ax H (DAY 1 0)-

This ODE is satisfied if u satisfies the travelling wave reduction of the mKdV:

d?u 3 au\?® 5
W+2u = cu, (dx) +ut=cuf+d,

where with real constants ¢ and d given by
c=4X2 1+ 2E, d=-E2

Moreover, if u(x — ct), then ¢(x — ct) is compatible with the time evolution.
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dn-periodic waves

The connection formulas:
c=4)?+2E, d=-EZ.
For dn-periodic waves
Uan(X, 1) = dn(x — ct; k), €= can(k) =2 — k2,
we have d = k? — 1 < 0. Hence Ey = +v/1 — k2 and

A?z%[Z—kQHFZ\H—k?].
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cn-periodic waves

The connection formulas:

c=4)?+2E, d=-EZ.

For cn-periodic waves
Uen(X, 1) = ken(x — ct; k), € = Cn(K) := 2k® — 1,

we have d = k(1 — k?) > 0. Hence Ey = +ikv/1 — k2 and
1

" [2/(2 1 2ky1— kZ]

X =
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How did we complete the job?

2. For each periodic eigenfunction ¢, we construct the second linearly
independent non-periodic solution ) for the same values of ).

For A = Ay € C, we have one periodic solution ¢ = (1, ¢2) of

ox = U g, U U) = ( R )

where u € R is any solution of the mKdV.
Let us define the second solution ¢ = (1, 12) by
0—1 0+ 1

¢1 = ’ ¢2 - ’
P2 1

such that p11¢2 — potpy = 2 (Wronskian is constant). Then, 0 satisfies the
first-order reduction
A e R e Y

a Pp1p2 P1p2
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Non-periodic solutions

Because u = ¢? + 3, Uy = 2X\1(p? — ¢3), and Eg — U? = 41102, We can
rewrite the ODE for 0 as

do 0 2ud AP
dx U2—E0 U2—E0’

where u? — Ey # 0 is assumed. Integration yields

X 2
B(x) = —4X (u(x)? — Eo) /0 (Ll(y‘)’gy_)E())zdy.

Moreover, if u(x — ct) and ¢(x — ct), then the time evolution yields
x—ct u(y)2
0(x,t) = —4Xx(u(x — ct)® — E / ————dy — t|.
Get) = (b O)lo w7~ ErPY

up to translation in t.
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How did we complete the job?

3. By using Darboux transformations of mKdV with non-periodic
function v, we define the rogue periodic waves in the closed form.

One-fold Darboux transformation:

4 \pq

u=u+ ,
PP+ q

where u and u are solutions of the mKdV and ¢ = (p, q) is a nonzero solution
of the Lax pair with A = Ay and u.

Two-fold Darboux transformation:

402 — 23) [Mp1i(P5 + GB) — NeP2Ga(P5 + GF))]
(A2 +23)(PF + G2)(P% + 92) — 2\1 X2 [4p1 g1 P22 + (P2 — 92)(P3 — G3)]

U= u+

where (p1, q1) and (pz, g2) are nonzero solutions of the Lax pair with Ay and
Ao such that M 75 + M.
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“‘Rogue” dn-periodic waves

Using one-fold transformation with periodic eigenfunction (1, ¢2) yields

4)\1g01<p2:_ \/17’(2
02+ 2 dn(x — ct; k)

0=u+ = —dn(x — ct + K(k); k),

which is a translation of the dn-periodic wave.
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“‘Rogue” dn-periodic waves

Using one-fold transformation with periodic eigenfunction (1, ¢2) yields
4)\1@1(,027_ \/17’(2

©3+¢3  dn(x —ct k)
which is a translation of the dn-periodic wave.

U=u+

= —dn(x — ot + K(k); k),

Using one-fold transformation with non-periodic (i1, ¢2) yields

A1ie u 4)1p102(0% — 1)
UF + U5 (% + 03)(1 +62) — 2(pF — ¥5)0°
which is not a translation of the dn-periodic wave.

@ As |0 — oo (as |x| + |t] — oo almost everywhere):

b=u+

a(x, t) ~ —m — —dn(x — ct + K(k); k).

@ Atd =0 (at (x,t) = (0,0)), the rogue wave is at the maximum point:

0(0,0) =2+ /1 — k2.
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“‘Rogue” dn-periodic waves

For dn-periodic waves
Uin(X, 1) = dn(x — ct; k), €= Can(k) :=2 — k2,
the magnification factor is
Ma (k) =2+ V1 — K2, kel0,1].

The “rogue” dn-periodic wave is a superposition of the (modulationally stable)
dn-periodic wave and a travelling algebraic soliton.

Figure: The “rogue” dn-periodic wave of the mKdV for k = 0.99.
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Rogue cn-periodic waves

Since A\ ¢ R, one-fold transformation yields complex solutions of the mKdV.
Using two-fold transformation with periodic (1, ¢2) and its conjugate yields

4k2(1 — K?)u 7
(2k2 —1)u2 — u* — k2(1 — k2) — (u')2
which is a translation of the cn-periodic wave.

b=u+

_U7
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Rogue cn-periodic waves

Since A\ ¢ R, one-fold transformation yields complex solutions of the mKdV.
Using two-fold transformation with periodic (1, ¢2) and its conjugate yields
D us 4k2(1 — K?)u _
B (2k2 —1)u2 — u* — k2(1 — k2) — (v')2 7’

which is a translation of the cn-periodic wave.

Using two-fold transformation with non-periodic (1, ¥2) and its conjugate:
<2 -2 2 —
408 = X7) [N (@] + B3) — Xy (v + 03)|
2 .
(A + A)WF + w312 — 2{N[2 [4lwn Plvzl + [vF — v ]
® As |0 — oo (as | x| + [t| = oo everywhere):

(x,t) ~ —u(x,t).

U=u+

@ At6 =0 (at (x,t) = (0,0)), the rogue wave is at the maximum point:
0(0,0) = 3k.
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Rogue cn-periodic waves

For cn-periodic waves
Uen(X, 1) = ken(x — ct; k), € = Cen(K) := 2k® — 1,
the magnification factor is
M..(k) =3, ke][0,1].

The rogue cn-periodic wave is a result of the modulational instability of the
cn-periodic wave.

Figure: The rogue cn-periodic wave of the mKdV for k = 0.99.
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Rogue periodic waves in NLS

The NLS equation
iU + Uxx + 2|UjPu =0

has a similar Lax pair, e.g.

A u

The NLS equation admits two families of the periodic waves:
@ positive-definite periodic waves

Uan(x, 1) = dn(x; k)€™, c=2— k2
@ sign-indefinite periodic waves
Uen(X, 1) = ken(x; k)€, ¢ =2k? -1,
where k € (0, 1) is elliptic modulus.

Both periodic waves are modulationally unstable.
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Rogue dn-periodic waves

For dn-periodic waves

Ui (X, t) = dn(x; k)€™, c=2— Kk,
the magnification factor is still

Mu(k) =2+ 1 —K2, ke0,1].

The rogue dn-periodic wave is a generalization of the Peregrine’s rogue wave.

Figure: The rogue dn-periodic wave of the NLS for k = 0.5 and k = 0.99.
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Rogue cn-periodic waves

For cn-periodic waves
Uen(X, t) = ken(x; k)€, ¢ =2k% -1,

the magnification factor is M., (k) = 2 for every k € (0, 1) as the rogue wave is
obtained from the one-fold Darboux transformation. Exact solutions are
computed compared to the numerical approximation in
(Kedziora—Ankiewicz—Akhmediev, 2014).

Figure: The rogue cn-periodic wave of the NLS for k = 0.5 and k = 0.99.
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@ New method to obtain eigenfunctions of the periodic spectral (AKNS)
problem associated with the periodic waves.

@ New exact solutions to generalize the Peregrine’s rogue waves to the
dn-periodic and cn-periodic waves in mKdV and NLS.
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