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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a
rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + uux − βuxxx)x = γu,

where β and γ are real coefficients.

When β = 0 and γ = 1, the Ostrovsky equation is

(ut + uux)x = u,

and is known under the names of

the short-wave equation [Hunter, 1990];

Ostrovsky–Hunter equation [Boyd, 2005];

reduced Ostrovsky equation [Stepanyants, 2006];

the Vakhnenko equation [Vakhnenko & Parkes, 2002].

We will use the terminology of the reduced Ostrovsky equation.



Modified Ostrovsky equation

Internal waves are described by the modified Ostrovsky equation [R.
Grimshaw et al., 1998]:

(ut + u2ux − βuxxx)x = γu.

When β = 0 and γ = 1, the modified Ostrovsky equation

(ut + u2ux)x = u

has been studied by [E.R. Johnson, R. Grimshaw, 2014]

Note that the reduced modified Ostrovsky equation is different from the
short-pulse equation derived as a model for propagation of ultra-short
pulses with few cycles on the pulse scale [Schäfer, Wayne 2004]:

uxt = u+
(
u3)

xx
.



Well-posedness results

Consider the generalized reduced Ostrovsky equation for an integer p:

(ut + upux)x = u.

We are interested in travelling 2T -periodic waves and their stability.
All solutions satisfy the constraint

∫ T
−T udx = 0.

We denote the L2 space of 2T -periodic functions with zero mean by L̇2
per.

Local solutions exist in Ḣs
per for s > 3

2
[A. Stefanov et al. (2010)].

For sufficiently large initial data, the local solutions break in a finite time
[Y. Liu et al. (2009,2010) for p = 1, 2].

For sufficiently small initial data in Ḣ2
per, the local solutions are continued

globally [D.P.,A.Sakovich (2010) for p = 2].

For sufficiently small initial data in Ḣ3
per, the local solutions are continued

globally [R. Grimshaw, D.P. (2014) for p = 1].

For p = 1 and p = 2, the reduced Ostrovsky equation is reduced to an
integrable equation of the Klein–Gordon type.
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per, the local solutions are continued

globally [R. Grimshaw, D.P. (2014) for p = 1].

For p = 1 and p = 2, the reduced Ostrovsky equation is reduced to an
integrable equation of the Klein–Gordon type.



Traveling periodic waves

Consider travelling 2T -periodic waves u(x, t) = U(x− ct) in the
generalized reduced Ostrovsky equation:

(ut + upux)x = u, p ∈ N.

The wave profile satisfies the second-order ODE

d

dz

[
(c− Up)dU

dz

]
+ U(z) = 0, U(−T ) = U(T ), U ′(−T ) = U ′(T ),

where z = x− ct and c is the wave speed.

After two integrations, the ODE is the Euler–Lagrange equation of the energy
function F (u) = H(u) + cQ(u) in L̇2

per ∩ Lp+2, where

H(u) = −1

2
‖∂−1
x u‖2L2

per
− 1

(p+ 1)(p+ 2)

∫ T

−T
up+2dx,

and
Q(u) =

1

2
‖u‖2L2

per

are conserved energy and momentum of the reduced Ostrovsky equation.



Spectral stability

Traveling periodic wave U is a critical point of F (u) = H(u) + cQ(u) in
L̇2

per ∩ Lp+2. The Hessian operator is

L = P0

(
∂−2
z + c− U(z)p

)
P0 : L̇2

per(−T, T )→ L̇2
per(−T, T ),

where P0 : L2
per → L̇2

per is the mean-zero projection operator.

Definition

We say that the traveling wave is spectrally stable if ∂zL : Ḣ1
per → L̇2

per has
no eigenvalues λ with Re(λ) > 0.

Approaches to stability of traveling periodic waves:

Orbital stability in Ḣ3
per (for p = 1) and Ḣ2

per (for p = 2) by using
higher-order energy [E.R.Johnson, D.P. (2016)]

Spectral stability in L̇2
per (for p = 1 and p = 2) from eigenvalues of

Mψ = λ∂zψ in L2
per [S. Hakkaev, et al. (2017)].

Spectral stability in L̇2
per for any p ∈ N [A. Geyer, D.P. (2017)].



Orbital stability of periodic waves for p = 1

J. Brunelli & S. Sakovich (2013) found bi-infinite sequence of conserved
quantities for the reduced Ostrovsky equation (ut + uux)x = u:

· · ·

E−1 =

∫ (
1

3
u3 + (∂−1

x u)2
)
dx = −2H,

E0 =

∫
u2dx = 2Q

E1 =

∫
(1− 3uxx)

1/3 dx,

E2 =

∫
(uxxx)

2

(1− 3uxx)7/3
dx

· · ·

Theorem (R.Grimshaw & D.P., 2014)

Let u0 ∈ H3 such that 1− 3u′′0 (x) > 0 for all x. There exists a unique solution
u ∈ C(R, H3) to the reduced Ostrovsky equation with u(0) = u0.



Variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F (u) = H(u) + cQ(u) in
L̇2

per ∩ L3 with

Lc = F ′′(U) = P0

(
∂−2
z + c− U(z)

)
P0 : L̇2

per(−T, T )→ L̇2
per(−T, T ),

where P0 : L2
per → L̇2

per is the mean-zero projection operator.

Let us normalize the period T to 2π. Then, U = 0 at c = 1, and

Lc=1 = P0(1 + ∂−2
z )P0 σ(Lc=1) = {1− n−2, n ≥ 1},

where the spectrum is defined in L̇2
per(0, 2π). All eigenvalues are positive

except for the double zero eigenvalue.

For the subharmonic perturbations in L̇2
per(0, 2πN) with N ≥ 1, the spectrum

is
σ(Lc=1) = {1− n−2N2, n ≥ 1}.

There are N − 1 double negative eigenvalues and a double zero eigenvalue.

U is not a minimizer of F (u) = H(u) + cQ(u).
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Alternative variational characterizations of periodic waves

Traveling periodic wave U is also a critical point of

G(u) = R(u)− 1

(c3 − 6Ic)2/3
Q(u) in Ḣ3

per

where
R(u) = −

∫
(1− 3uxx)

1/3 dx

and

Ic =
1

2
(c− U)2

(
dU

dz

)2

+
c

2
U2 − 1

3
U3 = const in z.

Here c3 − 6Ic > 0, U(z) < c, and 1− 3U ′′(z) > 0 for smooth periodic waves.

The Hessian operator is

Mc = G′′(U) = P0

(
∂2
z (1− 3U ′′)−5/3∂2

z − (c3 − 6Ic)
−2/3

)
P0 : Ḣ4

per → L̇2
per,

For U = 0 at c = 1 and for the subharmonic perturbations in L̇2
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Mc=1 = P0(−1 + ∂4
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Mixed variational structure

Following

N. Bottman, B. Deconinck, DCDS A (2009)

B. Deconinck, T. Kapitula, Physics Letters A (2010)

M. Nivala, B. Deconinck, Physica D (2010)

N. Bottman, B. Deconinck, M. Nivala, J. Phys. A (2011)

Th. Gallay, D.P., J. Diff. Eq. (2015)

we define a mixed variational structure for periodic waves U :

Wb(u) := G(u)− bF (u), b ∈ R.

Theorem (E.Johnson, D.P., 2016)
For sufficiently small |c− 1|, U is a local nondegenerate (up to translational
symmetry) minimizer of Wb(u) in Ḣ3

per(0, 2πN) for every b ∈ (b−, b+), where
b± are given asymptotically by

b± =
1

2
± 3√

2

√
c− 1 +O(c− 1), as c→ 1.



Numerical results: periodic wave U

Galerkin-Fourier approximation

U(z) =

N∑
n=1

An cos(nz),

where a = |A1| is taken as the wave amplitude (depends on c > 1).
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Figure: (a) The 2π-periodic solutions of the reduced Ostrovsky equation. (b) The
Fourier coefficients of the trigonometric approximation.



Numerical results: U as a minimizer of W

The mixed variational structure yields

Wb(u) := G(u)− bF (u),

and U is a critical point of W for every b ∈ R.
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Figure: The region of the (b, a) plane where U is a minimizer of Wb(u).



Orbital stability of periodic waves for p = 2

J. Brunelli (2005) found bi-infinite sequence of conserved quantities for the
modified reduced Ostrovsky equation (ut + u2ux)x = u:

· · ·

E−1 =

∫ (
1

12
u4 + (∂−1

x u)2
)
dx = −2H,

E0 =

∫
u2dx = 2Q,

E1 =

∫
(1− u2

x)
1/2dx,

E2 =

∫
u2
xx

(1− u2
x)5/2

dx,

· · ·

Theorem (D.P. & A. Sakovich, 2010)

Let u0 ∈ H2 such that ‖u′0‖2L2 + ‖u′′0‖2L2 < 1. There exists a unique solution
u ∈ C(R, H2) to the modified reduced Ostrovsky equation with u(0) = u0.



Two variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F (u) = H(u) + cQ(u) in
L̇2

per ∩ L4 with

Lc = F ′′(U) = P0

(
∂−2
z + c− U(z)2

)
P0 : L̇2

per → L̇2
per,

where P0 : L2
per → L̇2

per is the mean-zero projection operator.

Traveling periodic wave U is also a critical point of

G(u) = R(u)− 1

2(c2 − 2Ic)1/2
Q(u) in Ḣ2

per

where
R(u) = −

∫ (
1− u2

x

)1/2
dx

and

Ic =
1

2
(c− U2)2

(
dU

dz

)2

+
c

2
U2 − 1

2
U4 = const in z.

Here c2 − 2Ic > 0, U(z)2 < c, and |U ′(z)| < 1 for smooth periodic waves.

U is not a minimizer of neither F (u) nor G(u) in L̇2
per(0, 2πN).
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Mixed variational structure
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For sufficiently small |c− 1|, U is a local nondegenerate (up to translational
symmetry) minimizer of Wb(u) in Ḣ2
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2
√
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Numerical results: U as a minimizer of W
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Figure: The region of the (b, a) plane where U is a minimizer of Wb(u).



Spectral stability in the generalized reduced Ostrovsky equation

The travelling 2T -periodic waves u(x, t) = U(x− ct) satisfies the
second-order ODE

d

dz

[
(c− Up)dU

dz

]
+ U(z) = 0, U(−T ) = U(T ), U ′(−T ) = U ′(T ),

with the first-order invariant

E =
1

2
(c− Up)2

(
dU

dz

)2

+
c

2
U2 − 1

p+ 2
Up+2 = const,

where z = x− ct and c is the wave speed.

Theorem (A.Geyer, D.P., 2017)
For every c > 0 and p ∈ N, there exists a smooth family of periodic solutions
U ∈ L̇2

per(−T, T ) ∩H∞per(−T, T ) parameterized by E ∈ (0, Ec) such that the
energy-to-period map E 7→ 2T is strictly monotonically decreasing.



Existence theorem on the phase plane

The first-order invariant

E =
1

2
(c− Up)2

(
dU

dz

)2

+
c

2
U2 − 1

p+ 2
Up+2 = const

yield integral curves on the (U,U ′) phase plane.
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Figure: Phase portraits for p = 2 (left) and p = 1 (right).



Monotonicity of the map E 7→ 2T

It follows from

E =
1

2
(c− Up)2

(
dU

dz

)2

+
c

2
U2 − 1

p+ 2
Up+2 = const

that

2T (E) =

∫
γE

du

v
= 2

∫ u+(E)

u−(E)

√
B(u)du√
E −A(u)

,

where A(u) = c
2
u2 − 1

p+2
up+2 and B(u) = 1

2
(c− up)2.

The integrand is singular at the turning points u±(E) where A(u±) = E.

Derivative in E can not be applied separately to the integrand and the
limits of integration.



Monotonicity of the map E 7→ 2T

Following

M. Frau, F. Manosas, J. Villadelprat, Transactions AMS (2011)

A. Farijo, J. Villadelprat, J. Diff. Eq. (2014)

one can rewrite it

2ET (E) =

∫
γE

B(u)vdu+

∫
γE

A(u)
du

v

=

∫
γE

[
B(u) +

(
2A(u)B(u)

A′(u)

)′
− A(u)B′(u)

A′(u)

]
vdu,

where the integrand is now free of singularities at the turning points.

Then, applying derivative in E, we obtain

2T (E) + 2E T ′(E) =

∫
γE

B(u) +G(u)

2B(u)v
du

and the final expression

T ′(E) = − p

4(2 + p)E

∫
γE

up

(c− up)
du

v
< 0.



Existence theorem on the parameter plane

For fixed c, the map E 7→ 2T is monotonically decreasing for E ∈ (0, Ec) with
T (0) = πc1/2 and T (Ec) = T1c

1/2, where T1 < π is independent of c.

0 1 2 3
0

2

4

6

c

T

T = π c
1/2

T = T
1
 c

1/2

Figure: The existence region for smooth periodic waves in the (T, c)-parameter plane.

For fixed T , the map c 7→ E is monotonically increasing for
c ∈ (T 2π−2, T 2T−2

1 ).



Spectral stability in the generalized reduced Ostrovsky equation

The 2T -periodic wave U is a critical point of F (u) = H(u) + cQ(u), where

H(u) = −1

2
‖∂−1
x u‖2L2

per
− 1

(p+ 1)(p+ 2)

∫ T

−T
up+2dx,

Q(u) =
1

2
‖u‖2L2

per

The Hessian operator is

L = P0

(
∂−2
z + c− U(z)p

)
P0 : L̇2

per(−T, T )→ L̇2
per(−T, T ),

where P0 : L2
per → L̇2

per is the zero-mean projection operator.

Theorem (A.Geyer, D.P., 2017)

For every c > 0, p ∈ N, and U , the operator L in L̇2
per(−T, T ) has a simple

negative eigenvalue, a simple zero eigenvalue associated with
Ker(L) = span{∂zU}, and the rest of the spectrum is strictly positive.
Moreover, the operator L is positive under the fixed-momentum constraint:

L2
c =

{
u ∈ L̇2

per(−T, T ) : 〈U, u〉L2
per

= 0
}
.



An argument about the spectrum of L

Fix T > 0 and consider the Hessian operator

L = P0

(
∂−2
z + c− U(z)p

)
P0 : L̇2

per(−T, T )→ L̇2
per(−T, T ).

At c = T 2π−2, we have U = 0 and

L0 = P0(c+ ∂−2
z )P0 σ(L0) = {c(1− n−2), n ≥ 1}.

All eigenvalues are positive except for the double zero eigenvalue. For
c > T 2π−2, L0 has only simple zero eigenvalue and a simple negative
eigenvalue.

Lemma
The zero eigenvalue of L is simple if T ′(E) 6= 0.

The family of operators L is iso-spectral with respect to parameter c.



An argument about the constraint L2
c

Fix T > 0 and consider the Hessian operator

L = P0

(
∂−2
z + c− U(z)p

)
P0 : L̇2

per(−T, T )→ L̇2
per(−T, T ).

under the scalar constraint

L2
c =

{
u ∈ L̇2

per(−T, T ) : 〈U, u〉L2
per

= 0
}
.

The operator L is positive under the constraint if

〈L−1U,U〉L2
per

< 0,

where U ⊥ Ker(L) = span(∂zU).

For fixed T > 0, L∂cU = −U yields ∂cU = −L−1U ∈ L̇2
per(−T, T ), so that

〈L−1U,U〉L2
per

= −1

2

d

dc
‖U‖2L2

per
< 0,

the latter inequality can be proved for every p > 0 and for every c > 0.



Summary

For the generalized reduced Ostrovsky equation with an integer p,

(ut + upux)x = u,

we have shown two stability results for the travelling periodic waves:

Minimization property for higher-order energy in Ḣs
per-spaces

for p = 1 and p = 2

Spectral stability in L̇2
per for any p ∈ N

Spectral stability for p ≥ 3 cannot be transferred to the orbital stability results
because the global well-posedness is not available in L̇2

per ∩ Lp+2, where the
energy and momentum functions H(u) and Q(u) are defined.



Summary

For the generalized reduced Ostrovsky equation with an integer p,

(ut + upux)x = u,

we have shown two stability results for the travelling periodic waves:

Minimization property for higher-order energy in Ḣs
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