Rogue waves on the periodic background

Jinbing Chen ${ }^{1}$, Dmitry E. Pelinovsky ${ }^{2}$, and Robert White ${ }^{2}$

${ }^{1}$ School of Mathematics, Southeast University, Nanjing, Jiangsu, P.R. China
${ }^{2}$ Department of Mathematics, McMaster University, Hamilton, Ontario, Canada
Web: http://dmpeli.math.mcmaster.ca
E-mail: dmpeli@math.mcmaster.ca

The rogue wave of the cubic NLS equation

The focusing nonlinear Schrödinger (NLS) equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

admits the exact solution

$$
\psi(x, t)=\left[1-\frac{4(1+2 i t)}{1+4 x^{2}+4 t^{2}}\right] e^{i t} .
$$

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Properties of the rogue wave:

- It is related to modulational instability of CW background $\psi_{0}(x, t)=e^{i t}$.
- It comes from nowhere: $|\psi(x, t)| \rightarrow 1$ as $|x|+|t| \rightarrow \infty$.
- It is magnified at the center: $M_{0}:=|\psi(0,0)|=3$.

The rogue wave of the cubic NLS equation

Possible developments:

- To generate higher-order rational solutions for multiple rogue waves...
- To extend constructions in other basic integrable PDEs...

Periodic wave background

The focusing nonlinear Schrödinger (NLS) equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

admits other wave solutions, e.g. the periodic waves of trivial phase

$$
\psi_{\mathrm{dn}}(x, t)=\operatorname{dn}(x ; k) e^{i\left(1-k^{2} / 2\right) t}, \quad \psi_{\mathrm{cn}}(x, t)=k \mathrm{cn}(x ; k) e^{i\left(k^{2}-1 / 2\right) t}
$$

where $k \in(0,1)$ is elliptic modulus.

Double-periodic wave background

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):

$$
\begin{aligned}
& \psi(x, t)=k \frac{\operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; k)+i \sqrt{1+k} \operatorname{sn}(t ; k) \operatorname{dn}(\sqrt{1+k} x ; k)}{\sqrt{1+k} \operatorname{dn}(\sqrt{1+k} x ; \kappa)-\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; \kappa)} e^{i t} \\
& \psi(x, t)=\frac{\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)+i \sqrt{k(1+k)} \operatorname{sn}(t ; k)}{\sqrt{1+k}-\sqrt{k} \operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)} e^{i k t}, \quad \kappa=\frac{\sqrt{1-k}}{\sqrt{2}}
\end{aligned}
$$

where $k \in(0,1)$ is elliptic modulus.

Main question

Can we obtain a rogue wave on the background ψ_{0} such that

$$
\inf _{x_{0}, t_{0}, \alpha_{0} \in \mathbb{R}} \sup _{x \in \mathbb{R}}\left|\psi(x, t)-\psi_{0}\left(x-x_{0}, t-t_{0}\right) e^{i \alpha_{0}}\right| \rightarrow 0 \quad \text { as } \quad t \rightarrow \pm \infty \quad ? ? ?
$$

This rogue wave appears from nowhere and disappears without trace.

Further questions:

- Magnification factors for rogue waves
- Spectral representation and inverse scattering
- Robustness (stability) in the time evolution.
- Extensions to quasi-periodic background.
- Extensions to multi-soliton background.

Darboux transformation as the main tool

Let u be a solution of the NLS. It is a potential of the compatible Lax system

$$
\varphi_{x}=U(\lambda, u) \varphi, \quad U(\lambda, u)=\left(\begin{array}{cc}
\lambda & u \\
-\bar{u} & -\lambda
\end{array}\right)
$$

and

$$
\varphi_{t}=V(\lambda, u) \varphi, \quad V(\lambda, u)=i\left(\begin{array}{cc}
\lambda^{2}+\frac{1}{2}|u|^{2} & \frac{1}{2} u_{x}+\lambda u \\
\frac{1}{2} \bar{u}_{x}-\lambda \bar{u} & -\lambda^{2}-\frac{1}{2}|u|^{2}
\end{array}\right),
$$

so that $\varphi_{x t}=\varphi_{t x}$.
Let $\varphi=\left(p_{1}, q_{1}\right)$ be a nonzero solution of the Lax system for $\lambda=\lambda_{1} \in \mathbb{C}$. The following one-fold Darboux transformation (DT):

$$
\hat{u}=u+\frac{2\left(\lambda_{1}+\bar{\lambda}_{1}\right) p_{1} \bar{q}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}}
$$

provides another solution \hat{u} of the same NLS equation.

Preliminary literature

- Numerical computations of eigenfunctions for DT on $d n-$, $c n$-, and double-periodic backgrounds: (Kedziora-Ankiewicz-Akhmediev, 2014) (Calini-Schober, 2017)
- Emergence of rogue waves in simulations of modulation instability of dn-periodic waves:
(Agafontsev-Zakharov, 2016)
- Magnification factors of quasi-periodic solutions from analysis of Riemann's Theta functions: (Bertola-Tovbis, 2017) (Wright, 2019)
- Rogue waves from superpositions of nearly identical solitons: (Bilman-Buckingham, 2018) (Slunyaev, 2019)

Algebraic method - Step 1

Consider the spectral problem

$$
\varphi_{x}=U(\lambda, u) \varphi, \quad U(\lambda, u)=\left(\begin{array}{cc}
\lambda & u \\
-\bar{u} & -\lambda
\end{array}\right)
$$

Fix $\lambda=\lambda_{1} \in \mathbb{C}$ with $\varphi=\left(p_{1}, q_{1}\right) \in \mathbb{C}^{2}$ and set

$$
\left\{\begin{array}{l}
u=p_{1}^{2}+\bar{q}_{1}^{2}, \\
\bar{u}=\bar{p}_{1}^{2}+q_{1}^{2} .
\end{array}\right.
$$

The spectral problem becomes the Hamiltonian system of degree two generated by the Hamiltonian function

$$
H=\lambda_{1} p_{1} q_{1}+\bar{\lambda}_{1} \bar{p}_{1} \bar{q}_{1}+\frac{1}{2}\left(p_{1}^{2}+\bar{q}_{1}^{2}\right)\left(\bar{p}_{1}^{2}+q_{1}^{2}\right) .
$$

The algebraic technique is called the "nonlinearization" of Lax pair (Cao-Geng, 1990) (Cao-Wu-Geng, 1999) (R.Zhou, 2009)

Hamiltonian system and constraints

The Hamiltonian system is integrable with two constants of motion:

$$
\begin{aligned}
H & =\lambda_{1} p_{1} q_{1}+\bar{\lambda}_{1} \bar{p}_{1} \bar{q}_{1}+\frac{1}{2}\left(p_{1}^{2}+\bar{q}_{1}^{2}\right)\left(\bar{p}_{1}^{2}+q_{1}^{2}\right) \\
F & =i\left(p_{1} q_{1}-\bar{p}_{1} \bar{q}_{1}\right) .
\end{aligned}
$$

The constraints between u and $\left(p_{1}, q_{1}\right)$ are extended as:

$$
\begin{aligned}
u & =p_{1}^{2}+\bar{q}_{1}^{2} \\
\frac{d u}{d x}+2 i F u & =2\left(\lambda_{1} p_{1}^{2}-\bar{\lambda}_{1} \bar{q}_{1}^{2}\right), \\
\frac{d^{2} u}{d x^{2}}+2|u|^{2} u+2 i F \frac{d u}{d x}-4 H u & =4\left(\lambda_{1}^{2} p_{1}^{2}+\bar{\lambda}_{1}^{2} \bar{q}_{1}^{2}\right) .
\end{aligned}
$$

Compatible potentials $u(x)$ satisfy the closed second-order ODE:

$$
u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}-4 b u=0
$$

where $c:=F+i\left(\lambda_{1}-\bar{\lambda}_{1}\right)$ and $b:=H+i F\left(\lambda_{1}-\bar{\lambda}_{1}\right)+\left|\lambda_{1}\right|^{2}$.

Integrability of the Hamiltonian system

The Hamiltonian system is a compatibility condition of the Lax equation

$$
\frac{d}{d x} W(\lambda)=U(\lambda, u) W(\lambda)-W(\lambda) U(\lambda, u)
$$

where $U(\lambda, u)$ is the same as in the Lax system and

$$
W(\lambda)=\left(\begin{array}{cc}
W_{11}(\lambda) & W_{12}(\lambda) \\
\bar{W}_{12}(-\lambda) & -\bar{W}_{11}(-\lambda)
\end{array}\right),
$$

with

$$
\begin{aligned}
W_{11}(\lambda) & =1-\frac{p_{1} q_{1}}{\lambda-\lambda_{1}}+\frac{\bar{p}_{1} \bar{q}_{1}}{\lambda+\bar{\lambda}_{1}} \\
W_{12}(\lambda) & =\frac{p_{1}^{2}}{\lambda-\lambda_{1}}+\frac{\bar{q}_{1}^{2}}{\lambda+\bar{\lambda}_{1}} .
\end{aligned}
$$

Simple algebra shows

$$
W_{11}(\lambda)=\frac{\lambda^{2}+i c \lambda+b+\frac{1}{2}|u|^{2}}{\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)}, \quad W_{12}(\lambda)=\frac{u \lambda+i c u+\frac{1}{2} u^{\prime}}{\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)}
$$

Closure relations

The (1,2)-element of the Lax equation,

$$
\frac{d}{d x} W_{12}(\lambda)=2 \lambda W_{12}(\lambda)-2 u W_{11}(\lambda)
$$

yields the second-order equation on u :

$$
u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}-4 b u=0
$$

$\operatorname{det} W(\lambda)$ is constant in (x, t) and has simple poles at λ_{1} and $-\bar{\lambda}_{1}$:

$$
\operatorname{det}[W(\lambda)]=-\left[W_{11}(\lambda)\right]^{2}-W_{12}(\lambda) \bar{W}_{12}(-\lambda)=-\frac{P(\lambda)}{\left(\lambda-\lambda_{1}\right)^{2}\left(\lambda+\bar{\lambda}_{1}\right)^{2}}
$$

so that $P(\lambda)$ is constant in (x, t) and has roots at λ_{1} and $-\bar{\lambda}_{1}$:

$$
P(\lambda)=\left(\lambda^{2}+i c \lambda+b+\frac{1}{2}|u|^{2}\right)^{2}-\left(u \lambda+i c u+\frac{1}{2} u^{\prime}\right)\left(\bar{u} \lambda+i c \bar{u}-\frac{1}{2} \bar{u}^{\prime}\right)
$$

Conserved quantities

The second-order equation on u

$$
u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}-4 b u=0
$$

is now closed with the conserved quantities

$$
\left.\begin{array}{r}
i\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)-2 c|u|^{2}=4 a, \\
\left|u^{\prime}\right|^{2}+|u|^{4}+4 b|u|^{2}=8 d .
\end{array}\right\}
$$

These equations describe a general class of traveling wave solutions:

$$
\psi(x, t)=u(x+c t) e^{-2 i b t}
$$

The polynomial $P(\lambda)$ in $\operatorname{det} W(\lambda)$ is given by

$$
P(\lambda)=\lambda^{4}+2 i c \lambda^{3}+\left(2 b-c^{2}\right) \lambda^{2}+2 i(a+b c) \lambda+b^{2}-2 a c+2 d,
$$

with roots at λ_{1} and $-\bar{\lambda}_{1}$. (Another pair also exists.)

Periodic waves of trivial phase

For traveling wave solutions:

- $c=0$ can be set without loss of generality.
- $a=0$ is set for waves with trivial phase.

The real function $u(x)$ is determined by the quadrature:

$$
\left(\frac{d u}{d x}\right)^{2}+u^{4}+4 b u^{2}=8 d
$$

with two parameters b, d. Parameterizing $V(u)=u^{4}+4 b u^{2}-8 d$ by two pairs of roots:

$$
\left\{\begin{array}{l}
-4 b=u_{1}^{2}+u_{2}^{2}, \\
-8 d=u_{1}^{2} u_{2}^{2} .
\end{array}\right.
$$

we get two families of traveling wave solutions:

- $0<u_{2}<u_{1}: u(x)=u_{1} \operatorname{dn}\left(u_{1} x ; k\right)$
- $u_{2}=i \nu_{2}: u(x)=u_{1} \operatorname{cn}(\alpha x ; k), \alpha=\sqrt{u_{1}^{2}+\nu_{2}^{2}}$

Lax spectrum of dn-periodic waves

Polynomial $P(\lambda)$ simplifies in terms of the turning points u_{1}, u_{2} :

$$
P(\lambda)=\lambda^{4}-\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}\right) \lambda^{2}+\frac{1}{16}\left(u_{1}^{2}-u_{2}^{2}\right)^{2}
$$

with two pairs of roots

$$
\lambda_{1}^{ \pm}= \pm \frac{u_{1}+u_{2}}{2}, \quad \lambda_{2}^{ \pm}= \pm \frac{u_{1}-u_{2}}{2}
$$

Lax spectrum of cn-periodic waves

If $u_{2}=i \nu_{2}$, there is one quadruplet of roots:

$$
\lambda_{1}^{ \pm}= \pm \frac{u_{1}+i \nu_{2}}{2}, \quad \lambda_{2}^{ \pm}= \pm \frac{u_{1}-i \nu_{2}}{2}
$$

En route to rogue waves

Let $\varphi=\left(p_{1}, q_{1}\right)$ be a nonzero solution of the Lax system for $\lambda=\lambda_{1} \in \mathbb{C}$. The one-fold Darboux transformation

$$
\hat{u}=u+\frac{2\left(\lambda_{1}+\bar{\lambda}_{1}\right) p_{1} \bar{q}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}},
$$

gives another solution \hat{u} of the same NLS equation.

Question: which value of λ_{1} to use?

Algebraic method - Step 2

Evaluating the matrix elements at simple poles λ_{1} and $-\bar{\lambda}_{1}$

$$
\begin{aligned}
& W_{11}(\lambda)=1-\frac{p_{1} q_{1}}{\lambda-\lambda_{1}}+\frac{\bar{p}_{1} \bar{q}_{1}}{\lambda+\bar{\lambda}_{1}}=\frac{\lambda^{2}+i c \lambda+b+\frac{1}{2}|u|^{2}}{\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)}, \\
& W_{12}(\lambda)=\frac{p_{1}^{2}}{\lambda-\lambda_{1}}+\frac{\bar{q}_{1}^{2}}{\lambda+\bar{\lambda}_{1}}=\frac{u \lambda+i c u+\frac{1}{2} u^{\prime}}{\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)},
\end{aligned}
$$

we can derive the inverse relations between the potential u and the squared eigenfunctions:

$$
\begin{aligned}
p_{1}^{2} & =\frac{1}{\lambda_{1}+\bar{\lambda}_{1}}\left(\frac{1}{2} u^{\prime}+i c u+\lambda_{1} u\right), \\
q_{1}^{2} & =\frac{1}{\lambda_{1}+\bar{\lambda}_{1}}\left(-\frac{1}{2} u^{\prime}+i c u+\lambda_{1} u\right), \\
p_{1} q_{1} & =-\frac{1}{\lambda_{1}+\bar{\lambda}_{1}}\left(b+\frac{1}{2}|u|^{2}+i \lambda_{1} c+\lambda_{1}^{2}\right) .
\end{aligned}
$$

The eigenfunction $\varphi=\left(p_{1}, q_{1}\right)$ is periodic if u is periodic.

Second linearly independent solution

Let us define the second solution $\varphi=\left(\hat{p}_{1}, \hat{q}_{1}\right)$ by

$$
\hat{p}_{1}=p_{1} \phi_{1}-\frac{2 \bar{q}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}}, \quad \hat{q}_{1}=q_{1} \phi_{1}+\frac{2 \bar{p}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}},
$$

such that $p_{1} \hat{q}_{1}-\hat{p}_{1} q_{1}=2$ (Wronskian is constant). Then, scalar function $\phi_{1}(x, t)$ satisfies

$$
\frac{\partial \phi_{1}}{\partial x}=-\frac{4\left(\lambda_{1}+\bar{\lambda}_{1}\right) \bar{p}_{1} \bar{q}_{1}}{\left(\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}\right)^{2}}
$$

and

$$
\frac{\partial \phi_{1}}{\partial t}=-\frac{4 i\left(\lambda_{1}^{2}-\bar{\lambda}_{1}^{2}\right) \bar{p}_{1} \bar{q}_{1}}{\left(\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}\right)^{2}}+\frac{2 i\left(\lambda_{1}+\bar{\lambda}_{1}\right)\left(u \bar{p}_{1}^{2}+\bar{u} \bar{q}_{1}^{2}\right)}{\left(\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}\right)^{2}} .
$$

The system is compatible as it is obtained from Lax equation.

Second solutions for periodic waves

For periodic waves with the trivial phase, variables are separated by

$$
u(x, t)=U(x) e^{-2 i b t}, \quad p_{1}(x, t)=P_{1}(x) e^{-i b t}, \quad q_{1}(x, t)=Q_{1}(x) e^{i b t}
$$

where U is real, either $U(x)=\operatorname{dn}(x ; k)$ or $U(x)=k \operatorname{cn}(x ; k)$, whereas $\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}=\operatorname{dn}(x ; k)$ in both cases.

Integrating linear equations for $\phi_{1}(x, t)$ yields

$$
\phi_{1}(x, t)=2 x+2 i\left(1 \pm \sqrt{1-k^{2}}\right) t \pm 2 \sqrt{1-k^{2}} \int_{0}^{x} \frac{d y}{\operatorname{dn}^{2}(y ; k)}
$$

and

$$
\phi_{1}(x, t)=2 k^{2} \int_{0}^{x} \frac{\mathrm{cn}^{2}(y ; k) d y}{\operatorname{dn}^{2}(y ; k)} \mp 2 i k \sqrt{1-k^{2}} \int_{0}^{x} \frac{d y}{\operatorname{dn}^{2}(y ; k)}+2 i k t
$$

from which it is obvious that $\left|\phi_{1}\right| \rightarrow \infty$ as $t \rightarrow \pm \infty$.

Algebraic method - Step 3

Rogue waves on the background u are generated by the DT:

$$
\hat{u}=u+\frac{2\left(\lambda_{1}+\bar{\lambda}_{1}\right) \hat{p}_{1} \hat{\bar{q}}_{1}}{\left|\hat{p}_{1}\right|^{2}+\left|\hat{q}_{1}\right|^{2}},
$$

where

$$
\hat{p}_{1}=p_{1} \phi_{1}-\frac{2 \bar{q}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}}, \quad \hat{q}_{1}=q_{1} \phi_{1}+\frac{2 \bar{p}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}},
$$

As $t \rightarrow \pm \infty$,

$$
\left.\hat{u}(x, t)\right|_{\left|\phi_{1}\right| \rightarrow \infty}=u+\frac{2\left(\lambda_{1}+\bar{\lambda}_{1}\right) p_{1} \bar{q}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}}
$$

which is a translation of the periodic wave u, e.g.

$$
\left.\hat{u}(x, t)\right|_{\left|\phi_{1}\right| \rightarrow \infty}=\frac{\sqrt{1-k^{2}}}{\operatorname{dn}(x ; k)}=\operatorname{dn}(x+K(k) ; k)
$$

or

$$
\left.\hat{u}(x, t)\right|_{\left|\phi_{1}\right| \rightarrow \infty}=-\frac{k \sqrt{1-k^{2}} \operatorname{sn}(x ; k)}{\operatorname{dn}(x ; k)}=k \operatorname{cn}(x+K(k) ; k) .
$$

Magnification factor

Rogue waves on the background u are generated by the DT:

$$
\hat{u}=u+\frac{2\left(\lambda_{1}+\bar{\lambda}_{1}\right) \hat{p}_{1} \hat{\bar{q}}_{1}}{\left|\hat{p}_{1}\right|^{2}+\left|\hat{q}_{1}\right|^{2}},
$$

where

$$
\hat{p}_{1}=p_{1} \phi_{1}-\frac{2 \bar{q}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}}, \quad \hat{q}_{1}=q_{1} \phi_{1}+\frac{2 \bar{p}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}},
$$

At the center of the rogue wave,

$$
\left.\hat{u}(x, t)\right|_{\phi_{1}=0}=u-\frac{2\left(\lambda_{1}+\bar{\lambda}_{1}\right) p_{1} \bar{q}_{1}}{\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}}=2 u-\tilde{u},
$$

hence the magnification factor does not exceed three in the one-fold transformation.

Rogue wave on the dn-periodic wave

The $d n$-periodic wave is

$$
u(x, t)=\operatorname{dn}(x ; k) e^{i\left(1-k^{2} / 2\right) t}
$$

The rogue wave for the larger eigenvalue λ_{1} has the larger magnification:

$$
M(k)=2+\sqrt{1-k^{2}}, \quad k \in[0,1] .
$$

Another rogue wave on the dn-periodic wave

The $d n$-periodic wave is

$$
u(x, t)=\operatorname{dn}(x ; k) e^{i\left(1-k^{2} / 2\right) t}
$$

The rogue wave for the smaller eigenvalue λ_{1} has the smaller magnification:

$$
M(k)=2-\sqrt{1-k^{2}}, \quad k \in[0,1] .
$$

Rogue wave on the cn-periodic wave

The $c n$-periodic wave is

$$
\psi_{\mathrm{cn}}(x, t)=k \mathrm{cn}(x ; k) e^{i\left(k^{2}-1 / 2\right) t}
$$

The rogue wave has the exact magnification factor:

$$
M(k)=2, \quad k \in[0,1] .
$$

Rogue wave on the cn-periodic wave

The $c n$-periodic wave is

$$
\psi_{\mathrm{cn}}(x, t)=k \operatorname{cn}(x ; k) e^{i\left(k^{2}-1 / 2\right) t}
$$

The rogue wave has the exact magnification factor:

$$
M(k)=2, \quad k \in[0,1] .
$$

Relation to modulation instability of the periodic wave

If λ belongs to the Lax spectrum and $P(\lambda)$ is the polynomial in

$$
P(\lambda)=\lambda^{4}-\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}\right) \lambda^{2}+\frac{1}{16}\left(u_{1}^{2}-u_{2}^{2}\right)^{2}
$$

then $\Gamma:= \pm 2 i \sqrt{P(\lambda)}$ is in the modulation instability spectrum.
(Deconinck-Segal, 2017) (Deconinck-Upsal, 2019)

Relation to modulation instability of the periodic wave

Here is an example of the periodic wave with nontrivial phase

$$
u(x)=R(x) e^{i \Theta(x)} e^{2 i b t}
$$

with

$$
R(x)=\sqrt{\beta-k^{2} \operatorname{sn}^{2}(x ; k)}, \quad \Theta(x)=-2 e \int_{0}^{x} \frac{d x}{R(x)^{2}}
$$

Relation to modulation instability of the periodic wave

Here is an example of the periodic wave with nontrivial phase

$$
u(x)=R(x) e^{i \Theta(x)} e^{2 i b t}
$$

with

$$
R(x)=\sqrt{\beta-k^{2} \operatorname{sn}^{2}(x ; k)}, \quad \Theta(x)=-2 e \int_{0}^{x} \frac{d x}{R(x)^{2}}
$$

Algebraic method with two eigenvalues

Fix $\lambda=\lambda_{1} \in \mathbb{C}$ with $\varphi=\left(p_{1}, q_{1}\right) \in \mathbb{C}^{2}$ and $\lambda=\lambda_{2} \in \mathbb{C}$ with $\varphi=\left(p_{2}, q_{2}\right) \in \mathbb{C}^{2}$ such that $\lambda_{1} \neq \pm \lambda_{2}$ and $\lambda_{1} \neq \pm \bar{\lambda}_{2}$. Set

$$
u=p_{1}^{2}+\bar{q}_{1}^{2}+p_{2}^{2}+\bar{q}_{2}^{2} .
$$

The algebraic method produces the third-order equation

$$
u^{\prime \prime \prime}+6|u|^{2} u^{\prime}+2 i c\left(u^{\prime \prime}+2|u|^{2} u\right)+4 b u^{\prime}+8 i a u=0
$$

with three constants of motion:

$$
\left.\begin{array}{r}
d+\frac{1}{2} b|u|^{2}+\frac{i}{4} c\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)+\frac{1}{8}\left(u \bar{u}^{\prime \prime}+u^{\prime \prime} \bar{u}-\left|u^{\prime}\right|^{2}+3|u|^{4}\right)=0, \\
2 e-a|u|^{2}-\frac{1}{4} c\left(\left|u^{\prime}\right|^{2}+\mid u u^{4}\right)+\frac{i}{8}\left(u^{\prime \prime} \bar{u}^{\prime}-u^{\prime} \bar{u}^{\prime \prime}\right)=0, \\
f-\frac{i}{2} a\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)+\frac{1}{4} b\left(\left|u^{\prime}\right|^{2}+|u|^{4}\right)+\frac{1}{16}\left(\left.\left.\left|u^{\prime \prime}+2\right| u\right|^{2} u\right|^{2}-\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)^{2}\right)=0 .
\end{array}\right\}
$$

Eigenvalues λ_{1} and λ_{2} are found among three roots of the polynomial

$$
\begin{aligned}
P(\lambda)=\lambda^{6}+ & 2 i c \lambda^{5}+\left(2 b-c^{2}\right) \lambda^{4}+2 i(a+b c) \lambda^{3}+\left(b^{2}-2 a c+2 d\right) \lambda^{2} \\
& +2 i(e+a b+c d) \lambda+f+2 b d-2 c e-a^{2} .
\end{aligned}
$$

Double-periodic solutions

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987) correspond to $c=a=e=0$. The solution takes the explicit form:

$$
u(x, t)=[Q(x, t)+i \delta(t)] e^{i \theta(t)}
$$

where $Q(x, t)$ and $\delta(t)$ are found from the first-order quadratures:

$$
\delta(t)=\frac{\sqrt{z_{1} z_{3}} \operatorname{sn}(\mu t ; k)}{\sqrt{z_{3}-z_{1} \mathrm{cn}^{2}(\mu t ; k)}},
$$

with $0 \leq z_{1} \leq z_{2} \leq z_{3}$ and

$$
Q(x, t)=Q_{4}+\frac{\left(Q_{1}-Q_{4}\right)\left(Q_{2}-Q_{4}\right)}{\left(Q_{2}-Q_{4}\right)+\left(Q_{1}-Q_{2}\right) \mathrm{sn}^{2}(\nu x ; \kappa)},
$$

with $Q_{4} \leq Q_{3} \leq Q_{2} \leq Q_{1}$.
By construction, $\pm \sqrt{z_{1}}, \pm \sqrt{z_{2}}, \pm \sqrt{z_{3}}$ are roots of $P(\lambda)$:

$$
P(\lambda)=\lambda^{6}+2 b \lambda^{4}+\left(b^{2}+2 d\right) \lambda^{2}+f+2 b d
$$

Lax spectrum and rogue waves

The double-periodic solution if $z_{1,2,3}$ are real:

$$
u(x, t)=k \frac{\operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; \kappa)+i \sqrt{1+k} \operatorname{sn}(t ; k) \operatorname{dn}(\sqrt{1+k} x ; \kappa)}{\sqrt{1+k} \operatorname{dn}(\sqrt{1+k} x ; \kappa)-\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; \kappa)} e^{i t}
$$

Lax spectrum and rogue waves

The double-periodic solution if z_{1} is real and $z_{2,3}$ are complex:

$$
u(x, t)=\frac{\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)+i \sqrt{k(1+k)} \operatorname{sn}(t ; k)}{\sqrt{1+k}-\sqrt{k} \operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)} e^{i k t}, \quad \kappa=\frac{\sqrt{1-k}}{\sqrt{2}}
$$

Lax spectrum and rogue waves

The double-periodic solution if z_{1} is real and $z_{2,3}$ are complex:

$$
u(x, t)=\frac{\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)+i \sqrt{k(1+k)} \operatorname{sn}(t ; k)}{\sqrt{1+k}-\sqrt{k} \operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)} e^{i k t}, \quad \kappa=\frac{\sqrt{1-k}}{\sqrt{2}} .
$$

Summary

Summary:

- New method is developed for computations of eigenvalues and eigenfunctions of the Lax system for periodic and double-periodic waves.
- New exact solutions are obtained for rogue waves on the background of periodic and double-periodic waves.
- Magnification factor is computed exactly at the rogue waves.

Further directions:

- Characterize eigenvalues, eigenfunctions, and rogue waves on general quasi-periodic solutions.
- Observe rogue waves on the periodic background in water wave experiments (Amin Chabchoub, Sydney).

Summary

Summary:

- New method is developed for computations of eigenvalues and eigenfunctions of the Lax system for periodic and double-periodic waves.
- New exact solutions are obtained for rogue waves on the background of periodic and double-periodic waves.
- Magnification factor is computed exactly at the rogue waves.

Further directions:

- Characterize eigenvalues, eigenfunctions, and rogue waves on general quasi-periodic solutions.
- Observe rogue waves on the periodic background in water wave experiments (Amin Chabchoub, Sydney).

Thank you! Questions???

Summary

Summary:

- New method is developed for computations of eigenvalues and eigenfunctions of the Lax system for periodic and double-periodic waves.
- New exact solutions are obtained for rogue waves on the background of periodic and double-periodic waves.
- Magnification factor is computed exactly at the rogue waves.

Further directions:

- Characterize eigenvalues, eigenfunctions, and rogue waves on general quasi-periodic solutions.
- Observe rogue waves on the periodic background in water wave experiments (Amin Chabchoub, Sydney).

Thank you! Questions???

