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Definitions and properties of rogue waves

The rogue wave of the cubic NLS equation

The focusing nonlinear Schrödinger (NLS) equation

iψt + ψxx + 2(|ψ|2 − 1)ψ = 0

admits the exact solution

ψ(x , t) = 1− 4(1 + 4it)
1 + 4x2 + 16t2 .

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Properties of the rogue wave:
It is related to modulational instability of the constant wave ψ0(x , t) = 1.
It comes from nowhere: |ψ(x , t)| → 1 as |x |+ |t | → ∞.
It is magnified at the center: M0 := |ψ(0,0)| = 3.
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Definitions and properties of rogue waves

Main question

The focusing nonlinear Schrödinger (NLS) equation

iψt + ψxx + 2|ψ|2ψ = 0

admits other wave solutions, e.g. the periodic waves

ψdn(x , t) = dn(x ; k)ei(2−k2)t , ψcn(x , t) = kcn(x ; k)ei(2k2−1)t

or the double-periodic solutions (Akhmediev, 1987):

ψ(x , t) =

√
k(1 + k)sn(2t ; k)− idn(2t ; k)cn(

√
2x ;κ)

√
1 + k −

√
kcn(2t ; k)cn(

√
2x ;κ)

e2ikt , κ =

√
1− k√

2
.

where k ∈ (0,1) is elliptic modulus.

Can we obtain the exact solution on the background ψ0 such that

inf
x0,t0,α0∈R

sup
x∈R

∣∣∣ψ(x , t)− ψ0(x − x0, t − t0)eiα0

∣∣∣→ 0 as t → ±∞ ???

This corresponds to the rogue wave on the background ψ0
that appears from nowhere and disappears without trace.

D.Pelinovsky (McMaster University) Rogue periodic waves 4 / 31



Definitions and properties of rogue waves

Background

Rogue periodic waves were numerically constructed in
(Kedziora–Ankiewicz–Akhmediev, 2014)

Emergence of rogue waves from dn-periodic waves was numerically
observed in (Agafontsev–Zakharov, 2016)

Rogue waves on double-periodic solutions were studied numerically in
(Calini–Schober, 2017)

Magnification factor of quasi-periodic solutions were obtained from
analysis of Riemann’s Theta functions (Bertola–Tovbis, 2017).

Rogue waves from a superposition of nearly identical solitons were
constructed in (Slunyaev–E.Pelinovsky, 2016)

Rogue waves were approximated by the finite-gap solutions in
(Grinevich–Santini, 2017)
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Rogue waves in the modified KdV equation

Rogue waves in the modified KdV equation

The modified Korteweg–de Vries (mKdV) equation

ut + 6u2ux + uxxx = 0

appears in many physical applications, e.g., in models for internal waves.
The mKdV equation admits two families of the travelling periodic waves:

positive-definite periodic waves modulationally stable

udn(x , t) = dn(x − ct ; k), c = cdn(k) := 2− k2,

sign-indefinite periodic waves modulationally unstable

ucn(x , t) = kcn(x − ct ; k), c = ccn(k) := 2k2 − 1,

where k ∈ (0,1) is elliptic modulus.
Bronski–Johnson–Kapitula, 2011 and Deconinck–Nivala, 2011
As k → 1, the periodic waves converge to the soliton u(x , t) = sech(x − t).
As k → 0, the periodic waves converge to the small-amplitude waves.
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Rogue waves in the modified KdV equation

Rogue waves on the periodic background

The mKdV equation
ut + 6u2ux + uxxx = 0

is a compatibility condition of the Lax pair ϕ(x , t) ∈ C2:

ϕx = U(λ,u)ϕ, ϕt = V (λ,u)ϕ.

Main question: Can we obtain the exact solution on the periodic wave
background u0 s.t.

inf
x0,t0∈R

sup
x∈R
|u(x , t)− u0(x − x0, t − t0)| → 0 as t → ±∞ ???

1 For a periodic wave u0, we construct the periodic eigenfunctions ϕ for
particular eigenvalues λ.

2 For each periodic eigenfunction ϕ, we construct the second linearly
independent non-periodic solution ψ for the same value of λ.

3 Darboux transformation with a non-periodic function ψ, yields the rogue
wave u on the periodic background u0.
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Rogue waves in the modified KdV equation

Rogue wave on the cn-periodic background

For cn-periodic waves

ucn(x , t) = kcn(x − ct ; k), c = ccn(k) := 2k2 − 1,

the magnification factor is

Mdn(k) = 3, k ∈ [0,1].

The new solution is a rogue wave created because of the modulational
instability of the cn-periodic wave.
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Figure: The rogue cn-periodic wave of the mKdV for k = 0.95.
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Rogue waves in the modified KdV equation

Rogue wave on the dn-periodic background

For dn-periodic waves

udn(x , t) = dn(x − ct ; k), c = cdn(k) := 2− k2,

the magnification factor is

Mdn(k) = 2 +
√

1− k2, k ∈ [0,1].

The new solution is a superposition of the (modulationally stable) dn-periodic
wave and a travelling algebraic soliton.

Figure: Algebraic soliton on the dn-periodic wave for k = 0.95.
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Algebraic construction of rogue waves

Algebraic method - Step 1

1. For a periodic wave u, we compute the periodic eigenfunctions ϕ for
particular eigenvalues λ.

The AKNS spectral problem for ϕ(x , t) ∈ C2:

ϕx = U(λ,u)ϕ, U(λ,u) :=

(
λ u
−u −λ

)
,

where u(x , t) ∈ R is any solution of the mKdV.

We use an algebraic technique based on the “nonlinearization” of Lax pair:
Cao–Geng, 1990; Cao–Wu–Geng, 1999; Zhou, 2009; Chen, 2012.

Relations between the potential u(x , t) and the squared eigenfunctions ϕ(x , t)
for some eigenvalues λ have been known since the original paper of
Gardner–Green–Kruskal–Miura (1974).
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Algebraic construction of rogue waves

Nonlinear Hamiltonian system from Lax operator

Fix λ = λ1 ∈ C with an eigenfunction ϕ = (ϕ1, ϕ2) ∈ C2. Set

u = ϕ2
1 + ϕ2

2 ∈ R

and consider the Hamiltonian system{
dϕ1
dx = λ1ϕ1 + (ϕ2

1 + ϕ2
2)ϕ2 = ∂H

∂ϕ2
,

dϕ2
dx = −λ1ϕ2 − (ϕ2

1 + ϕ2
2)ϕ1,= − ∂H

∂ϕ1

related to the Hamiltonian function

H(ϕ1, ϕ2) =
1
4

(ϕ2
1 + ϕ2

2)2 + λ1ϕ1ϕ2.

Besides u = ϕ2
1 + ϕ2

2, we also have constraints

du
dx

= 2λ1(ϕ2
1 − ϕ2

2)

and
E0 − u2 = 4λ1ϕ1ϕ2,

where E0 = 4H(ϕ1, ϕ2) is conserved.
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Algebraic construction of rogue waves

Integrability of the Hamiltonian system

The Hamiltonian system is a compatibility condition of the Lax equation

d
dx

W (λ) = Q(λ)W (λ)−W (λ)Q(λ),

where

Q(λ) =

(
λ u
−u −λ

)
, W (λ) =

(
W11(λ) W12(λ)

W12(−λ) −W11(−λ)

)
,

with

W11(λ) = 1− ϕ1ϕ2

λ− λ1
+

ϕ1ϕ2

λ+ λ1
= 1− E0 − u2

2(λ2 − λ2
1)
,

W12(λ) =
ϕ2

1
λ− λ1

+
ϕ2

2
λ+ λ1

=
2λu + ux

2(λ2 − λ2
1)
,
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Algebraic construction of rogue waves

Differential relations on u

The (1,2)-element of the Lax equation is equivalent to

d2u
dx2 + 2u3 = cu, c = 2E0 + 4λ2

1.

The determinant equation

det[W (λ)] = −[W11(λ)]2 −W12(λ)W21(λ) = −1 +
E0

λ2 − λ2
1

yields (
du
dx

)2

+ u4 − cu2 = d , d = −E2
0 .

The differential equations on u are satisfied if u is the periodic wave of the
mKdV equation. Moreover, if u(x − ct), then ϕ(x − ct) is compatible with the
time evolution of the Lax pair.
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Algebraic construction of rogue waves

dn-periodic waves

The connection formulas:

c = 4λ2
1 + 2E0, d = −E2

0 .

For dn-periodic waves

udn(x , t) = dn(x − ct ; k), c = cdn(k) := 2− k2,

we have d = k2 − 1 ≤ 0. Hence E0 = ±
√

1− k2 and

λ2
1 =

1
4

[
2− k2 ∓ 2

√
1− k2

]
.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

λ
−

λ
+

−λ
−

−λ
+

Figure: The four eigenvalues and (schematic) spectral bands for dn-periodic waves.
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Algebraic construction of rogue waves

cn-periodic waves

The connection formulas:

c = 4λ2
1 + 2E0, d = −E2

0 .

For cn-periodic waves

ucn(x , t) = kcn(x − ct ; k), c = ccn(k) := 2k2 − 1,

we have d = k2(1− k2) ≥ 0. Hence E0 = ±ik
√

1− k2 and

λ2
1 =

1
4

[
2k2 − 1∓ 2ik

√
1− k2

]
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Figure: The four eigenvalues and (schematic) spectral bands for cn-periodic waves.
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Algebraic construction of rogue waves

Algebraic method - Step 2

2. For each periodic eigenfunction ϕ, we construct the second linearly
independent non-periodic solution ψ for the same value of λ.

For λ = λ1 ∈ C, we have one periodic solution ϕ = (ϕ1, ϕ2) of

ϕx = U(λ,u)ϕ, U(λ,u) :=

(
λ u
−u −λ

)
,

where u ∈ R is any solution of the mKdV.

Let us define the second solution ψ = (ψ1, ψ2) by

ψ1 =
θ − 1
ϕ2

, ψ2 =
θ + 1
ϕ1

,

such that ϕ1ψ2 − ϕ2ψ1 = 2 (Wronskian is constant). Then, θ satisfies the
first-order reduction

dθ
dx

= uθ
ϕ2

2 − ϕ2
1

ϕ1ϕ2
+ u

ϕ2
1 + ϕ2

2
ϕ1ϕ2

.
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Algebraic construction of rogue waves

Non-periodic solutions

Because u = ϕ2
1 + ϕ2

2, ux = 2λ1(ϕ2
1 − ϕ2

2), and E0 − u2 = 4λ1ϕ1ϕ2, we can
rewrite the ODE for θ as

dθ
dx

= θ
2uu′

u2 − E0
− 4λ1u2

u2 − E0
,

where u2 − E0 6= 0 is assumed. Integration yields

θ(x) = −4λ1(u(x)2 − E0)

∫ x

0

u(y)2

(u(y)2 − E0)2 dy .

Moreover, if u(x − ct) and ϕ(x − ct), then the time evolution yields

θ(x , t) = −4λ1(u(x − ct)2 − E0)

[∫ x−ct

0

u(y)2

(u(y)2 − E0)2 dy − t

]
.

up to translation in t .
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Algebraic construction of rogue waves

Algebraic method - Step 3

3. Darboux transformation with the non-periodic function ψ yields a
rogue wave u on the periodic background u0.

One-fold Darboux transformation:

u = u0 +
4λ1pq
p2 + q2 ,

where u0 and u are solutions of the mKdV and (p,q) is a nonzero solution of
the Lax pair with λ = λ1 and u0.

Two-fold Darboux transformation:

u = u0+
4(λ2

1 − λ2
2)
[
λ1p1q1(p2

2 + q2
2)− λ2p2q2(p2

1 + q2
1)
]

(λ2
1 + λ2

2)(p2
1 + q2

1)(p2
2 + q2

2)− 2λ1λ2
[
4p1q1p2q2 + (p2

1 − q2
1)(p2

2 − q2
2)
]

where (p1,q1) and (p2,q2) are nonzero solutions of the Lax pair with λ1 and
λ2 such that λ1 6= ±λ2.
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Algebraic construction of rogue waves

Algebraic soliton on the dn-periodic wave

The dn-periodic wave is u0 = dn(x − ct ; k). Using one-fold transformation with
periodic eigenfunction (ϕ1, ϕ2) yields

u = u0 +
4λ1ϕ1ϕ2

ϕ2
1 + ϕ2

2
= −

√
1− k2

dn(x − ct ; k)
= −dn(x − ct + K (k); k),

which is a translation of the dn-periodic wave.

Using one-fold transformation with non-periodic (ψ1, ψ2) yields

u = u0 +
4λ1ψ1ψ2

ψ2
1 + ψ2

2
= u0 +

4λ1ϕ1ϕ2(θ2 − 1)

(ϕ2
1 + ϕ2

2)(1 + θ2)− 2(ϕ2
1 − ϕ2

2)θ
,

which is not a translation of the dn-periodic wave.
As |θ| → ∞ (as |x |+ |t | → ∞ almost everywhere):

u(x , t) ∼ −
√

1− k2

dn(x − ct ; k)
= −dn(x − ct + K (k); k).

At θ = 0 (at (x , t) = (0,0)), the rogue wave is at the maximum point:

u(0,0) = 2 +
√

1− k2.
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Algebraic construction of rogue waves

Algebraic soliton on the dn-periodic wave

For dn-periodic waves

udn(x , t) = dn(x − ct ; k), c = cdn(k) := 2− k2,

the magnification factor is

Mdn(k) = 2 +
√

1− k2, k ∈ [0,1].

The new solution is a superposition of the (modulationally stable) dn-periodic
wave and a travelling algebraic soliton.

Figure: Algebraic soliton on the dn-periodic wave for k = 0.95.
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Algebraic construction of rogue waves

Rogue wave on the cn-periodic wave

The cn-periodic wave is u0 = kcn(x − ct ; k). Since λ1 /∈ R, one-fold
transformation yields complex solutions of the mKdV. Using two-fold
transformation with periodic (ϕ1, ϕ2) and its conjugate yields

u = u0 +
4k2(1− k2)u0

(2k2 − 1)u2
0 − u4

0 − k2(1− k2)− (u′0)2
= −u0,

which is a translation of the cn-periodic wave.

Using two-fold transformation with non-periodic (ψ1, ψ2) and its conjugate:

u = u0 +
4(λ2

I − λ
2
I )
[
λIψ1ψ2(ψ

2
1 + ψ

2
2)− λIψ1ψ2(ψ2

1 + ψ2
2)
]

(λ2
I + λ

2
I )|ψ2

1 + ψ2
2 |2 − 2|λI |2

[
4|ψ1|2|ψ2|2 + |ψ2

1 − ψ2
2 |2
] .

As |θ| → ∞ (as |x |+ |t | → ∞ everywhere):

u(x , t) ∼ −u0(x , t).

At θ = 0 (at (x , t) = (0,0)), the rogue wave is at the maximum point:

u(0,0) = 3k .
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Algebraic construction of rogue waves

Rogue cn-periodic waves

For cn-periodic waves

ucn(x , t) = kcn(x − ct ; k), c = ccn(k) := 2k2 − 1,

the magnification factor is

Mcn(k) = 3, k ∈ [0,1].

The new solution is a rogue wave on the background of the modulationally
unstable cn-periodic wave.
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Figure: The rogue cn-periodic wave for k = 0.95.
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Rogue waves in the focusing NLS equation

Rogue periodic waves in NLS

The NLS equation
iut + uxx + 2|u|2u = 0

has a similar Lax pair, e.g.

ϕx = Uϕ, U =

(
λ u
−ū −λ

)
.

The NLS equation admits two families of the periodic waves:
positive-definite periodic waves

udn(x , t) = dn(x ; k)eict , c = 2− k2,

sign-indefinite periodic waves

ucn(x , t) = kcn(x ; k)eict , c = 2k2 − 1,

where k ∈ (0,1) is elliptic modulus.

Both periodic waves are modulationally unstable.
D.Pelinovsky (McMaster University) Rogue periodic waves 23 / 31



Rogue waves in the focusing NLS equation

Rogue dn-periodic waves

For dn-periodic waves

udn(x , t) = dn(x ; k)eict , c = 2− k2,

the magnification factor is still

Mdn(k) = 2 +
√

1− k2, k ∈ [0,1].

The rogue dn-periodic wave is a generalization of Peregrine’s breather. Exact
solutions are computed compared to the numerical approximation in
(Kedziora–Ankiewicz–Akhmediev, 2014).

Figure: The rogue dn-periodic wave of the NLS for k = 0.99.D.Pelinovsky (McMaster University) Rogue periodic waves 24 / 31



Rogue waves in the focusing NLS equation

Rogue cn-periodic waves

For cn-periodic waves

ucn(x , t) = kcn(x ; k)eict , c = 2k2 − 1,

we employ the one-fold transformation and obtain the magnification factor
Mcn(k) = 2 for every k ∈ (0,1).

Figure: The rogue cn-periodic wave of the NLS for k = 0.99.

D.Pelinovsky (McMaster University) Rogue periodic waves 25 / 31



Rogue waves in the focusing NLS equation

Rogue cn-periodic waves

For cn-periodic waves

ucn(x , t) = kcn(x ; k)eict , c = 2k2 − 1,

we employ the two-fold transformation and obtain the magnification factor
Mcn(k) = 3 for every k ∈ (0,1).

Figure: The rogue cn-periodic wave of the NLS for k = 0.99.

D.Pelinovsky (McMaster University) Rogue periodic waves 26 / 31



Further problems on rogue waves

Summary and open problems

Summary:
New method is developed for computations of eigenfunctions of the
periodic spectral problem associated with the periodic waves.

New exact solutions are obtained for rogue waves which generalize
Peregrine’s breathers in the context of dn and cn periodic waves.

Open problems:
Extend this approach to the quasi-periodic solutions such as the
double-periodic wave patterns.

Characterize squared eigenfunctions and the location of spectral bands
for the quasi-periodic solutions.

Understand the connections between parameters of the higher-order
differential equations and parameters of the algebraic method.
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Further problems on rogue waves

Hamiltonian system of degree two

Fix λ1, λ2 ∈ C with eigenfunctions (p1,q1) ∈ C2 and (p2,q2) ∈ C2. Set

u = p2
1 + q2

1 + p2
2 + q2

2

and consider the Hamiltonian system{ dpj
dx = ∂H

∂qj
,

dqj
dx = − ∂H

∂pj
,

j = 1,2,

related to the Hamiltonian function

H =
1
4

(p2
1 + q2

1 + p2
2 + q2

2)2 + λ1p1q1 + λ2p2q2.

and higher-order conserved energy

H1 = 4(λ3
1p1q1 + λ3

2p2q2)− 4(λ1p1q1 + λ2p2q2)2

+2(p2
1 + q2

1 + p2
2 + q2

2)(λ2
1(p2

1 + q2
1) + λ2

2(p2
2 + q2

2))

−(λ1(p2
1 − q2

1) + λ2(p2
2 − q2

2))2.
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Further problems on rogue waves

Differential relations on u

Parameters λ1, λ2, E0 = 4H, and E1 = 4H1. By differentiating in x , we obtain

du
dx

= 2λ1(p2
1 − q2

1) + 2λ2(p2
2 − q2

2),

d2u
dx2 + 2u3 − cu = −4λ2

2(p2
1 + q2

1)− 4λ2
1(p2

2 + q2
2),

d3u
dx3 + 6u2 du

dx
− c

du
dx

= −8λ1λ2
[
λ2(p2

1 − q2
1) + λ1(p2

2 − q2
2)
]
,

and

d4u
dx4 + 10u2 d2u

dx2 + 10u
(

du
dx

)2

+ 6u5 − c
(

d2u
dx2 + 2u3

)
= 2du,

where

c = 2E0 + 4λ2
1 + 4λ2

2, d = E1 + E2
0 − 4E0(λ2

1 + λ2
2)− 8λ2

1λ
2
2.

Main question: is to characterize location of (λ1, λ2) in terms of solutions u to
the fourth-order differential equation.
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Further problems on rogue waves

Very recent progress

For the differential equation

d3u
dx3 + 6u2 du

dx
− c

du
dx

= 0,

integrated as

d2u
dx2 + 2u3 − cu = e

and (
du
dx

)2

+ u4 − cu2 + d = 2eu,

there exist only three pairs of eigenvalues ±λ1, ±λ2, and ±λ3 such that

c = 2(λ2
1 + λ2

2 + λ2
3),

d = λ4
1 + λ4

2 + λ4
3 − 2(λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3),

e = −4λ1λ2λ3.

This enables us to characterize all periodic waves of the mKdV equation and
related rogue waves on the periodic background.
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