Reversing interfaces in systems with slow diffusion and strong absorption

Dmitry Pelinovsky
Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca
With Jamie Foster, University of Portsmouth, England

Macquarie University, 6 April 2018

The Linear Diffusion Equation with Linear Absorption

$$
\frac{\partial h}{\partial t}=\frac{\partial^{2} h}{\partial x^{2}}-h
$$

The Slow Diffusion Equation with Strong Absorption

$$
\frac{\partial h}{\partial t}=\frac{\partial}{\partial x}\left(h^{m} \frac{\partial h}{\partial x}\right)-h^{n}
$$

- Slow diffusion: $m>0$ implies finite propagation speed for contact lines (Herrero-Vazquez, 1987)
- Strong absorption: $n<1$ implies finite time extinction for compactly supported data (Kersner, 1983).

Physical Examples

The slow diffusion equation

$$
\frac{\partial h}{\partial t}=\frac{\partial}{\partial x}\left(h^{m} \frac{\partial h}{\partial x}\right)-h^{n}
$$

describes physical processes related to dynamics of interfaces.

- spread of viscous films over a horizontal plate subject to gravity and constant evaporation ($m=3$ and $n=0$) (Acton-Huppert-Worster, 2001)
- dispersion of biological populations with a constant death rate ($m=2, n=0$)
- nonlinear heat conduction with a constant rate of heat loss $(m=4, n=0)$
- fluid flows in porous media with a drainage rate driven by gravity or background flows ($m=1$ and $n=1$ or $n=0$) (Pritchard-Woods-Hogg, 2001)

Interface Dynamics

Advancing interfaces

- driven by diffusion

$$
h \sim(x-\ell(t))^{1 / m}
$$

Receding interfaces

- driven by absorption

$h \sim(x-\ell(t))^{1 /(1-n)}$

Main objective: to construct self-similar solutions that exhibit reversing behaviour:

$$
\text { Advancing } \rightarrow \text { Receding }
$$

or anti-reversing behaviour:
Receding \rightarrow Advancing

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$
h(x, t)=(\pm t)^{\frac{1}{1-n}} H_{ \pm}(\phi), \quad \phi=x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

where $m>0$ and $n<1$. The functions $H_{ \pm}$satisfy the ODEs:

$$
\frac{d}{d \phi}\left(H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}\right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{d H_{ \pm}}{d \phi}=H_{ \pm}^{n} \pm \frac{1}{1-n} H_{ \pm}
$$

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$
h(x, t)=(\pm t)^{\frac{1}{1-n}} H_{ \pm}(\phi), \quad \phi=x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

where $m>0$ and $n<1$. The functions $H_{ \pm}$satisfy the ODEs:

$$
\frac{d}{d \phi}\left(H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}\right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{d H_{ \pm}}{d \phi}=H_{ \pm}^{n} \pm \frac{1}{1-n} H_{ \pm}
$$

We seek positive solutions $H_{ \pm}$on the semi-infinite line $\left[A_{ \pm}, \infty\right)$ that satisfy

$$
\begin{equation*}
H_{ \pm}(\phi) \rightarrow 0 \quad \text { as } \quad \phi \rightarrow A_{ \pm} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
H_{ \pm}(\phi) \text { is monotonically increasing for all } \phi>A_{ \pm} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
H_{ \pm}(\phi) \rightarrow+\infty \quad \text { as } \quad \phi \rightarrow+\infty \tag{iii}
\end{equation*}
$$

(iv):

$$
H_{+}(\phi) \sim H_{-}(\phi) \quad \text { as } \quad \phi \rightarrow+\infty
$$

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$
h(x, t)=(\pm t)^{\frac{1}{1-n}} H_{ \pm}(\phi), \quad \phi=x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

where $m>0$ and $n<1$. The functions $H_{ \pm}$satisfy the ODEs:

$$
\frac{d}{d \phi}\left(H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}\right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{d H_{ \pm}}{d \phi}=H_{ \pm}^{n} \pm \frac{1}{1-n} H_{ \pm}
$$

We seek positive solutions $H_{ \pm}$on the semi-infinite line $\left[A_{ \pm}, \infty\right)$ that satisfy

$$
\begin{equation*}
H_{ \pm}(\phi) \rightarrow 0 \quad \text { as } \quad \phi \rightarrow A_{ \pm} \tag{i}
\end{equation*}
$$

$$
\text { (ii): } \quad H_{ \pm}(\phi) \text { is monotonically increasing for all } \phi>A_{ \pm}
$$

$$
\text { (iii): } \quad H_{ \pm}(\phi) \rightarrow+\infty \quad \text { as } \quad \phi \rightarrow+\infty
$$

$$
\text { (iv): } \quad H_{+}(\phi) \sim H_{-}(\phi) \quad \text { as } \quad \phi \rightarrow+\infty
$$

If $A_{ \pm}>0$, the self-similar solutions exhibit the reversing behaviour:

$$
\ell(t)=A_{ \pm}(\pm t)^{\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

If $m+n>1$, then $\ell^{\prime}(0)=0$.

Cartoon for reversing dynamics of an interface
Self-similar solution for reversing interface:

$$
h(x, t)=(\pm t)^{\frac{1}{1-n}} H_{ \pm}(\phi), \quad \phi=x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

Dynamical Systems Framework

Solutions were approximated by a naive numerical scheme in Foster et al. [SIAM J. Appl. Math. 72, 144 (2012)].

The scope of our work is to develop a "rigorous" shooting method:

- The ODEs are singular in the limits of small and large $H_{ \pm}$
- Make transformations to change singular boundary values to equilibrium points
- Obtain near-field asymptotics (small $\left.H_{ \pm}\right):(\phi, u, w)=\left(A_{ \pm}, 0,0\right)$
- Obtain far-field asymptotics (large $\left.H_{ \pm}\right):(x, y, z)=\left(x_{0}, 0,0\right)$
- Connect between near-field and far-field asymptotics.

Near-field asymptotics

In variables $u=H_{ \pm}$and $w=H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}$, the system is non-autonomous:

$$
\begin{aligned}
\frac{d u}{d \phi} & =\frac{w}{u^{m}} \\
\frac{d w}{d \phi} & =u^{n} \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^{m}}
\end{aligned}
$$

The system is singular at $u=0$.

Near-field asymptotics

In variables $u=H_{ \pm}$and $w=H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}$, the system is non-autonomous:

$$
\begin{aligned}
\frac{d u}{d \phi} & =\frac{w}{u^{m}} \\
\frac{d w}{d \phi} & =u^{n} \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^{m}}
\end{aligned}
$$

The system is singular at $u=0$.
Introduce the map $\tau \mapsto \phi$ by $\frac{d \phi}{d \tau}=u^{m}$ for $u>0$. Then, we obtain the 3D autonomous dynamical system

$$
\left\{\begin{array}{l}
\dot{\phi}=u^{m} \\
\dot{u}=w, \\
\dot{w}=u^{m+n} \pm \frac{1}{1-n} u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w .
\end{array}\right.
$$

Near-field asymptotics

In variables $u=H_{ \pm}$and $w=H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}$, the system is non-autonomous:

$$
\begin{aligned}
\frac{d u}{d \phi} & =\frac{w}{u^{m}} \\
\frac{d w}{d \phi} & =u^{n} \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^{m}}
\end{aligned}
$$

The system is singular at $u=0$.
Introduce the map $\tau \mapsto \phi$ by $\frac{d \phi}{d \tau}=u^{m}$ for $u>0$. Then, we obtain the 3D autonomous dynamical system

$$
\left\{\begin{array}{l}
\dot{\phi}=u^{m}, \\
\dot{u}=w, \\
\dot{w}=u^{m+n} \pm \frac{1}{1-n} u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w .
\end{array}\right.
$$

The set of equilibrium points is given by $(\phi, u, w)=(A, 0,0)$, where $A \in \mathbb{R}$. If $m>1$, each equilibrium point is associated with the Jacobian matrix

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & \mp \frac{m+1-n}{2(1-n)} A
\end{array}\right]
$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $A \neq 0$.

Center manifold

Case: $\pm A>0$: the nonzero eigenvalue is negative. Trajectory cannot escape ($A, 0,0$) as $\tau \rightarrow-\infty$ along the stable curve. However, a two-dimensional center manifold exists:

$$
W_{c}(A, 0,0)=\left\{w= \pm \frac{2(1-n)}{(m+1-n) A} u^{m+n}+\cdots, \quad \phi \in(A, A+\delta), u \in(0, \delta)\right\}
$$

Dynamics on $W_{c}(A, 0,0)$ is topologically equivalent to that of

$$
\left\{\begin{array}{l}
\dot{\phi}=u^{m} \\
\dot{u}= \pm \frac{2(1-n) u^{m+n}}{(m+1-n) A} .
\end{array}\right.
$$

There exists exactly one trajectory on $W_{c}(A, 0,0)$ which escapes the equilibrium point $(A, 0,0)$ as $\tau \rightarrow-\infty$.

Center manifold

Case: $\pm A>0$: the nonzero eigenvalue is negative. Trajectory cannot escape $(A, 0,0)$ as $\tau \rightarrow-\infty$ along the stable curve. However, a two-dimensional center manifold exists:

$$
W_{c}(A, 0,0)=\left\{w= \pm \frac{2(1-n)}{(m+1-n) A} u^{m+n}+\cdots, \quad \phi \in(A, A+\delta), u \in(0, \delta)\right\}
$$

Dynamics on $W_{c}(A, 0,0)$ is topologically equivalent to that of

$$
\left\{\begin{array}{l}
\dot{\phi}=u^{m} \\
\dot{u}= \pm \frac{2(1-n) u^{m+n}}{(m+1-n) A}
\end{array}\right.
$$

There exists exactly one trajectory on $W_{c}(A, 0,0)$ which escapes the equilibrium point $(A, 0,0)$ as $\tau \rightarrow-\infty$.

If $\pm A_{ \pm}>0$, the unique solution has the following asymptotic behaviour

$$
H_{ \pm}(\phi)=\left[\pm \frac{2(1-n)^{2}}{(m+1-n) A_{ \pm}}\left(\phi-A_{ \pm}\right)\right]^{1 /(1-n)}+\cdots \quad \text { as } \quad \phi \rightarrow A_{ \pm}
$$

The interface is driven by absorption.

Unstable manifold

Case: $\mp A>0$: the center manifold is attracting (no trajectories escape $(A, 0,0)$ as $\tau \rightarrow-\infty)$. However, the nonzero eigenvalue is positive and a one-dimensional unstable curve exists:
$W_{u}(A, 0,0)=\left\{\phi=A+\mathcal{O}\left(u^{m}\right), \quad w=\mp \frac{m+1-n}{2(1-n)} A u+\mathcal{O}\left(u^{m+n}\right), \quad u \in(0, \delta)\right\}$.
Dynamics on $W_{u}(A, 0,0)$ is topologically equivalent to that of

$$
\dot{u}=\mp \frac{m+1-n}{2(1-n)} A u .
$$

Unstable manifold

Case: $\mp A>0$: the center manifold is attracting (no trajectories escape $(A, 0,0)$ as $\tau \rightarrow-\infty)$. However, the nonzero eigenvalue is positive and a one-dimensional unstable curve exists:

$$
W_{u}(A, 0,0)=\left\{\phi=A+\mathcal{O}\left(u^{m}\right), \quad w=\mp \frac{m+1-n}{2(1-n)} A u+\mathcal{O}\left(u^{m+n}\right), \quad u \in(0, \delta)\right\}
$$

Dynamics on $W_{u}(A, 0,0)$ is topologically equivalent to that of

$$
\dot{u}=\mp \frac{m+1-n}{2(1-n)} A u .
$$

If $\mp A_{ \pm}>0$, the unique solution has the following asymptotic behaviour

$$
H_{ \pm}(\phi)=\left(\mp \frac{m(m+1-n) A_{ \pm}}{2(1-n)}\left(\phi-A_{ \pm}\right)\right)^{1 / m}+\cdots \quad \text { as } \quad \phi \rightarrow A_{ \pm}
$$

The interface is driven by diffusion.

Far-field asymptotics
Question: If a trajectory departs from the point $(\phi, u, w)=(A, 0,0)$, does it arrive to infinity: $\phi \rightarrow \infty, u \rightarrow \infty$?

Far-field asymptotics

Question: If a trajectory departs from the point $(\phi, u, w)=(A, 0,0)$, does it arrive to infinity: $\phi \rightarrow \infty, u \rightarrow \infty$?

Let us change the variables

$$
\phi=\frac{x}{y^{\frac{m+1-n}{2(1-n)}}}, \quad u=\frac{1}{y^{\frac{1}{1-n}}}, \quad w=\frac{z}{y^{\frac{m+3-n}{2(1-n)}}}
$$

and re-parameterize the time τ with new time s by

$$
\frac{d \tau}{d s}=y^{\frac{m+1-n}{2(1-n)}}, \quad y \geq 0
$$

The 3D autonomous dynamical system is rewritten as a smooth system

$$
\left\{\begin{array}{l}
x^{\prime}=y-\frac{m+1-n}{2} x z \\
y^{\prime}=-(1-n) z y \\
z^{\prime}= \pm \frac{1}{1-n} y+y^{2} \mp \frac{m+1-n}{2(1-n)} x z-\frac{m+3-n}{2} z^{2}
\end{array}\right.
$$

The 3D smooth dynamical system is

$$
\left\{\begin{array}{l}
x^{\prime}=y-\frac{m+1-n}{2} x z \\
y^{\prime}=-(1-n) z y \\
z^{\prime}= \pm \frac{1}{1-n} y+y^{2} \mp \frac{m+1-n}{2(1-n)} x z-\frac{m+3-n}{2} z^{2}
\end{array}\right.
$$

The set of equilibrium points is given by $(x, y, z)=\left(x_{0}, 0,0\right)$, where $x_{0} \in \mathbb{R}$. Each equilibrium point is associated with the Jacobian matrix

$$
\left[\begin{array}{ccc}
0 & 1 & -\frac{m+1-n}{2} x_{0} \\
0 & 0 & 0 \\
0 & \pm \frac{1}{1-n} & \mp \frac{m+1-n}{2(1-n)} x_{0}
\end{array}\right]
$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $x_{0} \neq 0$. Only $x_{0}>0$ is relevant for the asymptotics as $\phi \rightarrow+\infty$.

- Two-dimensional center manifold associated with the double zero eigenvalue.
- A stable curve for the upper sign and an unstable curve for the lower sign.

Center manifold

For every $x_{0}>0$, there exists a two-dimensional center manifold near ($x_{0}, 0,0$):
$W_{c}\left(x_{0}, 0,0\right)=\left\{y=\frac{m+1-n}{2} x z+\mathcal{O}\left(z^{2}\right), \quad x \in\left(x_{0}-\delta, x_{0}+\delta\right), \quad z \in(-\delta, \delta)\right\}$.
The dynamics on $W_{c}\left(x_{0}, 0,0\right)$ is topologically equivalent to that of

$$
\left\{\begin{array}{l}
x^{\prime}= \pm(1-n)\left(\frac{m+n+1}{2}-\frac{(m+1-n)^{2}}{4} x_{0}^{2}\right) z^{2} \\
z^{\prime}=-(1-n) z^{2} .
\end{array}\right.
$$

There exists exactly one trajectory on $W_{c}\left(x_{0}, 0,0\right)$, which approaches the equilibrium point $\left(x_{0}, 0,0\right)$ as $s \rightarrow+\infty$.

Center manifold

For every $x_{0}>0$, there exists a two-dimensional center manifold near ($x_{0}, 0,0$):
$W_{c}\left(x_{0}, 0,0\right)=\left\{y=\frac{m+1-n}{2} x z+\mathcal{O}\left(z^{2}\right), \quad x \in\left(x_{0}-\delta, x_{0}+\delta\right), \quad z \in(-\delta, \delta)\right\}$.
The dynamics on $W_{c}\left(x_{0}, 0,0\right)$ is topologically equivalent to that of

$$
\left\{\begin{array}{l}
x^{\prime}= \pm(1-n)\left(\frac{m+n+1}{2}-\frac{(m+1-n)^{2}}{4} x_{0}^{2}\right) z^{2} \\
z^{\prime}=-(1-n) z^{2} .
\end{array}\right.
$$

There exists exactly one trajectory on $W_{c}\left(x_{0}, 0,0\right)$, which approaches the equilibrium point $\left(x_{0}, 0,0\right)$ as $s \rightarrow+\infty$.

The solution at infinity satisfies the asymptotic behaviour

$$
H_{ \pm}(\phi) \sim\left(\frac{\phi}{x_{0}}\right)^{\frac{2}{m+1-n}} \quad \text { as } \quad \phi \rightarrow+\infty .
$$

The family of diverging solutions is ID for H_{-}and 2D for H_{+}.

Back to the plan

We are developing "rigorous" shooting method:

- The ODEs are singular in the limits of small and large $H_{ \pm}$
- Make transformations to change singular boundary values to equilibrium points
- Obtain near-field asymptotics (small $\left.H_{ \pm}\right):(\phi, u, w)=\left(A_{ \pm}, 0,0\right)$
- Obtain far-field asymptotics (large $\left.H_{ \pm}\right):(x, y, z)=\left(x_{0}, 0,0\right)$
- Connect between near-field and far-field asymptotics.

Connection results for H_{+}(after reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{+}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 2 D .

Fix $A_{+} \in \mathbb{R} \backslash\{0\}$ and consider a $1 D$ trajectory such that $(\phi, u, w) \rightarrow\left(A_{+}, 0,0\right)$ as $\tau \rightarrow-\infty$ and $u>0$. Then, there exists a $\tau_{0} \in \mathbb{R}$ such that $\phi(\tau) \rightarrow+\infty$ and $u(\tau) \rightarrow+\infty$ as $\tau \rightarrow \tau_{0}$.

Figure: Left: trajectories with $m=3$ and $n=0$ for H_{+}. Right: variation of x_{0} with A_{+}for $m=2,3$ and 4 .

Connection results for H_{-}(before reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{-}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 1 D .

If we shoot from $\left(A_{-}, 0,0\right)$, then the trajectory does not generally reach $\left(x_{0}, 0,0\right)$.

Figure: Trajectories with $m=3$ and $n=0$ for H_{-}.

Connection results for H_{-}(before reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{-}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 1 D .

We should shoot from $\left(x_{0}, 0,0\right)$ trying to reach $\left(A_{-}, 0,0\right)$.
Fix $x_{0}>0$ and consider a 1D trajectory such that $(x, y, z) \rightarrow\left(x_{0}, 0,0\right)$ as $s \rightarrow+\infty$ and $y>0$. There exists an $s_{0} \in \mathbb{R}$ such that
(i) either $w=0$ and $u \geq 0$ as $s \rightarrow s_{0}$
(ii) or $u=0$ and $w \geq 0$ as $s \rightarrow s_{0}$.

In both cases, if $(u, w) \neq(0,0)$ as $s \rightarrow s_{0}$, then $|\phi|<\infty$ as $s \rightarrow s_{0}$.

Connection results for H_{-}(before reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{-}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 1 D .

We should shoot from $\left(x_{0}, 0,0\right)$ trying to reach $\left(A_{-}, 0,0\right)$.
Fix $x_{0}>0$ and consider a 1D trajectory such that $(x, y, z) \rightarrow\left(x_{0}, 0,0\right)$ as $s \rightarrow+\infty$ and $y>0$. There exists an $s_{0} \in \mathbb{R}$ such that
(i) either $w=0$ and $u \geq 0$ as $s \rightarrow s_{0}$
(ii) or $u=0$ and $w \geq 0$ as $s \rightarrow s_{0}$.

In both cases, if $(u, w) \neq(0,0)$ as $s \rightarrow s_{0}$, then $|\phi|<\infty$ as $s \rightarrow s_{0}$.
Open ends:

- Do the two piecewise C^{1} maps intersect?
(i) $\mathbb{R}^{+} \ni x_{0} \mapsto(\phi, u) \in \mathbb{R} \times \mathbb{R}^{+} \quad$ and \quad (ii) $\mathbb{R}^{+} \ni x_{0} \mapsto(\phi, w) \in \mathbb{R} \times \mathbb{R}^{+}$.
- If they do, does ϕ remain bounded at the intersection point?

And here the numerical approximation kicks in...

Finding the intersection points $x_{0}=x_{*}$

Figure: Panels (a)-(b) show plots of the piecewise C^{1} maps for $m=2$ and $m=4$. In all cases the blue, red and black curves show the value of w at $u=0$, the value of u at $w=0$ and the value of ϕ at the termination point respectively.

The dashed line corresponds to the exact solution with $A_{-}=0$:

$$
H_{-}(\phi)=\left(\frac{\phi}{x_{*}}\right)^{\frac{2}{m+1-n}}, \quad x_{*}^{2}=\frac{2(m+1+n)}{(m+1-n)^{2}}
$$

Self-similar solutions for $n=0$

Self-similar solutions for other values of n

Self-similar solutions for other values of n

Location of bifurcations

The black curve corresponds to the exact solution with $A_{-}=0$:

$$
H_{-}(\phi)=\left(\frac{\phi}{x_{*}}\right)^{\frac{2}{m+1-n}}, \quad x_{*}^{2}=\frac{2(m+1+n)}{(m+1-n)^{2}}
$$

After substituting self-similar variables, it is a static solution $h(x, t)=h(x)$. New self-similar solutions bifurcate from the static solutions at

$$
m=m_{k}=(1-n)(2 k-1), \quad k=1,2,3, \ldots
$$

$$
n=0
$$

Analysis of bifurcations $(n=0)$

Write H_{-}as a perturbation to the exact solution

$$
H_{-}=r^{\frac{2}{m+1}}+u(r), \quad r:=\frac{\phi}{x_{*}}
$$

then u satisfies the homogeneous equation

$$
\frac{m+1}{2} \frac{d^{2} u}{d r^{2}}\left(r^{\frac{2 m}{m+1}} u(r)\right)-\frac{m+1}{2} r \frac{d u}{d r}+u(r)=0, \quad r \in(0, \infty)
$$

Behavior at infinity:

$$
u^{(I)}(r) \sim r^{\frac{2}{m+1}}, \quad u^{(I I)}(r) \sim r^{-3} e^{\frac{m+1}{2} r^{2 /(m+1)}} \quad \text { as } \quad r \rightarrow \infty
$$

The admissible self-similar solutions must be proportional to $u^{(I)}$.

Near $r=0$, the self-similar solutions satisfy

$$
u(r) \sim c_{1} r^{\frac{1-m}{1+m}}+c_{2} r^{\frac{-2 m}{1+m}} \quad \text { as } \quad r \rightarrow 0
$$

Both solutions diverge if $m>1$ but the second solution diverges faster.

Kummer's differential equation

After a coordinate transformation, the homogeneous equation on $u(r)$ becomes the Kummer's differential equation (1837),

$$
z \frac{d^{2} w}{d z^{2}}+(b-z) \frac{d w}{d z}+a w(z)=0, \quad z \in(0, \infty)
$$

where

$$
a:=-\frac{m+1}{2}, \quad b:=\frac{m+3}{2} .
$$

The power series solution is given by Kummer's function

$$
M(z ; a, b)=1+\frac{a}{b} \frac{z}{1!}++\frac{a(a+1)}{b(b+1)} \frac{z^{2}}{2!}+\cdots
$$

The other solution is singular as $z \rightarrow 0$.
The only solution with the correct boundary condition at infinity,

$$
U(z ; a, b) \sim z^{-a}\left[1+\mathcal{O}\left(z^{-1}\right)\right] \quad \text { as } \quad z \rightarrow \infty
$$

was characterized by Tricomi (1947).
When $a=-k$ or $m=m_{k}=(2 k-1), k \in \mathbb{N}$, Kummer's power series $M(z ; a, b)$ becomes a polynomial which connects to the Tricomi's function $U(z ; a, \underline{\underline{b}})$.

Two-scale asymptotic method

Figure: The numerical solution H_{-}(black solid line) for $m=2.99$ and $n=0$ with a schematic representation of the two asymptotic scales. The blue dashed line is the far-field behaviour and the red dashed line is the near field behaviour.

Outer region: Kummer's equation and power expansion

$$
H_{-}=r^{\frac{2}{m+1}}+\alpha u_{1}(r)+\alpha^{2} u_{2}(r)+\cdots
$$

Inner region: Invariant manifold after blow-up technique.

Inner region $(n=0)$
The inner solution near the interface

$$
\phi=A+|A|^{\frac{m+1}{m-1}} \eta, \quad H(\phi)=|A|^{\frac{2}{m-1}} \mathcal{H}(\eta)
$$

satisfies the differential equation

$$
\frac{d}{d \eta}\left(\mathcal{H}^{m} \frac{d \mathcal{H}}{d \eta}\right)=1+\frac{m+1}{2} \operatorname{sign}(A) \frac{d \mathcal{H}}{d \eta}+|A|^{\frac{2}{m-1}}\left(\frac{m+1}{2} \eta \frac{d \mathcal{H}}{d \eta}-\mathcal{H}\right)
$$

The inner solution is formally expanded as

$$
\mathcal{H}(\eta)=\mathcal{H}_{0}(\eta)+|A|^{\frac{2}{m-1}} \mathcal{H}_{1}(\eta)+|A|^{\frac{4}{m-1}} \mathcal{H}_{2}(\eta)+\ldots
$$

where \mathcal{H}_{0} satisfies after integration

$$
\mathcal{H}_{0}^{m} \frac{d \mathcal{H}_{0}}{d \eta}=\eta+\frac{m+1}{2} \operatorname{sign}(A) \mathcal{H}_{0}
$$

Inner region $(n=0)$
The first-order non-autonomous equation is equivalent to the planar system

$$
\left\{\begin{array}{l}
\dot{\eta}=\mathcal{H}_{0}^{m} \\
\dot{\mathcal{H}}_{0}=\eta+\frac{m+1}{2} \operatorname{sign}(A) \mathcal{H}_{0}
\end{array}\right.
$$

where $(0,0)$ is located at the intersection of the center curve

$$
W_{c}(0,0)=\left\{\eta=-\frac{m+1}{2} \operatorname{sign}(A) \mathcal{H}_{0}+\mathcal{O}\left(\mathcal{H}_{0}^{m}\right), \quad \mathcal{H}_{0} \in \mathbb{R}\right\}
$$

and the stable or unstable curve depending on the sign of A.

If $A>0$, we have

$$
\mathcal{H}_{0}(\eta) \sim\left(\frac{m(m+1)}{2} \eta\right)^{\frac{1}{m}} \quad \text { as } \quad \eta \rightarrow 0
$$

and if $A<0$, we have

$$
\mathcal{H}_{0}(\eta) \sim \frac{2}{m+1} \eta \quad \text { as } \quad \eta \rightarrow 0
$$

In the far field, we always have

$$
\mathcal{H}_{0}(\eta) \sim\left(\frac{m+1}{2} \eta^{2}\right)^{\frac{1}{m+1}} \quad \text { as } \quad \eta \rightarrow \infty
$$

Outer region

Substituting

$$
\phi=A+|A|^{\frac{m+1}{m-1}} \eta, \quad H(\phi)=|A|^{\frac{2}{m-1}} \mathcal{H}(\eta)
$$

into

$$
\mathcal{H}(\eta)=\mathcal{H}_{0}(\eta)+|A|^{\frac{2}{m-1}} \mathcal{H}_{1}(\eta)+|A|^{\frac{4}{m-1}} \mathcal{H}_{2}(\eta)+\ldots
$$

and expanding in A brings the asymptotic expansion to the form:

$$
H(\phi) \sim r^{\frac{2}{m+1}}-\frac{2 A}{(m+1) x_{*}} r^{\frac{1-m}{1+m}}+\frac{(1-m) A^{2}}{2(m+1)} r^{-\frac{2 m}{m+1}}
$$

This expansion is compared to the outer expansion:

$$
H_{-}=r^{\frac{2}{m+1}}+\alpha u_{1}(r)+\alpha^{2} u_{2}(r)+\cdots
$$

with $r:=\phi / x_{*}$ and Kummer's differential equation for u_{1}.

Matching conditions define α in terms of A and $m-m_{k}$ in terms of A. Behaviour at infinity defined $x_{0}-x_{*}$ in terms of A.

Numerical confirmation: m_{2}

No bifurcation occurs at $m_{1}=1$. Bifurcation at $m_{2}=3$ and $n=0$:

$$
A=3\left(x_{0}-x_{*}\right)+\mathcal{O}\left(\left(x_{0}-x_{*}\right)^{2}\right)
$$

and

$$
3-m=\mathcal{O}\left(A^{2}\right)
$$

(a)

Figure: Panel (a) shows the variation of A versus $3-m$ and panel (b) shows the variation of $x_{0}-x_{*}$ versus A local to $m=3$.

Numerical confirmation: m_{3}

Bifurcation at $m_{3}=5$ and $n=0$:

$$
A=-\frac{40}{9}\left(x_{0}-x_{*}\right)+\cdots
$$

and

$$
5-m=\frac{27 \sqrt{3}}{4} A+\cdots
$$

Figure: Panel (a) shows the variation of A versus $5-m$ and panel (b) shows the variation of $x_{0}-x_{*}$ versus A local to $m=5$.

Numerical confirmation: m_{4}

Bifurcation at $m_{4}=7$ and $n=0$:

$$
A=\frac{105}{16}\left(x_{0}-x_{*}\right)+\cdots
$$

and

$$
7-m=\frac{2048}{15} A+\cdots
$$

(a)

Figure: Panel (a) shows the variation of A versus $7-m$ and panel (b) shows the variation of $x_{0}-x_{*}$ versus A local to $m=7$.

Conclusion

- For every $m>0, n<1$ and $m+n>1$ a pair of solutions H_{+}and H_{-}can be constructed numerically and then converted to $h(x, t)$
- Solutions with $A_{ \pm}>0$ correspond to reversing interfaces
- Solutions with $A_{ \pm}<0$ correspond to anti-reversing interfaces
- The behaviour of the self-similar solution at zero and infinity is justified by the dynamical system theory.
- Bifurcations of self-similar solutions are predicted from analysis of the classical Kummer's differential equation.

References

1. J. M. Foster, C. P. Please, A. D. Fitt, and G. Richardson, The reversing of interfaces in slow diffusion processes with strong absorption, SIAM J. Appl. Math. 72 (2012), 144-162
2. J. M. Foster and D. E. Pelinovsky, Self-similar solutions for reversing interfaces in the slow diffusion equation with strong absorption, SIAM J. Appl. Dynam. Syst. 15 (2016), 2017-2050.
3. J. M. Foster, P. Gysberg, J.R. King, and D. E. Pelinovsky, Bifurcations of self-similar solutions for reversing interfaces in the slow diffusion equation, Nonlinearity (2018), submitted.
