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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a
rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + Uz — ﬁuxacx)x =Y,

where g and  are real coefficients.

When g = 0 and v = 1, the Ostrovsky equation is
(ur + vug)s = u,

and is known under the names of
@ the short-wave equation [Hunter, 1990];
@ Ostrovsky—Hunter equation [Boyd, 2005];
@ reduced Ostrovsky equation [Stepanyants, 2006];
@ the Vakhnenko equation [Vakhnenko & Parkes, 2002].
We will use the terminology of the reduced Ostrovsky equation.



Modified Ostrovsky equation

Internal waves are described by the modified Ostrovsky equation [R.
Grimshaw et al., 1998]:

(ur + vty — BUzes)s = Yu.

When g = 0 and v = 1, the modified Ostrovsky equation
(ur + vuz)e = u
has been studied by [E.R. Johnson, R. Grimshaw, 2014]
Note that the reduced modified Ostrovsky equation is different from the

short-pulse equation derived as a model for propagation of ultra-short
pulses with few cycles on the pulse scale [Schafer, Wayne 2004]:

Ugt = U + (u3)M .



Well-posedness results

Consider the generalized reduced Ostrovsky equation for an integer p:
(ut + uPug)e = u.
We are interested in travelling 27-periodic waves and their stability.

All solutions satisfy the constraint [ udz = 0.

We denote the L? space of 27-periodic functions with zero mean by L2

per-
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@ Local solutions exist in H;e, for s > % [A. Stefanov et al. (2010)].

@ For sufficiently large initial data, the local solutions break in a finite time
[Y. Liu et al. (2009,2010) for p = 1, 2].

@ For sufficiently small initial data in chr, the local solutions are continued
globally [D.P.,A.Sakovich (2010) for p = 2].

@ For sufficiently small initial data in Hf,’cr, the local solutions are continued
globally [R. Grimshaw, D.P. (2014) for p = 1].

@ Forp =1 and p = 2, the reduced Ostrovsky equation is reduced to an
integrable equation of the Klein—Gordon type.



Traveling periodic waves

Consider travelling 27-periodic waves u(z,t) = U(z — ct) in the
generalized reduced Ostrovsky equation:

(ue + vPuz)e =u, peN.
The wave profile satisfies the second-order ODE

diz [(c - Up)%} +U(x) =0, UT)=UT), U(-T)=U'T),

where z = z — ¢t and c is the wave speed.

After two integrations, the ODE is the Euler-Lagrange equation of the energy
function F(u) = H(u) + cQ(u) in L, N LPT?, where

__Lyga e 1 T oot
H(u) = =5 [10; "ullzz,, (p+1)(p+2)/,Tu dz,

and )
Q) = llullzs,,

are conserved energy and momentum of the reduced Ostrovsky equation.



Spectral stability

Traveling periodic wave U is a critical point of F/(u) = H(u) 4+ cQ(u) in
L2, N LP*2. The Hessian operator is

L=Py (0 +c—U(2)") Po: Lie(~=T,T) = L3, (=T, T),

where P : chr — Lfm is the mean-zero projection operator.

Definition

We say that the traveling wave is spectrally stable if 0. L : Héer — Lf,er has
no eigenvalues A with Re(\) > 0.

Approaches to stability of traveling periodic waves:

e Orbital stability in H3., (for p = 1) and Hf)er (for p = 2) by using
higher-order energy [E.R.Johnson, D.P. (2016)]

@ Spectral stability in Lper (for p = 1 and p = 2) from eigenvalues of
My = X0 in Lper [S. Hakkaev, et al. (2017)].

@ Spectral stability in chr for any p € N [A. Geyer, D.P. (2017)].



Orbital stability of periodic waves for p = 1

J. Brunelli & S. Sakovich (2013) found bi-infinite sequence of conserved
quantities for the reduced Ostrovsky equation (u: + utg)s = !

E, = / <%u3 + (a;lu)2> de = —2H,
/u2d$ =2Q
/(1 — Buae)'/? du,
2
Ey, = /((“Adb@

1 — 3uwe)7/3

Eo

En

Theorem (R.Grimshaw & D.P., 2014)

Letuo € H? such that1 — 3ug () > 0 for all z. There exists a unique solution
u € C(R, H®) to the reduced Ostrovsky equation with u(0) = wuo.




Variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F'(u) = H(u) + cQ(u) in
L. N L? with

Le=F"(U)=P (0:*+c—U(2)) Po: Loee(=T,T) = Lo, (=T, T),

where Py : L2, — L2, is the mean-zero projection operator.

Let us normalize the period T to 27. Then, U =0 atc =1, and

Leei = Po(148;%)Py o(Le=) ={1—n"2 n>1},

where the spectrum is defined in Lf,er(o, 2m). All eigenvalues are positive

except for the double zero eigenvalue.
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where the spectrum is defined in Lf,er(o, 2m). All eigenvalues are positive

except for the double zero eigenvalue.

For the subharmonic perturbations in Lger(o, 2w N) with N > 1, the spectrum
is

0(Le=1) ={1 - n72N2, n>1}.
There are N — 1 double negative eigenvalues and a double zero eigenvalue.

U is not a minimizer of F'(u) = H(u) + cQ(u).



Alternative variational characterizations of periodic waves

Traveling periodic wave U is also a critical point of

G(u) = R(u) — ma)(u) in Hper
where
R(u) = — / (1 — 3Buue)'/? da
and 5
o %(c_ U)? (%) + %UQ - %Us = const in z.

Here ¢® —61. > 0, U(z) < ¢, and 1 — 3U"(z) > 0 for smooth periodic waves.
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Traveling periodic wave U is also a critical point of

1

Gu) = RW) = 55y Q) in Hye
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o %(C_ U)? (%) + %UQ - %Us = const in z.
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The Hessian operator is

M.=G"(U) = Py (83(1 —3U")%/39% — (¢ — 616)*2/3) Po: Hi — L2

pers

For U = 0 at ¢ = 1 and for the subharmonic perturbations in L2, (0,27 N)

per
Moy = Po(=14+ 0Py o(Me=1)={-14+n"'N"" n>1}

There are N — 1 double negative eigenvalues and a double zero eigenvalue.
U is not a minimizer of G(u).



Mixed variational structure

Following
@ N. Bottman, B. Deconinck, DCDS A (2009)
B. Deconinck, T. Kapitula, Physics Letters A (2010)
M. Nivala, B. Deconinck, Physica D (2010)
N. Bottman, B. Deconinck, M. Nivala, J. Phys. A (2011)
Th. Gallay, D.P., J. Diff. Eq. (2015)
we define a mixed variational structure for periodic waves U':

Wi(u) := G(u) — bF(u), beR.

Theorem (E.Johnson, D.P., 2016)

For sufficiently small |c — 1|, U is a local nondegenerate (up to translational
symmetry) minimizer of W, (u) in H3..(0,27N) for every b € (b—,b..), where
b+ are given asymptotically by

1 3
br ==+ —=Vc—14+0(c—-1), as c—1.
s =5k —5Ve-T+0(-1)




Numerical results: periodic wave U

Galerkin-Fourier approximation

U(z) = Z A, cos(nz),

where a = |A1| is taken as the wave amplitude (depends on ¢ > 1).

Figure: (a) The 27r-periodic solutions of the reduced Ostrovsky equation. (b) The
Fourier coefficients of the trigonometric approximation.



Numerical results: U as a minimizer of W

The mixed variational structure yields
W (u) := G(u) — bF(u),

and U is a critical point of W for every b € R.

Figure: The region of the (b, a) plane where U is a minimizer of Wp(u).



Orbital stability of periodic waves for p = 2

J. Brunelli (2005) found bi-infinite sequence of conserved quantities for the
modified reduced Ostrovsky equation (u: + u?uy). = u:

B, = / (%u“ + (aglu)2> dr = —2H,

Ey = /qumZQQ,
B = /(vui)l”dx,
2
ufEfL‘
Bo= [

Theorem (D.P. & A. Sakovich, 2010)

Letuo € H? such that ||u||32 + ||uf||32 < 1. There exists a unique solution
u € C(R, H?) to the modified reduced Ostrovsky equation with u(0) = ug.




Two variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F'(u) = H(u) + cQ(u) in
L. N L* with

Le=F'(U)=P (0:>+c—U(2)*) Po: Loy — L2,

where Py : L2, — L2

per ser 1S the mean-zero projection operator.
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. <9
_ 27(62 SCTARE Q(u) in Hpe

where
R(u):f/(lfui)lmdx
and 5
_1 2y2 ﬂ c 2_1 4 _ .
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by =244V2V/c—14+0(c—1), as c— 1.




Numerical results: U as a minimizer of W
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Figure: The region of the (b, a) plane where U is a minimizer of W, (u).



Spectral stability in the generalized reduced Ostrovsky equation

The travelling 27-periodic waves u(x,t) = U(z — ct) satisfies the
second-order ODE

- [(c - U”)%} +U(z) =0, U(-T)=U(T), U(-T)=U"T),

with the first-order invariant

_ 1 oy ﬂQ Sz
E—Q(c U)<dz)+2U »

where z = z — ¢t and c is the wave speed.

Theorem (A.Geyer, D.P.,, 2017)

For every c > 0 andp € N, there exists a smooth family of periodic solutions
Ue€ L, (-T,T)NHy(—T,T) parameterized by E € (0, E.) such that the
energy-to-period map E — 2T is strictly monotonically decreasing.
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Figure: Phase portraits for p = 2 (left) and p = 1 (right).
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Monotonicity of the map E +— 2T

It follows from

L e (AUNT e 1 e
E—2(c U®) (dz) +2U p+2U = const
that )
2T(E):/ d—“zz/ VBwdu
e U u_(B) VE—A(u)
where A(u) = Su® — p%um-z and B(u) = 3(c —u”)>.

@ The integrand is singular at the turning points u+ (E) where A(u+) = E.

@ Derivative in E can not be applied separately to the integrand and the
limits of integration.



Monotonicity of the map E +— 2T

Following
@ M. Frau, F. Manosas, J. Villadelprat, Transactions AMS (2011)
@ A. Farijo, J. Villadelprat, J. Diff. Eq. (2014)

one can rewrite it
/ B(u)vdu—i—/ A(u)d—u

J (25 - 25

where the integrand is now free of singularities at the turning points.

2ET(E)

Then, applying derivative in E, we obtain
iomy [ B+ G
2T(E) +2ET'(E) = LE 2B (a0 du

and the final expression

o,

P u”
42+ p)E [{E (c—wrP) v

T'(E) = —



Existence theorem on the parameter plane

For fixed ¢, the map E — 2T is monotonically decreasing for E € (0, E.) with
T(0) = wc'/? and T(E,.) = Tic'/?, where Ty < « is independent of c.

2 T=Tc"

Figure: The existence region for smooth periodic waves in the (7', c)-parameter plane.

For fixed T, the map ¢ — E is monotonically increasing for
ce (T*n 2, T*17?).



Spectral stability in the generalized reduced Ostrovsky equation

The 27T-periodic wave U is a critical point of F'(u) = H(u) + ¢Q(u), where

1,21 2 1 /T p+2
H(u) = —= SR S d
(w) = =510 ullzz,, TN

1
Qu) = 3llullzs,,
The Hessian operator is
L=Py (0% +c—U(2)") Po: Lie(~T,T) = L (=T, T),

where P, : L2, — L2.. is the zero-mean projection operator.

Theorem (A.Geyer, D.P.,, 2017)

Foreveryc > 0,p € N, and U, the operator L in Lger(—T, T) has a simple
negative eigenvalue, a simple zero eigenvalue associated with

Ker(L) = span{0.U}, and the rest of the spectrum is strictly positive.
Moreover, the operator L is positive under the fixed-momentum constraint:

2= {u €L2u(-T.T): (Uurz, = 0} :




An argument about the spectrum of L

Fix T' > 0 and consider the Hessian operator

L=Py (0% +c—U(2)") Po: Lie(~T,T) = Ly (=T, T).

Atc = T?7~2, we have U = 0 and
Lo = Py(c+8.*)Py o(Lo) ={c(1—n"?%), n>1}

All eigenvalues are positive except for the double zero eigenvalue. For
¢ > T?*n72, Lo has only simple zero eigenvalue and a simple negative
eigenvalue.

The zero eigenvalue of L is simple if T'(E) # 0.

The family of operators L is iso-spectral with respect to parameter c.



An argument about the constraint L2

Fix T' > 0 and consider the Hessian operator
L=Py (0% +c~U(2)") Po: Lie(~T,T) = Lo (=T, T).
under the scalar constraint

L2 = {u €L2(-T.T): (Uua, = o} .

The operator L is positive under the constraint if
(L™'U, U)rz,, <0,
where U L Ker(L) = span(9.U).
For fixed T > 0, Ld.U = —U yields 8.U = —L~'U € L2.,.(~T,T), so that
_ 1d
(L7'u, Urz,, = —§%||U||2Lger <0,

the latter inequality can be proved for every p > 0 and for every ¢ > 0.



For the generalized reduced Ostrovsky equation with an integer p,
(ue + uPuz)e = u,

we have shown two stability results for the travelling periodic waves:

@ Minimization property for higher-order energy in Hf,er—spaces
forp=1andp=2

@ Spectral stability in L2, for any p € N



For the generalized reduced Ostrovsky equation with an integer p,
(ue + uPuz)e = u,

we have shown two stability results for the travelling periodic waves:

@ Minimization property for higher-order energy in Hf,er—spaces
forp=1andp=2

@ Spectral stability in L2, for any p € N

Spectral stability for p > 3 cannot be transferred to the orbital stability results
because the global well-posedness is not available in L2., N L2, where the
energy and momentum functions H (u) and Q(u) are defined.
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