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The Linear Diffusion Equation with Linear Absorption

∂h
∂t

=
∂2h
∂x2 − h

The Slow Diffusion Equation with Strong Absorption

∂h
∂t

=
∂

∂x

(
hm ∂h
∂x

)
− hn

I Slow diffusion: m > 0
implies finite propagation speed for contact lines
(Herrero-Vazquez, 1987)

I Strong absorption: n < 1
implies finite time extinction for compactly supported data
(Kersner, 1983).



Physical Examples

The slow diffusion equation

∂h
∂t

=
∂

∂x

(
hm ∂h
∂x

)
− hn

describes physical processes related to dynamics of interfaces.

Interfaces

I spread of viscous films over a horizontal plate subject to gravity and constant
evaporation (m = 3 and n = 0) (Acton-Huppert-Worster, 2001)

I dispersion of biological populations with a constant death rate (m = 2, n = 0)

I nonlinear heat conduction with a constant rate of heat loss (m = 4, n = 0)

I fluid flows in porous media with a drainage rate driven by gravity or background
flows (m = 1 and n = 1 or n = 0) (Pritchard–Woods–Hogg, 2001)



Interface Dynamics

Advancing interfaces
I driven by diffusion

h ∼ (x− `(t))1/m

Receding interfaces
I driven by absorption

h ∼ (x− `(t))1/(1−n)

Main objective: to construct self-similar solutions that exhibit reversing behaviour:

Advancing→ Receding

or anti-reversing behaviour:

Receding→ Advancing



Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

h(x, t) = (±t)
1

1−n H±(φ), φ = x(±t)−
m+1−n
2(1−n) , ±t > 0,

where m > 0 and n < 1. The functions H± satisfy the ODEs:

d
dφ

(
Hm
±

dH±
dφ

)
± m + 1− n

2(1− n)
φ

dH±
dφ

= Hn
± ±

1
1− n

H±

We seek positive solutions H± on the semi-infinite line [A±,∞) that satisfy

(i): H±(φ)→ 0 as φ→ A±,

(ii): H±(φ) is monotonically increasing for all φ > A±,

(iii): H±(φ)→ +∞ as φ→ +∞,
(iv): H+(φ) ∼ H−(φ) as φ→ +∞.

If A± > 0, the self-similar solutions exhibit the reversing behaviour:

`(t) = A±(±t)
m+1−n
2(1−n) , ±t > 0.

If m + n > 1, then `′(0) = 0.
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Cartoon for reversing dynamics of an interface

Self-similar solution for reversing interface:

h(x, t) = (±t)
1

1−n H±(φ), φ = x(±t)−
m+1−n
2(1−n) , ±t > 0,
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Dynamical Systems Framework

Solutions were approximated by a naive numerical scheme
in Foster et al. [SIAM J. Appl. Math. 72, 144 (2012)].

The scope of our work is to develop a “rigorous” shooting method:
I The ODEs are singular in the limits of small and large H±
I Make transformations to change singular boundary values to equilibrium points
I Obtain near-field asymptotics (small H±): (φ, u,w) = (A±, 0, 0)
I Obtain far-field asymptotics (large H±): (x, y, z) = (x0, 0, 0)
I Connect between near-field and far-field asymptotics.



Near-field asymptotics

In variables u = H± and w = Hm
±

dH±
dφ , the system is non-autonomous:

du
dφ

=
w
um ,

dw
dφ

= un ± 1
1− n

u∓ m + 1− n
2(1− n)

φw
um .

The system is singular at u = 0.

Introduce the map τ 7→ φ by dφ
dτ = um for u > 0. Then, we obtain the 3D

autonomous dynamical system
φ̇ = um,
u̇ = w,
ẇ = um+n ± 1

1−n um+1 ∓ m+1−n
2(1−n) φw.

The set of equilibrium points is given by (φ, u,w) = (A, 0, 0), where A ∈ R. If
m > 1, each equilibrium point is associated with the Jacobian matrix 0 0 0

0 0 1
0 0 ∓m+1−n

2(1−n) A

 .
with a double zero eigenvalue and a simple nonzero eigenvalue if A 6= 0.
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Center manifold

Case: ±A > 0: the nonzero eigenvalue is negative. Trajectory cannot escape (A, 0, 0)
as τ → −∞ along the stable curve. However, a two-dimensional center manifold
exists:

Wc(A, 0, 0) =
{

w = ± 2(1− n)
(m + 1− n)A

um+n + · · · , φ ∈ (A,A + δ), u ∈ (0, δ)
}
.

Dynamics on Wc(A, 0, 0) is topologically equivalent to that of{
φ̇ = um,

u̇ = ± 2(1−n)um+n

(m+1−n)A .

There exists exactly one trajectory on Wc(A, 0, 0) which escapes the equilibrium
point (A, 0, 0) as τ → −∞.

If ±A± > 0, the unique solution has the following asymptotic behaviour

H±(φ) =
[
± 2(1− n)2

(m + 1− n)A±
(φ− A±)

]1/(1−n)

+ · · · as φ→ A±.

The interface is driven by absorption.
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Unstable manifold

Case: ∓A > 0: the center manifold is attracting (no trajectories escape (A, 0, 0) as
τ → −∞). However, the nonzero eigenvalue is positive and a one-dimensional
unstable curve exists:

Wu(A, 0, 0) =
{
φ = A +O(um), w = ∓m + 1− n

2(1− n)
Au +O(um+n), u ∈ (0, δ)

}
.

Dynamics on Wu(A, 0, 0) is topologically equivalent to that of

u̇ = ∓m + 1− n
2(1− n)

Au.

If ∓A± > 0, the unique solution has the following asymptotic behaviour

H±(φ) =
(
∓m(m + 1− n)A±

2(1− n)
(φ− A±)

)1/m

+ · · · as φ→ A±.

The interface is driven by diffusion.
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Far-field asymptotics

Question: If a trajectory departs from the point (φ, u,w) = (A, 0, 0), does it arrive to
infinity: φ→∞, u→∞?

Let us change the variables

φ =
x

y
m+1−n
2(1−n)

, u =
1

y
1

1−n
, w =

z

y
m+3−n
2(1−n)

and re-parameterize the time τ with new time s by

dτ
ds

= y
m+1−n
2(1−n) , y ≥ 0.

The 3D autonomous dynamical system is rewritten as a smooth system
x′ = y− m+1−n

2 xz,
y′ = −(1− n)zy,
z′ = ± 1

1−n y + y2 ∓ m+1−n
2(1−n) xz− m+3−n

2 z2,
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The 3D smooth dynamical system is
x′ = y− m+1−n

2 xz,
y′ = −(1− n)zy,
z′ = ± 1

1−n y + y2 ∓ m+1−n
2(1−n) xz− m+3−n

2 z2,

The set of equilibrium points is given by (x, y, z) = (x0, 0, 0), where x0 ∈ R. Each
equilibrium point is associated with the Jacobian matrix 0 1 −m+1−n

2 x0

0 0 0
0 ± 1

1−n ∓m+1−n
2(1−n) x0

 .
with a double zero eigenvalue and a simple nonzero eigenvalue if x0 6= 0. Only
x0 > 0 is relevant for the asymptotics as φ→ +∞.

I Two-dimensional center manifold associated with the double zero eigenvalue.
I A stable curve for the upper sign and an unstable curve for the lower sign.



Center manifold

For every x0 > 0, there exists a two-dimensional center manifold near (x0, 0, 0):

Wc(x0, 0, 0) =
{

y =
m + 1− n

2
xz +O(z2), x ∈ (x0 − δ, x0 + δ), z ∈ (−δ, δ)

}
.

The dynamics on Wc(x0, 0, 0) is topologically equivalent to that of{
x′ = ±(1− n)

(
m+n+1

2 − (m+1−n)2

4 x2
0

)
z2,

z′ = −(1− n)z2.

There exists exactly one trajectory on Wc(x0, 0, 0), which approaches the equilibrium
point (x0, 0, 0) as s→ +∞.

The solution at infinity satisfies the asymptotic behaviour

H±(φ) ∼
(
φ

x0

) 2
m+1−n

as φ→ +∞.

The family of diverging solutions is 1D for H− and 2D for H+.
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Back to the plan

We are developing “rigorous” shooting method:
I The ODEs are singular in the limits of small and large H±
I Make transformations to change singular boundary values to equilibrium points
I Obtain near-field asymptotics (small H±): (φ, u,w) = (A±, 0, 0)
I Obtain far-field asymptotics (large H±): (x, y, z) = (x0, 0, 0)
I Connect between near-field and far-field asymptotics.



Connection results for H+ (after reversing)

I Trajectory that departs from (φ, u,w) = (A+, 0, 0) is 1D
I Trajectory that arrives to (x, y, z) = (x0, 0, 0) is 2D.

Fix A+ ∈ R\{0} and consider a 1D trajectory such that (φ, u,w)→ (A+, 0, 0) as
τ → −∞ and u > 0. Then, there exists a τ0 ∈ R such that φ(τ)→ +∞ and
u(τ)→ +∞ as τ → τ0.
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Figure: Left: trajectories with m = 3 and n = 0 for H+. Right: variation of x0 with A+ for
m = 2, 3 and 4.



Connection results for H− (before reversing)

I Trajectory that departs from (φ, u,w) = (A−, 0, 0) is 1D
I Trajectory that arrives to (x, y, z) = (x0, 0, 0) is 1D.

If we shoot from (A−, 0, 0), then the trajectory does not generally reach (x0, 0, 0).
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Figure: Trajectories with m = 3 and n = 0 for H−.



Connection results for H− (before reversing)

I Trajectory that departs from (φ, u,w) = (A−, 0, 0) is 1D
I Trajectory that arrives to (x, y, z) = (x0, 0, 0) is 1D.

We should shoot from (x0, 0, 0) trying to reach (A−, 0, 0).

Fix x0 > 0 and consider a 1D trajectory such that (x, y, z)→ (x0, 0, 0) as s→ +∞
and y > 0. There exists an s0 ∈ R such that

(i) either w = 0 and u ≥ 0 as s→ s0

(ii) or u = 0 and w ≥ 0 as s→ s0.

In both cases, if (u,w) 6= (0, 0) as s→ s0, then |φ| <∞ as s→ s0.

Open ends:
I Do the two piecewise C1 maps intersect?

(i) R+ 3 x0 7→ (φ, u) ∈ R×R+ and (ii) R+ 3 x0 7→ (φ,w) ∈ R×R+.

I If they do, does φ remain bounded at the intersection point?

And here the numerical approximation kicks in...
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Finding the intersection points x0 = x∗

x0
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Figure: Panels (a)-(b) show plots of the piecewise C1 maps for m = 2 and m = 4. In all cases
the blue, red and black curves show the value of w at u = 0, the value of u at w = 0 and the
value of φ at the termination point respectively.

The dashed line corresponds to the exact solution with A− = 0:

H−(φ) =
(
φ

x∗

) 2
m+1−n

, x2
∗ =

2(m + 1 + n)
(m + 1− n)2 .



Self-similar solutions for n = 0



Self-similar solutions for other values of n



Self-similar solutions for other values of n



Location of bifurcations

The black curve corresponds to the exact solution with A− = 0:

H−(φ) =
(
φ

x∗

) 2
m+1−n

, x2
∗ =

2(m + 1 + n)
(m + 1− n)2 .

After substituting self-similar variables, it is a static solution h(x, t) = h(x). New
self-similar solutions bifurcate from the static solutions at

m = mk = (1− n)(2k − 1), k = 1, 2, 3, ...
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Analysis of bifurcations (n = 0)

Write H− as a perturbation to the exact solution

H− = r
2

m+1 + u(r), r :=
φ

x∗
,

then u satisfies the homogeneous equation

m + 1
2

d2u
dr2

(
r

2m
m+1 u(r)

)
− m + 1

2
r

du
dr

+ u(r) = 0, r ∈ (0,∞).

Behavior at infinity:

u(I)(r) ∼ r
2

m+1 , u(II)(r) ∼ r−3e
m+1

2 r2/(m+1)
as r →∞

The admissible self-similar solutions must be proportional to u(I).

Near r = 0, the self-similar solutions satisfy

u(r) ∼ c1r
1−m
1+m + c2r

−2m
1+m as r → 0.

Both solutions diverge if m > 1 but the second solution diverges faster.



Kummer’s differential equation

After a coordinate transformation, the homogeneous equation on u(r) becomes the
Kummer’s differential equation (1837),

z
d2w
dz2 + (b− z)

dw
dz

+ aw(z) = 0, z ∈ (0,∞),

where
a := −m + 1

2
, b :=

m + 3
2

.

The power series solution is given by Kummer’s function

M(z; a, b) = 1 +
a
b

z
1!

+ +
a(a + 1)
b(b + 1)

z2

2!
+ · · ·

The other solution is singular as z→ 0.

The only solution with the correct boundary condition at infinity,

U(z; a, b) ∼ z−a
[
1 +O(z−1)

]
as z→∞,

was characterized by Tricomi (1947).

When a = −k or m = mk = (2k − 1), k ∈ N, Kummer’s power series M(z; a, b)
becomes a polynomial which connects to the Tricomi’s function U(z; a, b).



Two-scale asymptotic method
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Figure: The numerical solution H− (black solid line) for m = 2.99 and n = 0 with a schematic
representation of the two asymptotic scales. The blue dashed line is the far-field behaviour and
the red dashed line is the near field behaviour.

Outer region: Kummer’s equation and power expansion

H− = r
2

m+1 + αu1(r) + α2u2(r) + · · ·

Inner region: Invariant manifold after blow-up technique.



Inner region (n = 0)

The inner solution near the interface

φ = A + |A|
m+1
m−1 η, H(φ) = |A|

2
m−1H(η),

satisfies the differential equation

d
dη

(
Hm dH

dη

)
= 1 +

m + 1
2

sign(A)
dH
dη

+ |A|
2

m−1

(
m + 1

2
η

dH
dη
−H

)
,

The inner solution is formally expanded as

H(η) = H0(η) + |A|
2

m−1H1(η) + |A|
4

m−1H2(η) + . . .

whereH0 satisfies after integration

Hm
0

dH0

dη
= η +

m + 1
2

sign(A)H0.



Inner region (n = 0)

The first-order non-autonomous equation is equivalent to the planar system{
η̇ = Hm

0 ,

Ḣ0 = η + m+1
2 sign(A)H0,

where (0, 0) is located at the intersection of the center curve

Wc(0, 0) =
{
η = −m + 1

2
sign(A)H0 +O(Hm

0 ), H0 ∈ R
}

and the stable or unstable curve depending on the sign of A.

If A > 0, we have

H0(η) ∼
(

m(m + 1)
2

η

) 1
m

as η → 0

and if A < 0, we have

H0(η) ∼
2

m + 1
η as η → 0.

In the far field, we always have

H0(η) ∼
(

m + 1
2

η2
) 1

m+1

as η →∞.



Outer region

Substituting
φ = A + |A|

m+1
m−1 η, H(φ) = |A|

2
m−1H(η)

into
H(η) = H0(η) + |A|

2
m−1H1(η) + |A|

4
m−1H2(η) + . . .

and expanding in A brings the asymptotic expansion to the form:

H(φ) ∼ r
2

m+1 − 2A
(m + 1)x∗

r
1−m
1+m +

(1− m)A2

2(m + 1)
r−

2m
m+1 .

This expansion is compared to the outer expansion:

H− = r
2

m+1 + αu1(r) + α2u2(r) + · · ·

with r := φ/x∗ and Kummer’s differential equation for u1.

Matching conditions define α in terms of A and m− mk in terms of A. Behaviour at
infinity defined x0 − x∗ in terms of A.



Numerical confirmation: m2

No bifurcation occurs at m1 = 1. Bifurcation at m2 = 3 and n = 0:

A = 3(x0 − x∗) +O((x0 − x∗)2)

and
3− m = O(A2).
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Figure: Panel (a) shows the variation of A versus 3 − m and panel (b) shows the variation of
x0 − x∗ versus A local to m = 3.



Numerical confirmation: m3

Bifurcation at m3 = 5 and n = 0:

A = −40
9
(x0 − x∗) + · · ·

and

5− m =
27
√

3
4

A + · · ·
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Figure: Panel (a) shows the variation of A versus 5 − m and panel (b) shows the variation of
x0 − x∗ versus A local to m = 5.



Numerical confirmation: m4

Bifurcation at m4 = 7 and n = 0:

A =
105
16

(x0 − x∗) + · · ·

and
7− m =

2048
15

A + · · ·
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Figure: Panel (a) shows the variation of A versus 7 − m and panel (b) shows the variation of
x0 − x∗ versus A local to m = 7.



Conclusion

I For every m > 0, n < 1 and m + n > 1 a pair of solutions H+ and H− can be
constructed numerically and then converted to h(x, t)

I Solutions with A± > 0 correspond to reversing interfaces
I Solutions with A± < 0 correspond to anti-reversing interfaces

I The behaviour of the self-similar solution at zero and infinity is justified by the
dynamical system theory.

I Bifurcations of self-similar solutions are predicted from analysis of the classical
Kummer’s differential equation.
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