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Klein-Gordon lattice
Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators
with nearest-neighbour interactions

d2un
dt2

+ V ′(un) = ε(un+1 − 2un + un−1),

where {un(t)}n∈Z : R→ RZ, ε is the coupling constant, and V : R→ R is
the on-site potential such that V (0) = V ′(0) = 0 and V ′′(0) = 1, e.g.,

un un+1

V

u

V

Applications:

dislocations in crystals (e.g. Frenkel & Kontorova '1938)

oscillations in biological molecules (e.g. Peyrard & Bishop '1989)
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The anti-continuum limit

In the anti-continuum limit (ε = 0), each oscillator is governed by

ϕ̈+ V ′(ϕ) = 0, ⇒ 1

2
ϕ̇2 + V (ϕ) = E ,

where ϕ ∈ H2
per (0,T ).
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Figure: Period vs. energy in hard
(magenta) and soft (blue)
potential V (u) = 1
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The period of the oscillator is

T (E ) =
√
2

∫ a+(E)

a−(E)

dx√
E − V (x)

,

where turning points a−(E ) < 0 < a+(E )
are roots of V (a) = E .

If V (−x) = V (x), then a−(E ) = −a+(E ).
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Multi-breathers at the anti-continuum limit

Breathers are spatially localized time-periodic solutions. Multi-breathers are
constructed by parameter continuation in ε from the limiting con�guration:

u(0)(t) =
∑
k∈S

σkϕ(t)ek ∈ H2

per ((0,T ); l2(Z)),

where S ⊂ Z is a �nite set of excited sites and ek is the unit vector in
l2(Z) at the node k . The oscillators are in-phase if σk = +1 and
anti-phase if σk = −1.

a(E)

Z−a(E)

σn 1 −1 1

Figure: An example of a multi-site discrete breather at ε = 0.
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Existence of multi-breathers

Theorem (MacKay & Aubry '1994)

Fix the period T 6= 2πn, n ∈ N and the T -periodic solution ϕ ∈ H2
per (0,T )

of the anharmonic oscillator equation for T ′(E ) 6= 0. There exist ε0 > 0
and C > 0 such that ∀ε ∈ (−ε0, ε0) there exists a solution

u(ε) ∈ l2(Z,H2
per (0,T )) of the Klein�Gordon lattice satisfying∥∥∥u(ε) − u(0)

∥∥∥
l2(Z,H2(0,T ))

≤ Cε.

The proof is based on the Implicit Function Theorem and uses invertibility
of the linearization operators

L0 = ∂2t + 1 : H2

per (0,T )→ L2per (0,T ) if T 6= 2πn,

Le = ∂2t + V ′′(ϕ(t)) : H2

per ,even(0,T )→ L2per ,even(0,T ) if T ′(E ) 6= 0.
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Stability of multi-breathers
Archilla, Cuevas, Sánchez-Rey, Alvarez '2003

Koukouloyannis, Kevrekidis '2009

Pelinovsky, Sakovich '2012

Yoshimura '2012

Short summary of stability results near the anti-continuum limit:

Single-site breather - spectrally stable
Two-site breathers at two adjacent sites:

I spectrally unstable if in-phase (soft) or anti-phase (hard)
I spectrally stable if anti-phase (soft) or in-phase (hard)

Figure: Stable con�guration in soft potential: T ′(E ) > 0.
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Spectral stability via Floquet multipliers

For ε > 0, Floquet multipliers split as follows:

Imµ

Reµ

eiT

e−iT

1

1 ǫ = 0 Imµ

Reµ

eiT

e−iT

1 ǫ > 0

Single-site breathers have a double Floquet multiplier at µ = 1 if ε = 0 and
remain stable for small ε 6= 0.

Two-site breathers have one split pair of Floquet multipliers:

the pair is on the unit circle if the breathers are spectrally stable

the pair is on the real line if the breathers are unstable
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Di�erent limit: reduction to the discrete NLS equation
Consider the power model of the Klein�Gordon lattice:

d2un
dt2

+ un + u1+2k
n = ε(un+1 − 2un + un−1),

where the onsite (hard) potential V (u) is symmetric and k ∈ N.

Using the asymptotic multi-scale expansion in the small-amplitude limit

un(t) = ε
1
2k
[
an(εt)e it + ān(εt)e−it

]
+ smaller errors,

yields formally the discrete NLS equation at the order O(ε1+ 1
2k )

2i
dan
dτ

+ γk |an|2kan = an+1 − 2an + an−1,

where τ = εt and γk = (2k+1)!
k!(k+1)! .

Discrete Klein�Gordon breathers correspond to the discrete NLS solitons.
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Justi�cation of the dNLS approximation

Theorem (Pelinovsky�Penati�Paleari, 2016)

For every τ0 > 0, there are positive constants ε0 and C0 such that for every

ε ∈ (0, ε0) and for every initial data

‖u(0)− ε 1
2k U(0)‖l2 ≤ ε1+ 1

2k ,

the solution of the dKG equation satis�es for every t ∈ [−τ0ε−1, τ0ε−1],

‖u(t)− ε 1
2k U(t)‖l2 ≤ C0ε

1+ 1
2k ,

where Un(t) := an(εt)e it + ān(εt)e−it .

Remark: The constant C0 may grow exponentially in τ0.
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Steps in the proof of justi�cation
1. Using decomposition u = ε

1
2k [U + y] yields

ÿn + yn + ε
[
(2k + 1)U2k

n yn + N(yn)
]

+ Resn = ε(∆y)n,

where N(yn) = O(y2n ) and

Resn = ε2 (äne
it + ¨̄ane

−it)︸ ︷︷ ︸
due to second order

+ε
[
a2k+1

n e i(2k+1)t + · · ·+ ā2k+1

n e−i(2k+1)t
]

︸ ︷︷ ︸
due to nonlinearity ; no resonances at e±it

.

2. Energy for the approximation error

E (t) :=
1

2

∑
n∈Z

ẏ2n + y2n + ε(2k + 1)U2

ny
2

n + ε(yn+1 − yn)2,

such that ‖ẏ‖2`2 + ‖y‖2`2 ≤ 4E (t) and

dE (t)

dt
= −〈y,Res + (2k + 1)εUU̇ y + εN(y)〉.
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Steps in the proof of justi�cation
3. For every a0 ∈ `2, there exists a unique global solution a(t) ∈ C (R, `2)

of the discrete NLS equation, where `2 forms a Banach algebra with
respect to multiplication.

4. With near-identity transformation, non-resonant terms in ε can be
removed by X = X(0) + εX(1) such that

Resn = ε2 (äne
it + ¨̄ane

−it)︸ ︷︷ ︸
due to second order

+ε2 . . .︸︷︷︸
after near−identity transformation

.

such that ‖Res‖`2 ≤ Cε2.

5. Gronwall's inequality is used in the energy estimates for E (t) = Q(t)2:

dE

dt
≤ Cε2E 1/2 + CεE ⇒ dQ

dt
≤ Cε2 + CεQ

such that |Q(t)| ≤ CεeCτ0 for t ∈ [0, τ0ε
−1].
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1. Justi�cation of the reduction on the extended time scale

Theorem (Pelinovsky�Penati�Paleari, 2016)

For every α ∈ (0, 1), there are positive constants ε0 and C0 such that for

every ε ∈ (0, ε0) and for every initial data

‖u(0)− ε 1
2k U(0)‖l2 ≤ ε1+ 1

2k ,

the solution of the dKG equation satis�es for every

t ∈ [−α| log(ε)|ε−1, α| log(ε)|ε−1],

‖u(t)− ε 1
2k U(t)‖l2 ≤ C0ε

1−α+ 1
2k ,

where Un(t) := an(εt)e it + ān(εt)e−it .

Remark: Global well-posedness of the DNLS equation is used since the
solution of DNLS is de�ned in τ = εt on [−α| log(ε)|, α| log(ε)|].
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2. Existence of breathers from existence of solitons
The discrete NLS equation

2i
dan
dτ

+ γk |an|2kan = an+1 − 2an + an−1, γk > 0,

has standing wave solutions an(τ) = Ane
− i

2
Ωτ (bright solitons), e.g. for

Ω < −4. These solitons can be characterized as minimizers of the
constrained variational problem (M. Weinstein, 1999)

inf
A∈`2
{E (A) : P(A) = P0 > 0} ,

where P(A) = ‖A‖2`2 is conserved mass and E (A) is conserved energy of
the discrete NLS equation.

Does there exist a discrete breather (spatially localized, time-periodic
solution of dKG) near each soliton of dNLS for which the Jacobian
operator is invertible?

J := Ω + (2k + 1)γk |A|2k −∆.
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Theorem (Pelinovsky�Penati�Paleari, 2020)

Assume the existence of A ∈ `2 in dNLS equation for some Ω < −4d such

that J is invertible. There are positive constants ε0 and C0 such that the

dKG equation for ε ∈ (0, ε0) admits the unique breather solution

u ∈ H2
per

((0,T ), `2(Z)) with breather frequency ω = 2π
T satisfying

‖u(t)− ε 1
2k U(t)‖l2 ≤ C0ε

1+ 1
2k , |ω − 1 +

εΩ

2
| ≤ C0ε

2,

where Un(t) := An(εt)e i(1−
εΩ
2

)t + Ān(εt)e−i(1−
εΩ
2

)t .

Remark: The proof is based on the Fourier series decomposition

u(t) =
∑
j∈Z

A(m)e imωt

and Lyapunov�Schmidt reduction in H2
per

((0,T ), `2(Z)) with

‖A(0)‖`2 + ‖‖A(1) − ε 1
2k A‖`2 + ‖Am≥2‖`2 ≤ C0ε

1+ 1
2k .
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3. Stability of breathers from stability of solitons

The KG lattice

d2un
dt2

+ V ′(un) = ε(un+1 − 2un + un−1)

has the conserved energy

H(u) =
∑
n∈Z

1

2

(
dun
dt

)2

+ V (un) +
1

2
ε(un+1 − un)2.

Breathers are not characterized variationally from the energy function H.
Nevetherless, the energy function gives the criterion of their stability.
[Kevrekidis�Cuevas�Pelinovsky, Phys. Rev. Lett. 117 (2016), 094101]

Let u ∈ H2
per

((0,T ), `2(Z)) be the breather solution and compute
H(ω) := H(u), where ω = 2π/T is breather frequency. Breathers with
increasing (decreasing) H(ω) are unstable in soft (hard) potentials V (u).
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A simple argument of why critical points of H(ω) matter

Normalized breather pro�le U(τ) ∈ H2
per

((0, 2π), `2(Z)) satis�es

ω2U ′′n (τ) + V ′(Un(τ)) = ε(∆U)n(τ), n ∈ Z.

Linearized equations for small perturbations w ∈ C 2(R, `2(Z)) are given by

ẅn + V ′′(Un)wn = ε(∆w)n, n ∈ Z. (1)

With Floquet theory,

w(t) = W (τ)eλt , τ = ωt, W (τ + 2π) = W (τ),

the spectral stability problem is formulated by

(LW )(τ) = 2λωW ′(τ) + λ2W (τ),

where L = ε∆− V ′′(U(τ))− ω2∂2τ acts on H2
per

((0, 2π), `2(Z)).
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A simple argument of why critical points of H(ω) matter
λ = 0 is at least a double eigenvalue because of the translational invariance:

LU ′(τ) = 0, L∂ωU(τ) = 2ωU ′′(τ).

Assumptions:

λ = 0 is bounded away from the spectral bands of L.
Ker(L) is exactly one-dimensional with the eigenvector U ′(τ).
The mapping ω 7→ H(ω) is C 1.

Perturbation expansion in powers of λ:

W (τ) = U ′(τ) + λ∂ωU(τ) + λ2Y (τ) +O(λ3).

yields the inhomogeneous equation for Y (τ) ∈ H2
per

((0, 2π), `2(Z)):

(LY )(τ) = 2ω∂ωU
′(τ) + U ′(τ).

The Fredholm condition yields

0 =

∫
2π

0

∑
n∈Z

U ′n(τ)
[
2ω∂ωU

′
n(τ) + U ′n(τ)

]
dτ = TH′(ω).
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Energy stability criterion for discrete breathers

When H′(ω) = 0, λ = 0 is a quadruple eigenvalue.

Extending the perturbation extensions in powers of λ:

W (τ) = U ′(τ) + λ∂ωU(τ) + λ2Y (τ) + λ3Z (τ) +O(λ4)

and using Fredholm conditions yields the dispersion relation

0 = λ2TH′(ω) + λ4M(ω) +O(λ6),

where M(ω) is computed in terms of U and Y .

The sign of M(ω) is not generally de�ned...

However, in the dNLS approximation limit, one can show that
M(ω) > 0 for hard potentials [breathers are unstable for H′(ω) < 0];
M(ω) < 0 for soft potentials [breathers are unstable for H′(ω) > 0].
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Energy stability criterion in the dNLS approximation

For the power nonlinearity in the dKG equation,

d2un
dt2

+ un + u1+2k
n = ε(un+1 − 2un + un−1),

and the small-amplitude approximation of the dNLS equation,

Un(τ) = ε
1
2k
[
Ane

it + Āne
−it]+O(ε1+ 1

2k ),

with the correspondence ω = 1− εΩ
2

+O(ε2), it follows that

H(ω) = 2ε
1
k ‖A‖2`2 +O(ε1+ 1

k ).

The energy stability criterion becomes the Vakhitov�Kolokolov slope
condition:

H′(ω) < 0 ⇔ d

dΩ
‖A‖2`2 > 0

is the instability criterion for the hard potentials.
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Numerical illustration: 2D KG lattice.
Left - hard φ4 potential with ε = 0.5.
Right - soft Morse potential with ε = 0.2.

−5 0 5
−505

−0.5

0

0.5

1

1.5

nm

u
n

,m

−10 0 10
−10

0
10

0

0.1

0.2

0.3

nm

u
n
,m

2.25 2.3 2.35 2.4
0

5

10

15

20

H
(w

)

w

0.985 0.99 0.995
1.4

1.5

1.6

1.7

1.8

1.9

H
(w

)
w

2.25 2.3 2.35 2.4
1

1.1

1.2

1.3

1.4

|m
|

w

0.985 0.99 0.995
1

1.01

1.02

1.03

1.04

|m
|

w

Dmitry Pelinovsky (McMaster University)Existence and stability of Klein�Gordon breathers May 2021 20 / 26



4. Instability of two-site breathers
Consider the discrete KG equation

d2un
dt2

+ V ′(un) = ε(un+1 − 2un + un−1), n ∈ Z,

where V is smooth and V = 1

2
u2 +O(u3).

Assumptions:

The double eigenvalue λ = 0 is isolated from the spectral bands.

There exists a pair of eigenvalues at λ = ±iΩ isolated from the
spectral bands.

The double eigenvalue λ = ±2iΩ belongs to the spectral bands.

Dynamics of the dNLS equation suggests the following conclusion:

If Krein signature of eigenvalues at λ = ±iΩ is opposite to that of the
spectral bands, the breather is spectrally stable and nonlinearly unstable.

[Cuevas�Kevrekidis�Pelinovsky, Stud. Appl. Math. 137 (2016), 214]
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Krein quantity

Linearized equations for small perturbations are given by

ẅn + V ′′(un)wn = ε(∆w)n, n ∈ Z. (2)

The symplectic structure is given by

dwn

dt
=
∂H

∂pn
,

dpn
dt

= − ∂H
∂wn

, n ∈ Z

The Krein quantity K is real and constant in time t:

K = i
∑
n∈Z

(p̄nwn − pnw̄n) = 2Ω
∑
n∈Z
|Wn|2 + i

∑
n∈Z

(
˙̄WnWn − ẆnW̄n

)
,

where
w(t) = W (t)e iΩt , W (t + T ) = W (τ),

is the Floquet mode.
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Krein quantity for two-site breathers
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Figure: Period vs. energy in hard
(magenta) and soft (blue)
potential V (u) = 1
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For the hard potential with T ′(E ) < 0:

0 < T < π: the Krein signatures of the internal mode and the wave
spectrum in the upper semi-circle coincide;

π ≤ T < 2π: the Krein signatures of the internal mode and the wave
spectrum in the upper semi-circle are opposite to each other.
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Hard φ4 potential T < π (stable case)
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Hard φ4 potential T > π (unstable case)
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Conclusions

Breathers of the discrete Klein�Gordon equation can be characterized
in the anti-continuum limit and in the limit of small amplitudes.

The validity of the discrete NLS equation has been justi�ed to control
dynamics of discrete breathers in the discrete KG equation.

Existence and spectral stability of dKG breathers are handled with the
method of Lyapunov�Schmidt reductions from those of dNLS solitons.

The energy stability criterion and the relevance of Krein signatures are
similar between the dKG and dNLS models.
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