Smooth and peaked waves in the reduced Ostrovsky equation

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada
http://dmpeli.math.mcmaster.ca
http://dmpeli.math.mcmaster.ca
Joint work with Anna Geyer
(Delft University of Technology, Netherlands)

Earlier work with
Roger Grimshaw (Loughborough University)
Ted Johnson (University College London)
Yue Liu (University of Texas at Arlington)

Ostrovsky equation in a physical context

The Korteweg-De Vries equation (1895) governs dynamics of small-amplitude long waves in a fluid:

$$
u_{t}+u u_{x}+\beta u_{x x x}=0
$$

where u is a real-valued function of (x, t). It arises from expansion of the dispersion relation for linear waves $e^{i(k x-\omega t)}$:

$$
\omega^{2}=c^{2} k^{2}+\beta k^{4}+\mathcal{O}\left(k^{6}\right) \quad \Rightarrow \quad \omega-c k=\frac{1}{2 c} \beta k^{3}+\mathcal{O}\left(k^{5}\right) .
$$

Ostrovsky equation in a physical context

The Korteweg-De Vries equation (1895) governs dynamics of small-amplitude long waves in a fluid:

$$
u_{t}+u u_{x}+\beta u_{x x x}=0
$$

where u is a real-valued function of (x, t). It arises from expansion of the dispersion relation for linear waves $e^{i(k x-\omega t)}$:

$$
\omega^{2}=c^{2} k^{2}+\beta k^{4}+\mathcal{O}\left(k^{6}\right) \quad \Rightarrow \quad \omega-c k=\frac{1}{2 c} \beta k^{3}+\mathcal{O}\left(k^{5}\right) .
$$

The Kadomtsev-Petviasvhili equation (1970) models diffraction:

$$
\left(u_{t}+u u_{x}+\beta u_{x x x}\right)_{x}+u_{y y}=0
$$

as follows from:

$$
\omega^{2}=c^{2}\left(k^{2}+p^{2}\right)+\beta\left(k^{2}+p^{2}\right)^{2}+\cdots \quad \Rightarrow \quad \omega-c k=\frac{\beta}{2 c} k^{3}+\frac{p^{2}}{2 c k}+\cdots
$$

Ostrovsky equation in a physical context

The Korteweg-De Vries equation (1895) governs dynamics of small-amplitude long waves in a fluid:

$$
u_{t}+u u_{x}+\beta u_{x x x}=0
$$

where u is a real-valued function of (x, t). It arises from expansion of the dispersion relation for linear waves $e^{i(k x-\omega t)}$:

$$
\omega^{2}=c^{2} k^{2}+\beta k^{4}+\mathcal{O}\left(k^{6}\right) \quad \Rightarrow \quad \omega-c k=\frac{1}{2 c} \beta k^{3}+\mathcal{O}\left(k^{5}\right)
$$

The Ostrovsky equation (1978) models rotation:

$$
\left(u_{t}+u u_{x}+\beta u_{x x x}\right)_{x}=\gamma^{2} u
$$

as follows from:

$$
\omega^{2}=\gamma^{2}+c^{2} k^{2}+\beta k^{4}+\cdots \quad \Rightarrow \quad \omega-c k=\frac{\beta}{2 c} k^{3}+\frac{\gamma^{2}}{2 c k}+\cdots
$$

The reduced Ostrovsky equation

As $\beta \rightarrow 0$, we obtain the reduced Ostrovsky equation

$$
\left(u_{t}+u u_{x}\right)_{x}=u,
$$

also studied by [Hunter, 1990] and [Vakhnenko, 1998]

The reduced Ostrovsky equation

As $\beta \rightarrow 0$, we obtain the reduced Ostrovsky equation

$$
\left(u_{t}+u u_{x}\right)_{x}=u,
$$

also studied by [Hunter, 1990] and [Vakhnenko, 1998]

For internal or interfacial waves, the reduced modified Ostrovsky equation is more relevant [Grimshaw, 1985]:

$$
\left(u_{t}+u^{2} u_{x}\right)_{x}=u
$$

The reduced Ostrovsky equation

As $\beta \rightarrow 0$, we obtain the reduced Ostrovsky equation

$$
\left(u_{t}+u u_{x}\right)_{x}=u
$$

also studied by [Hunter, 1990] and [Vakhnenko, 1998]
For internal or interfacial waves, the reduced modified Ostrovsky equation is more relevant [Grimshaw, 1985]:

$$
\left(u_{t}+u^{2} u_{x}\right)_{x}=u
$$

Note the difference from the short-pulse equation derived as a model for propagation of pulses with few cycles [Schäfer, Wayne 2004]:

$$
\left(u_{t}-u^{2} u_{x}\right)_{x}=u
$$

Plan of my talk

Consider the generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u, \quad p \in \mathbb{N}
$$

\triangleright Cauchy problem in Sobolev spaces:
\triangleright Local solutions with zero mass constraint
\triangleright Global smooth solutions
\triangleright Wave breaking in a finite time
\triangleright Existence of periodic traveling waves:
\triangleright A family of smooth periodic waves
\triangleright A peaked periodic wave at the terminal point
\triangleright No cusped periodic waves
\triangleright Stability of periodic traveling waves:
\triangleright Spectral stability of smooth waves
\triangleright Spectral and linear instability of peaked waves

Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation

$$
\left\{\begin{array}{l}
\left(u_{t}+u^{p} u_{x}\right)_{x}=u, \\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
$$

\triangleright Local well-posedness for $u_{0} \in H^{s}$ with $s>3 / 2$ [Stefanov et. al., 2010]
\triangleright Zero mass constraint is necessary in the periodic domain: $\int_{-\pi}^{\pi} u_{0}(x) d x=0$.

Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation

$$
\left\{\begin{array}{l}
\left(u_{t}+u^{p} u_{x}\right)_{x}=u, \\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
$$

\triangleright Local well-posedness for $u_{0} \in H^{s}$ with $s>3 / 2$ [Stefanov et. al., 2010]
\triangleright Zero mass constraint is necessary in the periodic domain: $\int_{-\pi}^{\pi} u_{0}(x) d x=0$.
\triangleright Local solutions break in finite time for large initial data. [Liu \& P. \& Sakovich 2009, 2010 for $p=1, p=2$]
\triangleright Global solutions exist for small initial data. [Grimshaw \& P. 2014 for $p=1$]

Global solutions for small initial data

Theorem (Grimshaw \& P., 2014)

Let $u_{0} \in H^{3}$ such that $1-3 u_{0}^{\prime \prime}(x)>0$ for all x. There exists a unique solution $u(t) \in C\left(\mathbb{R}, H^{3}\right)$ with $u(0)=u_{0}$.

This result is based on the preliminary works:
\triangleright Hone \& Wang (2003) obtained Lax pair

$$
\left\{\begin{array}{c}
3 \lambda \psi_{x x x}+\left(1-3 u_{x x}\right) \psi=0 \\
\psi_{t}+\lambda \psi_{x x}+u \psi_{x}-u_{x} \psi=0
\end{array}\right.
$$

\triangleright Kraenkel, LeBlond, \& Manna (2014) showed equivalence to the Bullough-Dodd (Tzitzeica) equation

$$
\frac{\partial^{2} V}{\partial t \partial z}=e^{-2 V}-e^{V}
$$

Conserved quantities for the reduced Ostrovsky equation

Brunelli \& Sakovich (2013) found bi-infinite sequence of conserved quantities for the reduced Ostrovsky equation:

$$
\begin{aligned}
E_{-1} & =\int_{\mathbb{R}}\left(\frac{1}{3} u^{3}+\left(\partial_{x}^{-1} u\right)^{2}\right) d x \\
E_{0} & =\int_{\mathbb{R}} u^{2} d x \\
E_{1} & =\int_{\mathbb{R}}\left[\left(1-3 u_{x x}\right)^{1 / 3}-1\right] d x \\
E_{2} & =\int_{\mathbb{R}} \frac{\left(u_{x x x}\right)^{2}}{\left(1-3 u_{x x}\right)^{7 / 3}} d x
\end{aligned}
$$

Characteristic variable for the reduced Ostrovsky equation

Start with local solutions $u \in C\left([0, T], H^{3}\right)$ to

$$
\left(u_{t}+u u_{x}\right)_{x}=u, \quad x \in \mathbb{R}, \quad t \in[0, T]
$$

Let $x=x(\xi, t)$ satisfy $x=\xi+\int_{0}^{t} U\left(\xi, t^{\prime}\right) d t^{\prime}$ with $u(x, t)=U(\xi, t)$.
The transformation $\xi \rightarrow x$ is invertible if

$$
\phi(\xi, t):=\frac{\partial x}{\partial \xi}=1+\int_{0}^{t} U_{\xi}\left(\xi, t^{\prime}\right) d t^{\prime} \neq 0
$$

Characteristic variable for the reduced Ostrovsky equation

Start with local solutions $u \in C\left([0, T], H^{3}\right)$ to

$$
\left(u_{t}+u u_{x}\right)_{x}=u, \quad x \in \mathbb{R}, \quad t \in[0, T]
$$

Let $x=x(\xi, t)$ satisfy $x=\xi+\int_{0}^{t} U\left(\xi, t^{\prime}\right) d t^{\prime}$ with $u(x, t)=U(\xi, t)$.
The transformation $\xi \rightarrow x$ is invertible if

$$
\phi(\xi, t):=\frac{\partial x}{\partial \xi}=1+\int_{0}^{t} U_{\xi}\left(\xi, t^{\prime}\right) d t^{\prime} \neq 0
$$

Let us introduce $f(x, t)=\left(1-3 u_{x x}\right)^{1 / 3}=F(\xi, t)$. Then,

$$
F(\xi, t) \phi(\xi, t)=F_{0}(\xi)
$$

and

$$
\frac{\partial^{2}}{\partial t \partial \xi} \log (F)=\frac{1}{3} F_{0}(\xi)\left(F^{2}-F^{-1}\right)
$$

Towards global existence

\triangleright If $1-3 u_{0}^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$, then $F_{0}(x)>0$. Setting

$$
z:=-\frac{1}{3} \int_{0}^{\xi} F_{0}\left(\xi^{\prime}\right) d \xi^{\prime}, \quad F(\xi, t):=e^{-V(z, t)}
$$

yields the Tzitzéica equation

$$
\frac{\partial^{2} V}{\partial t \partial z}=e^{-2 V}-e^{V}
$$

Towards global existence

\triangleright If $1-3 u_{0}^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$, then $F_{0}(x)>0$. Setting

$$
z:=-\frac{1}{3} \int_{0}^{\xi} F_{0}\left(\xi^{\prime}\right) d \xi^{\prime}, \quad F(\xi, t):=e^{-V(z, t)}
$$

yields the Tzitzéica equation

$$
\frac{\partial^{2} V}{\partial t \partial z}=e^{-2 V}-e^{V}
$$

\triangleright A local solution $V \in C\left([0, T], H^{1}(\mathbb{R})\right)$ to the Tzitzéica equation follows from a local solution $u \in C\left([0, T], H^{3}(\mathbb{R})\right)$:

$$
V(z, t)=-\frac{1}{3} \log \left(1-3 u_{x x}(x, t)\right) .
$$

Towards global existence

\triangleright The H^{1} norm of $V \in C\left([0, T], H^{1}(\mathbb{R})\right)$ is bounded by the conserved quantities

$$
Q_{1}=\int_{\mathbb{R}}\left(2 e^{V}+e^{-2 V}-3\right) d z, \quad Q_{2}=\int_{\mathbb{R}}\left(\frac{\partial V}{\partial z}\right)^{2} d z
$$

Towards global existence

\triangleright The H^{1} norm of $V \in C\left([0, T], H^{1}(\mathbb{R})\right)$ is bounded by the conserved quantities

$$
Q_{1}=\int_{\mathbb{R}}\left(2 e^{V}+e^{-2 V}-3\right) d z, \quad Q_{2}=\int_{\mathbb{R}}\left(\frac{\partial V}{\partial z}\right)^{2} d z
$$

\triangleright Together with the invertible coordinate transformation

$$
u_{x x}(x, t)=\frac{1}{3}\left(1-e^{-3 V(z, t)}\right)
$$

and conserved quantities

$$
E_{0}=\int_{\mathbb{R}} u^{2} d x, \quad E_{2}=\int_{\mathbb{R}} \frac{\left(u_{x x x}\right)^{2}}{\left(1-3 u_{x x}\right)^{7 / 3}} d x
$$

this controls the H^{3} norm of $u \in C\left([0, T], H^{3}(\mathbb{R})\right)$.

Wave breaking for large initial data

Lemma

Let $u_{0} \in H_{\text {per }}^{2}$. The local solution $u \in C\left([0, T), H_{\mathrm{per}}^{2}\right)$ blows up in a finite time $T<\infty$ in the sense $\lim _{t \uparrow T}\|u(\cdot, t)\|_{H^{2}}=\infty$ if and only if

$$
\liminf _{t \uparrow T} u_{x}(t, x)=-\infty, \quad \text { while } \quad \lim _{t \uparrow T} \sup _{x}|u(t, x)|<\infty .
$$

Wave breaking for large initial data

Lemma

Let $u_{0} \in H_{\text {per }}^{2}$. The local solution $u \in C\left([0, T), H_{\text {per }}^{2}\right)$ blows up in a finite time $T<\infty$ in the sense $\lim _{\uparrow \uparrow T}\|u(\cdot, t)\|_{H^{2}}=\infty$ if and only if

$$
\lim _{t \uparrow T} \inf _{x} u_{x}(t, x)=-\infty, \quad \text { while } \quad \lim _{t \uparrow T} \sup _{x}|u(t, x)|<\infty .
$$

Theorem (Hunter, 1990)

Let $u_{0} \in C_{\text {per }}^{1}$ and define

$$
\inf _{x \in \mathbb{S}} u_{0}^{\prime}(x)=-m \quad \text { and } \quad \sup _{x \in \mathbb{S}}\left|u_{0}(x)\right|=M
$$

If $m^{3}>4 M(4+m)$, a smooth solution $u(t, x)$ breaks in a finite time.

Wave breaking for large initial data

Lemma

Let $u_{0} \in H_{\text {per }}^{2}$. The local solution $u \in C\left([0, T), H_{\text {per }}^{2}\right)$ blows up in a finite time $T<\infty$ in the sense $\lim _{\uparrow \uparrow T}\|u(\cdot, t)\|_{H^{2}}=\infty$ if and only if

$$
\lim _{t \uparrow T} \inf _{x} u_{x}(t, x)=-\infty \text {, while } \quad \lim _{t \uparrow T} \sup _{x}|u(t, x)|<\infty \text {. }
$$

Theorem (Liu, P. \& Sakovich, 2010)

Assume that $u_{0} \in H_{\mathrm{per}}^{2}$. The solution breaks if

$$
\begin{gather*}
\text { either } \int_{\mathrm{S}}\left(u_{0}^{\prime}(x)\right)^{3} d x<-\left(\frac{3}{2}\left\|u_{0}\right\|_{L^{2}}\right)^{3 / 2}, \tag{1}\\
\text { or } \exists x_{0}: \quad u_{0}^{\prime}\left(x_{0}\right)<-1\left(\left\|u_{0}\right\|_{L^{\infty}}+T_{1}\left\|u_{0}\right\|_{L^{2}}\right)^{\frac{1}{2}} . \tag{2}
\end{gather*}
$$

Proof of the sufficient condition (1)

Direct computation gives

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{S}} u_{x}^{3} d x & =-2 \int_{\mathbb{S}} u_{x}^{4} d x+3 \int_{\mathbb{S}} u u_{x}^{2} d x \\
& \leq-2\left\|u_{x}\right\|_{L^{4}}^{4}+3\|u\|_{L^{2}}\left\|u_{x}\right\|_{L^{4}}^{2}
\end{aligned}
$$

By Hölder's inequality, we have

$$
|V(t)| \leq\left\|u_{x}\right\|_{L^{3}}^{3} \leq\left\|u_{x}\right\|_{L^{4}}^{3}, \quad V(t)=\int_{\mathbb{S}} u_{x}^{3}(t, x) d x<0
$$

Let $Q_{0}=\|u\|_{L^{2}}^{2}=\left\|u_{0}\right\|_{L^{2}}^{2}$ and $V(0)<-\left(\frac{3}{2} Q_{0}\right)^{\frac{3}{2}}$. Then,

$$
\frac{d V}{d t} \leq-2\left(|V|^{\frac{2}{3}}-\frac{3 Q_{0}}{4}\right)^{2}+\frac{9 Q_{0}^{2}}{8}
$$

There is $T<\infty$ such that $V(t) \rightarrow-\infty$ as $t \uparrow T$.

Proof of the sufficient condition (2)

Introduce characteristic variables for $u_{t}+u u_{x}=\partial_{x}^{-1} u$:

$$
x=X(\xi, t), \quad u(x, t)=U(\xi, t), \quad \partial_{x}^{-1} u(x, t)=G(\xi, t)
$$

At characteristics $x=X(\xi, t)$, we obtain

$$
\left\{\begin{array} { l }
{ \dot { X } (t) = U , } \\
{ X (0) = \xi , }
\end{array} \quad \left\{\begin{array}{l}
\dot{U}(t)=G \\
U(0)=u_{0}(\xi)
\end{array}\right.\right.
$$

Let $V(\xi, t)=u_{x}(t, X(\xi, t))$. Then

$$
\dot{V}=-V^{2}+U \quad \Rightarrow \quad \dot{V} \leq-V^{2}+\left(\left\|u_{0}\right\|_{L^{\infty}}+t\left\|u_{0}\right\|_{L^{2}}\right)
$$

There is $T<\infty$ such that $V(t) \rightarrow-\infty$ as $t \uparrow T$.

Numerical simulations

By using a pseudospectral method based on Fourier series:

$$
\frac{\partial}{\partial t} \hat{u}_{k}=-\frac{i}{k} \hat{u}_{k}-\frac{i k}{2} \mathcal{F}\left[\left(\mathcal{F}^{-1} \hat{u}\right)^{2}\right]_{k}, \quad k \neq 0, \quad t>0
$$

where the initial condition is

$$
u_{0}(x)=a \cos (x)+b \sin (2 x)
$$

Evolution of the cosine initial data

Figure: Solution surface $u(t, x)$ (left) and $\inf _{x \in \mathbb{S}} u_{x}(t, x)$ versus t (right) for $a=0.005, b=0$.

Evolution of the cosine initial data

Figure: Solution surface $u(t, x)$ (left) and $\inf _{x \in \mathbb{S}} u_{x}(t, x)$ versus t (right) for $a=0.05, b=0$.

Evolution of the cosine initial data

Figure: Solution surface $u(t, x)$ (left) and $\inf _{x \in \mathbb{S}} u_{x}(t, x)$ versus t (right) for $a=0.05, b=0$.

Conjecture: The smooth solution breaks in a finite time if $u_{0} \in H^{3}$ yields sign-indefinite $1-3 u_{0}^{\prime \prime}(x)$.

Plan of my talk

Consider the generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u, \quad p \in \mathbb{N}
$$

\triangleright Cauchy problem in Sobolev spaces:
\triangleright Local solutions with zero mass constraint
\triangleright Global smooth solutions
\triangleright Wave breaking in a finite time
\triangleright Existence of periodic traveling waves:
\triangleright A family of smooth periodic waves
\triangleright A peaked periodic wave at the terminal point
\triangleright No cusped periodic waves
\triangleright Stability of periodic traveling waves:
\triangleright Spectral stability of smooth waves
\triangleright Spectral and linear instability of peaked waves

Smooth traveling wave solutions

Traveling wave solutions are solutions of the form

$$
u(x, t)=U(x-c t)
$$

where $z=x-c t$ is the travelling wave coordinate and c is the wave speed. The wave profile U is $2 T$-periodic for fixed c.

Smooth traveling wave solutions

Traveling wave solutions are solutions of the form

$$
u(x, t)=U(x-c t)
$$

where $z=x-c t$ is the travelling wave coordinate and c is the wave speed. The wave profile U is $2 T$-periodic for fixed c.

The wave profile U satisfies the boundary-value problem

$$
\left.\frac{d}{d z}\left(\left(c-U^{p}\right) \frac{d U}{d z}\right)+U(z)=0, \quad \begin{array}{l}
U(-T)=U(T) \tag{ODE}\\
U^{\prime}(-T)=U^{\prime}(T)
\end{array}\right\}
$$

where $\int_{-T}^{T} U(z) d z=0$, i.e. the periodic waves have zero mean.

ODE technique

Let $c>0$ and $p \in \mathbb{N}$. A function U is a smooth periodic solution of

$$
\begin{equation*}
\frac{d}{d z}\left(\left(c-U^{p}\right) \frac{d U}{d z}\right)+U=0 \tag{ODE}
\end{equation*}
$$

iff $(u, v)=\left(U, U^{\prime}\right)$ is a periodic orbit γ_{E} of the planar system

$$
\left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=\frac{-u+p u^{p-1} v^{2}}{c-u^{p}}
\end{array}\right.
$$

which has the first integral

$$
E(u, v)=\frac{1}{2}\left(c-u^{p}\right)^{2} v^{2}+\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2} .
$$

The periodic wave U is smooth iff $c-U(z)^{p}>0$ for every z.

Existence of smooth periodic traveling waves

Let $c>0$ and $p \in \mathbb{N}$. The first integral is

$$
E(u, v)=\frac{1}{2}\left(c-u^{p}\right)^{2} v^{2}+\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2}
$$

There exists a smooth family of periodic solutions parametrized by the energy $E \in\left(0, E_{c}\right)$, where $2 T$ depends on E.

Properties of smooth periodic waves

Theorem (Geyer \& P., 2017)
For fixed c, the map $E \mapsto T$ is decreasing with $T(0)=\pi c^{1 / 2}$. For fixed T, the map $E \mapsto c$ is increasing with $c(0)=T^{2} / \pi^{2}$.

Properties of smooth periodic waves

Theorem (Geyer \& P., 2017)

For fixed c, the map $E \mapsto T$ is decreasing with $T(0)=\pi c^{1 / 2}$. For fixed T, the map $E \mapsto c$ is increasing with $c(0)=T^{2} / \pi^{2}$.

The map $E \mapsto T$ for fixed c is transferred to the map $E \mapsto c$ for fixed T by the scaling transformation

$$
U(z ; c)=c^{1 / p} \tilde{U}(\tilde{z}), \quad z=c^{1 / 2} \tilde{z}, \quad T=c^{1 / 2} \tilde{T}
$$

where \tilde{U} is a $2 \tilde{T}$-periodic solution of the same (ODE) with $c=1$.

Smooth and peaked waves

Peaked 2π-periodic wave for $p=1$

The 2π periodic traveling wave solutions $U(z)$ satisfy the BVP

$$
\left\{\begin{array}{l}
{[c-U(z)] U^{\prime}(z)+\left(\partial_{z}^{-1} U\right)(z)=0, \quad z \in(-\pi, \pi)} \\
U(-\pi)=U(\pi)
\end{array}\right.
$$

where $z=x-c t$ and $\int_{-\pi}^{\pi} U(z) d z=0$.

Peaked 2π-periodic wave for $p=1$

The 2π periodic traveling wave solutions $U(z)$ satisfy the BVP

$$
\left\{\begin{array}{l}
{[c-U(z)] U^{\prime}(z)+\left(\partial_{z}^{-1} U\right)(z)=0, \quad z \in(-\pi, \pi)} \\
U(-\pi)=U(\pi)
\end{array}\right.
$$

where $z=x-c t$ and $\int_{-\pi}^{\pi} U(z) d z=0$.

Theorem (Existence of smooth periodic waves)

There exists $c_{*}>1$ such that for every $c \in\left(1, c_{*}\right)$, the BVP admits a unique smooth periodic wave U satisfying $U(z)<c$ for $z \in[-\pi, \pi]$.

Peaked periodic wave for $p=1$

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

Peaked periodic wave for $p=1$

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

Peaked periodic wave for $p=1$

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

The peaked periodic wave $U_{*} \in H_{\text {per }}^{s}(-\pi, \pi)$ for $s<3 / 2$:

$$
U_{*}(z)=\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{3 n^{2}} \cos (n z)
$$

with $U_{*}(\pm \pi)=c_{*}$ and $U_{*}^{\prime}(\pm \pi)= \pm \pi / 3$.

Peaked periodic wave for $p=1$

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

The peaked wave satisfies the border case: $1-3 U_{*}^{\prime \prime}(z)=0$ for $z \in(-\pi, \pi)$.

Peaked periodic wave for $p=1$

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

Theorem (Geyer \& P, 2019)

The peaked periodic wave U_{*} is the unique peaked solution with the jump at $z= \pm \pi$.

Other peaked periodic traveling waves ?

Cusped waves contradict matching conditions for the first integral

$$
E=\frac{1}{2}(c-u)^{2}\left(\frac{d u}{d z}\right)^{2}+\frac{c}{2} u^{2}-\frac{1}{3} u^{3}
$$

Other peaked periodic traveling waves ?

Cusped waves contradict matching conditions for the first integral

$$
E=\frac{1}{2}(c-u)^{2}\left(\frac{d u}{d z}\right)^{2}+\frac{c}{2} u^{2}-\frac{1}{3} u^{3}
$$

A more general proof was given for $u_{t}+u u_{x}=\partial_{x}^{-r} u$ with $r>1$:
[Bruell \& Dhara, 2019]

Plan of my talk

Consider the generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u, \quad p \in \mathbb{N}
$$

\triangleright Cauchy problem in Sobolev spaces:
\triangleright Local solutions with zero mass constraint
\triangleright Global smooth solutions
\triangleright Wave breaking in a finite time
\triangleright Existence of periodic traveling waves:
\triangleright A family of smooth periodic waves
\triangleright A peaked periodic wave at the terminal point
\triangleright No cusped periodic waves
\triangleright Stability of periodic traveling waves:
\triangleright Spectral stability of smooth waves
\triangleright Spectral and linear instability of peaked waves

Summary of stability results

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where $p \in \mathbb{N}$.
$\triangleright p=1,2$: Spectral stability of smooth periodic waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]

Summary of stability results

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where $p \in \mathbb{N}$.
$\triangleright p=1,2$: Spectral stability of smooth periodic waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]
$\triangleright p=1,2$: Nonlinear stability of smooth periodic waves for subharmonic perturbations. [Johnson \& P., 2016]

Summary of stability results

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where $p \in \mathbb{N}$.
$\triangleright p=1,2$: Spectral stability of smooth periodic waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]
$\triangleright p=1,2$: Nonlinear stability of smooth periodic waves for subharmonic perturbations. [Johnson \& P., 2016]
\triangleright Any $p \in N$: Spectral stability of smooth periodic waves for co-periodic perturbations. [Geyer \& P., 2017]

Summary of stability results

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where $p \in \mathbb{N}$.
$\triangleright p=1,2$: Spectral stability of smooth periodic waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]
$\triangleright p=1,2$: Nonlinear stability of smooth periodic waves for subharmonic perturbations. [Johnson \& P., 2016]
\triangleright Any $p \in N$: Spectral stability of smooth periodic waves for co-periodic perturbations. [Geyer \& P., 2017]
$\triangleright p=1,2$: Linear and spectral instability of the limiting peaked wave [Geyer \& P., 2019]

Broader picture on stability of peaked periodic waves

\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et.al. 2009,2010]

Broader picture on stability of peaked periodic waves

\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et.al. 2009,2010]
\triangleright Whitham equation: small amplitude smooth solutions are stable, but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

Broader picture on stability of peaked periodic waves

\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et.al. 2009,2010]
\triangleright Whitham equation: small amplitude smooth solutions are stable, but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]
\triangleright Camassa-Holm, Degasperis-Procesi, Novikov: peaked waves are nonlinearly and asymptotically stable
[Constantin \& Strauss, 2000], [Lenells, 2005], [Lin, Liu, 2006], ...

Broader picture on stability of peaked periodic waves

\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et.al. 2009,2010]
\triangleright Whitham equation: small amplitude smooth solutions are stable, but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]
\triangleright Camassa-Holm, Degasperis-Procesi, Novikov: peaked waves are nonlinearly and asymptotically stable
[Constantin \& Strauss, 2000], [Lenells, 2005], [Lin, Liu, 2006], ... Really???

Broader picture on stability of peaked periodic waves

\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et.al. 2009,2010]
\triangleright Whitham equation: small amplitude smooth solutions are stable, but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]
\triangleright Camassa-Holm, Degasperis-Procesi, Novikov: peaked waves are nonlinearly and asymptotically stable
[Constantin \& Strauss, 2000], [Lenells, 2005], [Lin, Liu, 2006], ... Really???
\triangleright Ostrovsky equation: all smooth solutions are stable, but the limiting peaked solution is unstable.
[Geyer \& P. 2019]

Spectral stability of smooth periodic waves

We consider co-periodic perturbations of the traveling waves, that is, perturbations with the same period $2 T$.

Spectral stability of smooth periodic waves

We consider co-periodic perturbations of the traveling waves, that is, perturbations with the same period $2 T$.

Using $u(t, x)=U(z)+v(z) e^{\lambda t}$, where $z=x-c t$, the spectral stability problem for a perturbation of the wave profile U is given by

$$
\partial_{z} L v=\lambda v
$$

with the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T),
$$

where $\dot{L}_{\text {per }}^{2}$ is the L^{2} space of periodic function with zero mean.

Spectral stability of smooth periodic waves

We consider co-periodic perturbations of the traveling waves, that is, perturbations with the same period $2 T$.

Using $u(t, x)=U(z)+v(z) e^{\lambda t}$, where $z=x-c t$, the spectral stability problem for a perturbation of the wave profile U is given by

$$
\partial_{z} L v=\lambda v
$$

with the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T),
$$

where $\dot{L}_{\text {per }}^{2}$ is the L^{2} space of periodic function with zero mean.

Definition

The travelling wave is spectrally stable with respect to co-periodic perturbations if the spectral problem $\partial_{z} L v=\lambda v$ with $v \in H_{\text {per }}^{1}(-T, T)$ has no eigenvalues $\lambda \notin i \mathbb{R}$.

Spectral stability - course of action

\triangleright Construct an augmented Lyapunov functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\left.\begin{array}{rl}
\text { (energy) } & H[u]
\end{array}=-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x\right] \text { (momentum) } \quad Q[u]=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2} . ~ l
$$

Spectral stability - course of action

\triangleright Construct an augmented Lyapunov functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\left.\begin{array}{rl}
\text { (energy) } & H[u]
\end{array}=-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x\right] \text { (momentum) } \quad Q[u]=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2} . ~ l
$$

\triangleright A traveling wave U is a critical point of $F[u]$, i.e. $\delta F[U]=0$.

Spectral stability - course of action

\triangleright Construct an augmented Lyapunov functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\begin{aligned}
\text { (energy) } \quad H[u] & =-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x \\
\text { (momentum) } \quad Q[u] & =\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}
\end{aligned}
$$

\triangleright A traveling wave U is a critical point of $F[u]$, i.e. $\delta F[U]=0$.
\triangleright The Hessian of $F[u]$ is the operator L, i.e. $\delta^{2} F[U] v=\frac{1}{2}\langle L v, v\rangle$.

Spectral stability - course of action

\triangleright Construct an augmented Lyapunov functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\begin{aligned}
\text { (energy) } \quad H[u] & =-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u u^{p+2} d x \\
\text { (momentum) } \quad Q[u] & =\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}
\end{aligned}
$$

\triangleright A traveling wave U is a critical point of $F[u]$, i.e. $\delta F[U]=0$.
\triangleright The Hessian of $F[u]$ is the operator L, i.e. $\delta^{2} F[U] v=\frac{1}{2}\langle L v, v\rangle$.

Theorem (Geyer \& P., 2017)

a traveling wave U is a local constrained minimizer of the energy $H[u]$ with fixed momentum $Q[u]$.

Spectral stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

Spectral stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

Indeed,

$$
\begin{aligned}
0 & =Q[U+v]-Q[U]=\frac{1}{2} \int_{-T}^{T}(U+v)^{2} d z-\frac{1}{2} \int_{-T}^{T} U^{2} d z \\
& =\int_{-T}^{T} U v d z+O\left(v^{2}\right) \\
& =\langle U, v\rangle
\end{aligned}
$$

Spectral stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.

Spectral stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

- Claim: The operator $L_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.
\triangleright Hamilton-Krein index theory for the spectral problem

$$
\partial_{z} L v=\lambda v
$$

states that [Haragus \& Kapitula, 08] \# unstable EV of $\partial_{z} L \leq \#$ negative EV of $\left.L\right|_{U^{\perp}}$

Spectral stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.
\triangleright Hamilton-Krein index theory for the spectral problem

$$
\partial_{z} L v=\lambda v
$$

states that [Haragus \& Kapitula, 08]

$$
\# \text { unstable EV of } \partial_{z} L \leq \# \text { negative EV of }\left.L\right|_{U^{\perp}}
$$

\triangleright Result: the smooth periodic wave U is stable.

Operator L restricted to constrained space

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.

Operator L restricted to constrained space

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.

This is true if the following two conditions hold:
[Vakhitov-Kolokolov, 1975], [Grillakis-Shatah-Strauss, 1987]
$\triangleright L$ has exactly one negative eigenvalue, a simple zero eigenvalue with eigenvector $\partial_{z} U$, and the rest of its spectrum is positive and bounded away from 0
$\triangleright\left\langle L^{-1} U, U\right\rangle=-\frac{d}{d c}\|U\|_{L_{\text {per }}^{2}(-T, T)}^{2}<0$, where the period T is fixed.
Both conditions are proven using strict monotonicity of the energy-to-period map $T(E)$.

Spectral properties of the operator L

Recall the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

Spectral properties of the operator L

Recall the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

When $E \rightarrow 0$, then $U \rightarrow 0, T(E) \rightarrow T(0)=\sqrt{c} \pi$, and

$$
L \rightarrow L_{0}=P_{0}\left(\partial_{z}^{-2}+c\right) P_{0}
$$

$\sigma\left(L_{0}\right)=\left\{c\left(1-n^{-2}\right), n \in \mathbb{Z} \backslash\{0\}\right\}$ all eigenvalues are double.

Spectral properties of the operator L

Recall the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

When $E \rightarrow 0$, then $U \rightarrow 0, T(E) \rightarrow T(0)=\sqrt{c} \pi$, and

$$
L \rightarrow L_{0}=P_{0}\left(\partial_{z}^{-2}+c\right) P_{0}
$$

$\sigma\left(L_{0}\right)=\left\{c\left(1-n^{-2}\right), n \in \mathbb{Z} \backslash\{0\}\right\}$ all eigenvalues are double.

When $E>0$ the double zero eigenvalue splits into a simple negative eigenvalue and a simple zero eigenvalue of L.

Spectral properties of the operator L

Consider the eigenvalue problem

$$
\left(\partial_{z}^{-2}+c-U^{p}\right) v=\lambda v, \quad v \in \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

Zero eigenvalue $\lambda_{0}=0$:
$\triangleright \partial_{z} U$ is an eigenvector for $\lambda_{0}: L \partial_{z} U=0$
$\triangleright U_{E}$ is also a solution of the spectral equation for $\lambda_{0}=0$:

$$
\partial_{E}(\mathrm{ODE}) \Longleftrightarrow U_{E}+\partial_{z}^{2}\left[\left(c-U^{p}\right) U_{E}\right]=0
$$

Spectral properties of the operator L

Consider the eigenvalue problem

$$
\left(\partial_{z}^{-2}+c-U^{p}\right) v=\lambda v, \quad v \in \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

Zero eigenvalue $\lambda_{0}=0$:
$\triangleright \partial_{z} U$ is an eigenvector for $\lambda_{0}: L \partial_{z} U=0$
$\triangleright U_{E}$ is also a solution of the spectral equation for $\lambda_{0}=0$:

$$
\partial_{E}(\mathrm{ODE}) \Longleftrightarrow U_{E}+\partial_{z}^{2}\left[\left(c-U^{p}\right) U_{E}\right]=0
$$

Differentiating the $\mathrm{BC} U(\pm T(E) ; E)=0$ w.r.t. E yields

$$
\partial_{E} U(-T(E) ; E)-T^{\prime}(E) \underbrace{\partial_{z} U(-T(E) ; E)}_{\neq 0}=\partial_{E} U(T(E) ; E)+T^{\prime}(E) \underbrace{\partial_{z} U(T(E) ; E)}_{\neq 0} .
$$

If $T^{\prime}(E) \neq 0$, then U_{E} is not $2 T(E)$-periodic: $\operatorname{Ker}(L)=\operatorname{span}\left\{U_{z}\right\}$

Spectral properties of the operator L

Consider the eigenvalue problem

$$
\left(\partial_{z}^{-2}+c-U^{p}\right) v=\lambda v, \quad v \in \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

Zero eigenvalue $\lambda_{0}=0$:
$\triangleright \partial_{z} U$ is an eigenvector for $\lambda_{0}: L \partial_{z} U=0$
$\triangleright U_{E}$ is also a solution of the spectral equation for $\lambda_{0}=0$:

$$
\partial_{E}(\mathrm{ODE}) \Longleftrightarrow U_{E}+\partial_{z}^{2}\left[\left(c-U^{p}\right) U_{E}\right]=0
$$

Differentiating the $\mathrm{BC} U(\pm T(E) ; E)=0$ w.r.t. E yields

$$
\partial_{E} U(-T(E) ; E)-T^{\prime}(E) \underbrace{\partial_{z} U(-T(E) ; E)}_{\neq 0}=\partial_{E} U(T(E) ; E)+T^{\prime}(E) \underbrace{\partial_{z} U(T(E) ; E)}_{\neq 0} .
$$

If $T^{\prime}(E)<0$, then $\left\langle L^{-1} U, U\right\rangle=-\frac{d}{d c}\|U\|_{L_{\text {per }}^{2}(-T, T)}^{2}<0$.

Spectral properties of the operator L

Consider the eigenvalue problem

$$
\left(\partial_{z}^{-2}+c-U^{p}\right) v=\lambda v, \quad v \in \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

Zero eigenvalue $\lambda_{0}=0$:
$\triangleright \partial_{z} U$ is an eigenvector for $\lambda_{0}: L \partial_{z} U=0$
$\triangleright U_{E}$ is also a solution of the spectral equation for $\lambda_{0}=0$:

$$
\partial_{E}(\mathrm{ODE}) \Longleftrightarrow U_{E}+\partial_{z}^{2}\left[\left(c-U^{p}\right) U_{E}\right]=0
$$

Differentiating the $\mathrm{BC} U(\pm T(E) ; E)=0$ w.r.t. E yields

$$
\partial_{E} U(-T(E) ; E)-T^{\prime}(E) \underbrace{\partial_{z} U(-T(E) ; E)}_{\neq 0}=\partial_{E} U(T(E) ; E)+T^{\prime}(E) \underbrace{\partial_{z} U(T(E) ; E)}_{\neq 0} .
$$

As a result, $\left.L\right|_{U^{\perp}}$ is positive.

Spectral instability of the peaked periodic wave: $p=1$

Let $u=U+v$ and consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

or equivalently

$$
v_{t}=\partial_{z} L v, \quad \text { where } L=P_{0}\left(\partial_{z}^{-2}+c_{*}-U_{*}\right) P_{0}: \quad \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2},
$$

where $\dot{L}_{\text {per }}^{2}$ is the L^{2} space of periodic function with zero mean.

Spectral instability of the peaked periodic wave: $p=1$

Let $u=U+v$ and consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

or equivalently

$$
v_{t}=\partial_{z} L v, \quad \text { where } L=P_{0}\left(\partial_{z}^{-2}+c_{*}-U_{*}\right) P_{0}: \quad \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2},
$$

where $\dot{L}_{\text {per }}^{2}$ is the L^{2} space of periodic function with zero mean.

Lemma

The spectrum of the self-adjoint operator L is $\sigma(L)=\left\{\lambda_{-}\right\} \cup\left[0, \frac{\pi^{2}}{6}\right]$.

Spectral instability of the peaked periodic wave: $p=1$

Let $u=U+v$ and consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

or equivalently

$$
v_{t}=\partial_{z} L v, \quad \text { where } L=P_{0}\left(\partial_{z}^{-2}+c_{*}-U_{*}\right) P_{0}: \quad \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2},
$$

where $\dot{L}_{\text {per }}^{2}$ is the L^{2} space of periodic function with zero mean.

Lemma

The spectrum of the self-adjoint operator L is $\sigma(L)=\left\{\lambda_{-}\right\} \cup\left[0, \frac{\pi^{2}}{6}\right]$.
The spectral stability problem can not be solved by applying standard energy methods due to the lack of coercivity.

Spectral instability of the peaked periodic wave: $p=1$

Let $u=U+v$ and consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

or equivalently

$$
v_{t}=\partial_{z} L v, \quad \text { where } L=P_{0}\left(\partial_{z}^{-2}+c_{*}-U_{*}\right) P_{0}: \quad \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2},
$$

where $\dot{L}_{\text {per }}^{2}$ is the L^{2} space of periodic function with zero mean.
Domain of $\partial_{z} L$ in $\dot{L}_{\text {per }}^{2}$ is larger than $H_{\text {per }}^{1}$:

$$
\operatorname{dom}\left(\partial_{z} L\right)=\left\{v \in \dot{L}_{\mathrm{per}}^{2}: \quad \partial_{z}\left[\left(c_{*}-U_{*}\right) v\right] \in \dot{L}_{\mathrm{per}}^{2}\right\}
$$

Linear instability of the peaked periodic wave: $p=1$

Consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Linear instability of the peaked periodic wave: $p=1$

Consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Definition

The travelling wave U is linearly unstable if there exists $v_{0} \in \operatorname{dom}\left(\partial_{z} L\right)$ such that the unique global solution $v \in C\left(\mathbb{R}, \operatorname{dom}\left(\partial_{z} L\right)\right)$ satisfies

$$
\|v(t)\|_{L^{2}} \geq C e^{\lambda_{0} t}\left\|v_{0}\right\|_{L^{2}}, \quad t>0
$$

for some $\lambda_{0}>0$.

Linear instability of the peaked periodic wave

\triangleright Step 1: The truncated problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=0, \quad t>0 \tag{truncO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Linear instability of the peaked periodic wave

\triangleright Step 1: The truncated problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=0, \quad t>0 \tag{truncO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Method of characteristics. The characteristic curves $z=Z(s, t)$ are found explicitly and the solution of $V(s, t):=v(Z(s, t), t)$ is

$$
V(s, t)=\frac{1}{\pi^{2}}[\pi \cosh (\pi t / 6)-s \sinh (\pi t / 6)]^{2} v_{0}(s), \quad s \in[-\pi, \pi], \quad t \in \mathbb{R}
$$

Linear instability of the peaked periodic wave

\triangleright Step 1: The truncated problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=0, \quad t>0 \tag{truncO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Method of characteristics. The characteristic curves $z=Z(s, t)$ are found explicitly and the solution of $V(s, t):=v(Z(s, t), t)$ is

$$
V(s, t)=\frac{1}{\pi^{2}}[\pi \cosh (\pi t / 6)-s \sinh (\pi t / 6)]^{2} v_{0}(s), \quad s \in[-\pi, \pi], \quad t \in \mathbb{R}
$$

This yields the linear instability result for the truncated problem:

Lemma

For every $v_{0} \in \operatorname{dom}\left(\partial_{z} L\right) \exists!$ global solution $v \in C\left(\mathbb{R}, \operatorname{dom}\left(\partial_{z} L\right)\right)$. If v_{0} is odd, then the global solution satisfies

$$
\frac{1}{2}\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6} \leq\|v(t)\|_{L^{2}} \leq\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6}, \quad t>0
$$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{L}_{\text {per }}^{2}$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{L}_{\text {per }}^{2}$
\triangleright Bounded Perturbation Theorem: $A:=A_{0}+\partial_{z}^{-1}$ is the generator of C^{0}-semigroup on $\dot{L}_{\text {per }}^{2}$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0, \tag{linO}\\
\left.v\right|_{t=0}=v_{0} .
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{L}_{\text {per }}^{2}$
\triangleright Bounded Perturbation Theorem: $A:=A_{0}+\partial_{z}^{-1}$ is the generator of C^{0}-semigroup on $\dot{L}_{\text {per }}^{2}$

Lemma

For every $v_{0} \in \operatorname{dom}\left(\partial_{z} L\right) \exists!$ global solution $v \in C\left(\mathbb{R}, \operatorname{dom}\left(\partial_{z} L\right)\right)$. If v_{0} is odd, then the solution satisfies

$$
C\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6} \leq\|v(t)\|_{L^{2}} \leq\left\|v_{0}\right\|_{L^{2} e^{\pi t / 6}, \quad t>0 .}
$$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0, \tag{linO}\\
\left.v\right|_{t=0}=v_{0} .
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{L}_{\text {per }}^{2}$
\triangleright Bounded Perturbation Theorem: $A:=A_{0}+\partial_{z}^{-1}$ is the generator of C^{0}-semigroup on $\dot{L}_{\text {per }}^{2}$

Lemma

For every $v_{0} \in \operatorname{dom}\left(\partial_{z} L\right) \exists!$ global solution $v \in C\left(\mathbb{R}, \operatorname{dom}\left(\partial_{z} L\right)\right)$. If v_{0} is odd, then the solution satisfies

$$
C\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6} \leq\|v(t)\|_{L^{2}} \leq\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6}, \quad t>0
$$

Conclusion: The peaked periodic wave is linearly unstable.

Spectral instability of the peaked periodic wave: $p=1$

Back to the spectral problem

$$
\lambda v=A v:=\partial_{z}\left[\left(c_{*}-U_{*}\right) v\right]+\partial_{z}^{-1} v,
$$

with

$$
\operatorname{dom}(A)=\left\{v \in \dot{L}_{\text {per }}^{2}: \quad \partial_{z}\left[\left(c_{*}-U_{*}\right) v\right] \in \dot{L}_{\text {per }}^{2}\right\} .
$$

Spectral instability of the peaked periodic wave: $p=1$

Back to the spectral problem

$$
\lambda v=A v:=\partial_{z}\left[\left(c_{*}-U_{*}\right) v\right]+\partial_{z}^{-1} v,
$$

with

$$
\operatorname{dom}(A)=\left\{v \in \dot{L}_{\text {per }}^{2}: \quad \partial_{z}\left[\left(c_{*}-U_{*}\right) v\right] \in \dot{L}_{\text {per }}^{2}\right\} .
$$

$\triangleright 0 \in \sigma_{p}(A)$ because $U_{*}^{\prime} \in \operatorname{dom}(A)$ and $A U_{*}^{\prime}=0$.

Spectral instability of the peaked periodic wave: $p=1$

Back to the spectral problem

$$
\lambda v=A v:=\partial_{z}\left[\left(c_{*}-U_{*}\right) v\right]+\partial_{z}^{-1} v,
$$

with

$$
\operatorname{dom}(A)=\left\{v \in \dot{L}_{\text {per }}^{2}: \quad \partial_{z}\left[\left(c_{*}-U_{*}\right) v\right] \in \dot{L}_{\text {per }}^{2}\right\} .
$$

$\triangleright 0 \in \sigma_{p}(A)$ because $U_{*}^{\prime} \in \operatorname{dom}(A)$ and $A U_{*}^{\prime}=0$.

Theorem (Geyer \& P., 2019)

$$
\sigma(A)=\left\{\lambda \in \mathbb{C}: \quad-\frac{\pi}{6} \leq \operatorname{Re}(\lambda) \leq \frac{\pi}{6}\right\} .
$$

Truncated spectral problem

It is natural to consider the truncated spectral problem

$$
\lambda v=A_{0} v:=\partial_{z}\left[\left(c_{*}-U_{*}\right) v\right],
$$

with

$$
\operatorname{dom}\left(A_{0}\right)=\left\{v \in \dot{L}_{\mathrm{per}}^{2}: \quad \partial_{z}\left[\left(c_{*}-U_{*}\right) v\right] \in \dot{L}_{\mathrm{per}}^{2}\right\} .
$$

Truncated spectral problem

It is natural to consider the truncated spectral problem

$$
\lambda v=A_{0} v:=\partial_{z}\left[\left(c_{*}-U_{*}\right) v\right]
$$

with

$$
\operatorname{dom}\left(A_{0}\right)=\left\{v \in \dot{L}_{\mathrm{per}}^{2}: \quad \partial_{z}\left[\left(c_{*}-U_{*}\right) v\right] \in \dot{L}_{\mathrm{per}}^{2}\right\} .
$$

Lemma

Let $A: \operatorname{dom}(A) \subset X \rightarrow X$ and $A_{0}: \operatorname{dom}\left(A_{0}\right) \subset X \rightarrow X$ be linear operators on Hilbert space X with the same domain $\operatorname{dom}\left(A_{0}\right)=\operatorname{dom}(A)$ such that $A-A_{0}=K$ is a compact operator in X. Assume that the intersections $\sigma_{\mathrm{p}}(A) \cap \rho\left(A_{0}\right)$ and $\sigma_{\mathrm{p}}\left(A_{0}\right) \cap \rho(A)$ are empty. Then, $\sigma(A)=\sigma\left(A_{0}\right)$.

Spectrum of the truncated problem

We want to compute the spectrum of the truncated problem:

$$
\lambda v=A_{0} v:=\frac{1}{6} \partial_{z}\left[\left(\pi^{2}-z^{2}\right) v(z)\right] .
$$

Transformation in characteristic variables,

$$
\frac{d z}{d \xi}=\frac{1}{6}\left(\pi^{2}-z^{2}\right) \quad \Rightarrow \quad z=\pi \tanh \left(\frac{\pi \xi}{6}\right)
$$

maps it to

$$
\mu w=B_{0} w:=\partial_{y} w(y)-\tanh (y) w(y), \quad y \in \mathbb{R}
$$

with $\mu=6 \lambda / \pi$ and $\operatorname{dom}\left(B_{0}\right)=H^{1}(\mathbb{R}) \cap \dot{L}^{2}(\mathbb{R})$,

$$
\dot{L}^{2}(\mathbb{R}):=\left\{w \in L^{2}(\mathbb{R}): \quad\langle w, \operatorname{sech}(\cdot)\rangle=0\right\}
$$

Spectrum of the truncated problem

We want to compute the spectrum of the truncated problem:

$$
\lambda v=A_{0} v:=\frac{1}{6} \partial_{z}\left[\left(\pi^{2}-z^{2}\right) v(z)\right] .
$$

Transformation in characteristic variables,

$$
\frac{d z}{d \xi}=\frac{1}{6}\left(\pi^{2}-z^{2}\right) \quad \Rightarrow \quad z=\pi \tanh \left(\frac{\pi \xi}{6}\right)
$$

maps it to

$$
\mu w=B_{0} w:=\partial_{y} w(y)-\tanh (y) w(y), \quad y \in \mathbb{R}
$$

with $\mu=6 \lambda / \pi$ and $\operatorname{dom}\left(B_{0}\right)=H^{1}(\mathbb{R}) \cap \dot{L}^{2}(\mathbb{R})$,

$$
\dot{L}^{2}(\mathbb{R}):=\left\{w \in L^{2}(\mathbb{R}): \quad\langle w, \operatorname{sech}(\cdot)\rangle=0\right\}
$$

No point spectrum, whereas the essential spectrum is located at:

$$
\sigma\left(B_{0}\right)=\{\mu \in \mathbb{C}: \quad-1 \leq \operatorname{Re}(\mu) \leq 1\} .
$$

Summary

\triangleright Global solutions and wave breaking in the generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

\triangleright Existence of smooth and peaked periodic waves

\triangleright Smooth periodic waves are spectrally stable for any $p \in \mathbb{N}$.
\triangleright Peaked wave is spectrally and linearly unstable for $p=1,2$.
\triangleright Nonlinear stability or instability of smooth and peaked waves?

Summary

\triangleright Global solutions and wave breaking in the generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

\triangleright Existence of smooth and peaked periodic waves

\triangleright Smooth periodic waves are spectrally stable for any $p \in \mathbb{N}$.
\triangleright Peaked wave is spectrally and linearly unstable for $p=1,2$.
\triangleright Nonlinear stability or instability of smooth and peaked waves?
Thank you! Questions???

