Stability of smooth travelling waves and instability of peaked travelling waves in the Camassa-Holm equation

Dmitry E. Pelinovsky

joint work with Anna Geyer (TU Delft) and Fabio Natali (Brazil)

Seminar at Ningbo University (China)
December 16, 2021

Introduction

The Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

models the propagation of unidirectional shallow water waves, where $u=u(t, x)$ represents the water surface. [Camassa \& Holm, 1993]

Introduction

The Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

models the propagation of unidirectional shallow water waves, where $u=u(t, x)$ represents the water surface. [Camassa \& Holm, 1993]

\triangleright small amplitude: BBM equation $u_{t}-u_{t x x}+3 u u_{x}=0$
\triangleright moderate amplitude: b-family of Camassa-Holm equations

$$
u_{t}-u_{x x t}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x} \quad(b=2)
$$

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right)=0
$$

where $\varphi:=\left(1-\partial_{x}^{2}\right)^{-1} \delta_{0}$ is the Green function.

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right)=0
$$

where $\varphi:=\left(1-\partial_{x}^{2}\right)^{-1} \delta_{0}$ is the Green function.
The model may feature wave breaking:

$$
\|u(t, \cdot)\|_{L^{\infty}}<\infty, \quad\left\|u_{x}(t, \cdot)\right\|_{L^{\infty}} \rightarrow \infty \quad \text { as } t \rightarrow T<\infty
$$

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right)=0
$$

where $\varphi:=\left(1-\partial_{x}^{2}\right)^{-1} \delta_{0}$ is the Green function.
Solutions of the Burgers equation $v_{t}+v v_{x}=0$ with $v(0, x)=f(x)$ feature the same wave breaking:

$$
v(t, x)=f(x-t v(t, x)) \quad \Rightarrow \quad v_{x}=\frac{f^{\prime}(x-t v)}{1+f^{\prime}(x-t v)}
$$

Properties of the Camassa-Holm equation

The local differential equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

can be rewritten in the integral form of the perturbed Burgers equation

$$
u_{t}+u u_{x}+\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right)=0
$$

where $\varphi:=\left(1-\partial_{x}^{2}\right)^{-1} \delta_{0}$ is the Green function.
\triangleright locally well-posed in $H^{s}, s>3 / 2$ [Constantin \& Escher, 1998]
\triangleright no continuous dependence in $H^{s}, s \leq 3 / 2$
[Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]
\triangleright locally well-posed in $H^{1} \cap W^{1, \infty}$.
[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]

Stability of traveling waves

There exist smooth, peaked and cusped periodic waves [Lenells, 2006]
Some previous stability results:
\triangleright Orbital stability for peaked periodic and solitary waves in H^{1} using variational methods and energy integrals [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001] [Lenells, 2004]

Stability of traveling waves

There exist smooth, peaked and cusped periodic waves [Lenells, 2006]
Some previous stability results:
\triangleright Orbital stability for peaked periodic and solitary waves in H^{1} using variational methods and energy integrals [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001] [Lenells, 2004]
\triangleright Orbital stability for smooth periodic and solitary waves in H^{1} using inverse scattering [Constantin \& Strauss, 2002] [Lenells, 2005]

Stability of traveling waves

There exist smooth, peaked and cusped periodic waves [Lenells, 2006]
Some previous stability results:
\triangleright Orbital stability for peaked periodic and solitary waves in H^{1} using variational methods and energy integrals [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001] [Lenells, 2004]
\triangleright Orbital stability for smooth periodic and solitary waves in H^{1} using inverse scattering [Constantin \& Strauss, 2002] [Lenells, 2005]
\triangleright Instability of peaked periodic and solitary waves in $H^{1} \cap W^{1, \infty}$ [Natali \& Pelinovsky, 2020] [Madiyeva \& Pelinovsky, 2021]

Stability of traveling waves

There exist smooth, peaked and cusped periodic waves [Lenells, 2006]
Some previous stability results:
\triangleright Orbital stability for peaked periodic and solitary waves in H^{1} using variational methods and energy integrals [Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001] [Lenells, 2004]
\triangleright Orbital stability for smooth periodic and solitary waves in H^{1} using inverse scattering [Constantin \& Strauss, 2002] [Lenells, 2005]
\triangleright Instability of peaked periodic and solitary waves in $H^{1} \cap W^{1, \infty}$ [Natali \& Pelinovsky, 2020] [Madiyeva \& Pelinovsky, 2021]
\triangleright Spectral stability of smooth periodic waves using dynamical system theory
[Geyer, Martins, Natali, \& Pelinovsky, 2022]

Stability of traveling waves

There exist smooth, peaked and cusped periodic waves [Lenells, 2006]
Some previous stability results:
\triangleright Orbital stability for peaked periodic and solitary waves in H^{1} using variational methods and energy integrals
[Constantin \& Strauss, 2000] [Constantin \& Molinet, 2001] [Lenells, 2004]
\triangleright Orbital stability for smooth periodic and solitary waves in H^{1} using inverse scattering [Constantin \& Strauss, 2002] [Lenells, 2005]
\triangleright Instability of peaked periodic and solitary waves in $H^{1} \cap W^{1, \infty}$ [Natali \& Pelinovsky, 2020] [Madiyeva \& Pelinovsky, 2021]
\triangleright Spectral stability of smooth periodic waves using dynamical system theory
[Geyer, Martins, Natali, \& Pelinovsky, 2022]
\triangleright Stability of cusped waves is open.

Standard approach to spectral stability

\triangleright Construct an action functional $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$

Standard approach to spectral stability

\triangleright Construct an action functional $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$
\triangleright Compute the spectrum of the linearized operator $\mathcal{L}=\Lambda^{\prime \prime}(\phi)$ and control the number of negative eigenvalues in L^{2}.

Standard approach to spectral stability

\triangleright Construct an action functional $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$
\triangleright Compute the spectrum of the linearized operator $\mathcal{L}=\Lambda^{\prime \prime}(\phi)$ and control the number of negative eigenvalues in L^{2}.
\triangleright If \mathcal{L} has only one negative simple eigenvalue and a simple zero eigenvalue, then we need to prove that the traveling wave ϕ is a constrained minimizer of energy, i.e. $\left.\mathcal{L}\right|_{X_{0}} \geq 0$, where X_{0} is constrained by the momentum conservation.

Standard approach to spectral stability

\triangleright Construct an action functional $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$
\triangleright Compute the spectrum of the linearized operator $\mathcal{L}=\Lambda^{\prime \prime}(\phi)$ and control the number of negative eigenvalues in L^{2}.
\triangleright If \mathcal{L} has only one negative simple eigenvalue and a simple zero eigenvalue, then we need to prove that the traveling wave ϕ is a constrained minimizer of energy, i.e. $\left.\mathcal{L}\right|_{X_{0}} \geq 0$, where X_{0} is constrained by the momentum conservation.
\triangleright The traveling wave ϕ is spectrally stable if $\left.\mathcal{L}\right|_{X_{0}} \geq 0$.

Standard approach to spectral stability

The standard approach fails for the Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

\triangleright For the smooth periodic waves, the number of negative eigenvalues of \mathcal{L} changes from 1 to 2 , depending on parameters.

Standard approach to spectral stability

The standard approach fails for the Camassa-Holm equation

$$
\begin{equation*}
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \tag{CH}
\end{equation*}
$$

\triangleright For the smooth periodic waves, the number of negative eigenvalues of \mathcal{L} changes from 1 to 2 , depending on parameters.
\triangleright For the peaked periodic or solitary waves, the zero eigenvalue of \mathcal{L} is not separated from the continuous spectrum.

The main goal of my talk is to explain how these two problems can be solved on the case study of the Camassa-Holm equation.

Bi-Hamiltonian structure of CH

The CH equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

has three conserved quantities

$$
M(u)=\int_{0}^{L} u d x, \quad E(u)=\frac{1}{2} \int_{0}^{L}\left(u^{2}+u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int_{0}^{L}\left(u^{3}+u u_{x}^{2}\right) d x
$$

Bi-Hamiltonian structure of CH

The CH equation

$$
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

has three conserved quantities

$$
M(u)=\int_{0}^{L} u d x, \quad E(u)=\frac{1}{2} \int_{0}^{L}\left(u^{2}+u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int_{0}^{L}\left(u^{3}+u u_{x}^{2}\right) d x
$$

It can be written in Hamiltonian form in two ways:

$$
u_{t}=J F^{\prime}(u), \quad J=-\left(1-\partial_{x}^{2}\right)^{-1} \partial_{x}
$$

and

$$
m_{t}=J_{m} E^{\prime}(m), \quad J_{m}=-\left(m \partial_{x}+\partial_{x} m\right),
$$

where $m=u-u_{x x}$.

Traveling waves

Smooth traveling waves of the form $u(x, t)=\phi(x-c t)$ satisfy

$$
-c \phi^{\prime}+c \phi^{\prime \prime \prime}+3 \phi \phi^{\prime}=2 \phi^{\prime} \phi^{\prime \prime}+\phi \phi^{\prime \prime \prime}
$$

Traveling waves

Smooth traveling waves of the form $u(x, t)=\phi(x-c t)$ satisfy

$$
-c \phi^{\prime}+c \phi^{\prime \prime \prime}+3 \phi \phi^{\prime}=2 \phi^{\prime} \phi^{\prime \prime}+\phi \phi^{\prime \prime \prime}
$$

Standard integration gives

$$
-(c-\phi) \phi^{\prime \prime}+c \phi-\frac{3}{2} \phi^{2}+\frac{1}{2}\left(\phi^{\prime}\right)^{2}=b, \quad b \in \mathbb{R} .
$$

Traveling waves

Smooth traveling waves of the form $u(x, t)=\phi(x-c t)$ satisfy

$$
-c \phi^{\prime}+c \phi^{\prime \prime \prime}+3 \phi \phi^{\prime}=2 \phi^{\prime} \phi^{\prime \prime}+\phi \phi^{\prime \prime \prime}
$$

Standard integration gives

$$
-(c-\phi) \phi^{\prime \prime}+c \phi-\frac{3}{2} \phi^{2}+\frac{1}{2}\left(\phi^{\prime}\right)^{2}=b, \quad b \in \mathbb{R}
$$

Alternative integration, after multiplication by $(c-\phi)$, gives

$$
-(c-\phi)^{2}\left(\phi^{\prime \prime}-\phi\right)=a, \quad a \in \mathbb{R}
$$

Traveling waves

Smooth traveling waves of the form $u(x, t)=\phi(x-c t)$ satisfy

$$
-c \phi^{\prime}+c \phi^{\prime \prime \prime}+3 \phi \phi^{\prime}=2 \phi^{\prime} \phi^{\prime \prime}+\phi \phi^{\prime \prime \prime}
$$

Standard integration gives

$$
-(c-\phi) \phi^{\prime \prime}+c \phi-\frac{3}{2} \phi^{2}+\frac{1}{2}\left(\phi^{\prime}\right)^{2}=b, \quad b \in \mathbb{R}
$$

Alternative integration, after multiplication by $(c-\phi)$, gives

$$
-(c-\phi)^{2}\left(\phi^{\prime \prime}-\phi\right)=a, \quad a \in \mathbb{R}
$$

Both second-order equations are compatible iff

$$
b=\frac{1}{2}\left(\phi^{\prime}\right)^{2}-\frac{1}{2} \phi^{2}+\frac{a}{c-\phi} .
$$

Existence of periodic waves on the (a, b) parameter plane

Periodic waves exist inside the region between three boundaries:
\triangleright Peaked waves correspond to the left boundary: $a=0$.
\triangleright Solitary waves correspond to the top boundary.
\triangleright Constant waves correspond to the right boundary.

Stability via Standard integration

Standard integration gives

$$
-(c-\phi) \phi^{\prime \prime}+c \phi-\frac{3}{2} \phi^{2}+\frac{1}{2}\left(\phi^{\prime}\right)^{2}=b,
$$

which is the Euler-Lagrange equation for the action functional:

$$
\Lambda_{c, b}(u):=c E(u)-F(u)-b M(u) .
$$

Stability via Standard integration

Standard integration gives

$$
-(c-\phi) \phi^{\prime \prime}+c \phi-\frac{3}{2} \phi^{2}+\frac{1}{2}\left(\phi^{\prime}\right)^{2}=b,
$$

which is the Euler-Lagrange equation for the action functional:

$$
\Lambda_{c, b}(u):=c E(u)-F(u)-b M(u) .
$$

The corresponding linearized operator is $\mathcal{L}: H_{\text {per }}^{2} \subset L^{2} \rightarrow L^{2}$,

$$
\mathcal{L}=\Lambda_{c, b}^{\prime \prime}(\phi)=-\partial_{x}(c-\phi) \partial_{x}+\left(c-3 \phi+\phi^{\prime \prime}\right)
$$

$\sigma(\mathcal{L}) \subset \mathbb{R}$ consists of eigenvalues and $0 \in \sigma(\mathcal{L})$ since $\mathcal{L} \phi^{\prime}=0$.
How many negative eigenvalues exist in $\sigma(\mathcal{L})$?

Period function

Fix b and write the second-order equation as the system

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = y , } \\
{ y ^ { \prime } = - \frac { 1 } { x } V ^ { \prime } (x) - \frac { 1 } { 2 x } y ^ { 2 } , }
\end{array} \quad \left\{\begin{array}{l}
x:=c-\phi, \\
y:=-\phi^{\prime},
\end{array}\right.\right.
$$

with first integral $H(x, y):=\frac{1}{2} x y^{2}+V(x ; b)$.
There is a continuum of periodic orbits $\gamma(a)$ in $\{H(x, y)=a\}$ with the period given by the period function

$$
\mathfrak{L}(a)=\int_{\gamma(a)} \frac{d x}{y} .
$$

Period function

Fix b and write the second-order equation as the system

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = y , } \\
{ y ^ { \prime } = - \frac { 1 } { x } V ^ { \prime } (x) - \frac { 1 } { 2 x } y ^ { 2 } , }
\end{array} \quad \left\{\begin{array}{l}
x:=c-\phi, \\
y:=-\phi^{\prime},
\end{array}\right.\right.
$$

with first integral $H(x, y):=\frac{1}{2} x y^{2}+V(x ; b)$.
There is a continuum of periodic orbits $\gamma(a)$ in $\{H(x, y)=a\}$ with the period given by the period function

$$
\mathfrak{L}(a)=\int_{\gamma(a)} \frac{d x}{y} .
$$

$\mathfrak{L}(a)$ change monotonicity for different b. [Geyer \& Villadelprat, 2015]

Negative eigenvalues in $\sigma(\mathcal{L})$

What does it imply for the linearized operator \mathcal{L} ?

$$
\mathcal{L}=\Lambda_{c, b}^{\prime \prime}(\phi)=-\partial_{x}(c-\phi) \partial_{x}+\left(c-3 \phi+\phi^{\prime \prime}\right) .
$$

Negative eigenvalues in $\sigma(\mathcal{L})$

What does it imply for the linearized operator \mathcal{L} ?

$$
\mathcal{L}=\Lambda_{c, b}^{\prime \prime}(\phi)=-\partial_{x}(c-\phi) \partial_{x}+\left(c-3 \phi+\phi^{\prime \prime}\right) .
$$

We have $\mathcal{L} \phi^{\prime}=0$ and $\mathcal{L} \partial_{a} \phi=0$, with $v=c_{1} \phi^{\prime}+c_{2} \partial_{a} \phi$ being a general solution of $\mathcal{L} v=0$.

$$
\begin{array}{ll}
\triangleright \mathfrak{L}^{\prime}(a)>0: & \sigma(\mathcal{L})=\left\{-\lambda_{1},-\lambda_{2}, 0, \ldots\right\} \\
\triangleright \mathfrak{L}^{\prime}(a)=0: & \sigma(\mathcal{L})=\left\{-\lambda_{1}, 0,0, \ldots\right\} \\
\triangleright \mathfrak{L}^{\prime}(a)<0: & \sigma(\mathcal{L})=\left\{-\lambda_{1}, 0, \ldots\right\}
\end{array}
$$

[M. Johnson, 2009] [A. Neves, 2009]
Standard approach to spectral stability is computationally hard.

Stability via Alternative integration

Alternative integration, after multiplication by $(c-\phi)$, gives

$$
-(c-\phi)^{2}\left(\phi^{\prime \prime}-\phi\right)=a, \quad a \in \mathbb{R}
$$

which can be written as $(c-\phi)^{3} \mu=a(c-\phi)$ for $\mu:=\phi-\phi^{\prime \prime}$.

Stability via Alternative integration

Alternative integration, after multiplication by $(c-\phi)$, gives

$$
-(c-\phi)^{2}\left(\phi^{\prime \prime}-\phi\right)=a, \quad a \in \mathbb{R}
$$

which can be written as $(c-\phi)^{3} \mu=a(c-\phi)$ for $\mu:=\phi-\phi^{\prime \prime}$.
The corresponding linearized operator is $\mathcal{K}: L_{\text {per }}^{2} \rightarrow L_{\text {per }}^{2}$,

$$
\mathcal{K}:=(c-\phi)^{3}-2 a\left(1-\partial_{x}^{2}\right)^{-1}, \quad \mathcal{K} \mu^{\prime}=0 .
$$

$\sigma(\mathcal{K}) \subset \mathbb{R}$ consists of eigenvalues below $\min _{x \in[0, L]}(c-\phi)^{3}>0$ and the continuous spectrum in $\left[\min _{x \in[0, L]}(c-\phi)^{3}, \max _{x \in[0, L]}(c-\phi)^{3}\right]$.

How many negative eigenvalues exist in $\sigma(\mathcal{K})$?

Period function

Fix a and write the second-order equation as

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = y , } \\
{ y ^ { \prime } = x + \frac { a } { (c - x) ^ { 2 } } , }
\end{array} \quad \left\{\begin{array}{l}
x:=\phi, \\
y:=\phi^{\prime},
\end{array}\right.\right.
$$

with Hamiltonian $H(x, y)=\frac{1}{2} y^{2}+V(x ; a)$.
There is a continuum of periodic orbits $\gamma(b)$ in $\{H(x, y)=b\}$.

Period function

Fix a and write the second-order equation as

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = y , } \\
{ y ^ { \prime } = x + \frac { a } { (c - x) ^ { 2 } } , }
\end{array} \quad \left\{\begin{array}{l}
x:=\phi \\
y:=\phi^{\prime}
\end{array}\right.\right.
$$

with Hamiltonian $H(x, y)=\frac{1}{2} y^{2}+V(x ; a)$.
There is a continuum of periodic orbits $\gamma(b)$ in $\{H(x, y)=b\}$.
The period function is defined as

$$
\mathfrak{L}(b)=\int_{\gamma(b)} \frac{d x}{y} .
$$

$\mathfrak{L}^{\prime}(b)>0$ for all values of a.

[Geyer, Martins, Natali, \& Pelinovsky, 2022]

Negative eigenvalues in $\sigma(\mathcal{K})$

What does it imply for the linearized operator \mathcal{K} ?

$$
\mathcal{K}:=(c-\phi)^{3}-2 a\left(1-\partial_{x}^{2}\right)^{-1}
$$

We have $\mathcal{K} \mu^{\prime}=0$ and $\mathcal{K} \partial_{b} \mu=0$, where $\mu:=\phi-\phi^{\prime \prime}$. Hence, $v=c_{1} \mu^{\prime}+c_{2} \partial_{b} \mu$ is a general solution of $\mathcal{K} v=0$.

For the negative spectrum of \mathcal{K} we find

$$
\begin{array}{ll}
\triangleright \mathfrak{L}^{\prime}(b)<0: & \sigma(\mathcal{K})=\left\{-\lambda_{1},-\lambda_{2}, 0, \ldots\right\} \\
\triangleright \mathfrak{L}^{\prime}(b)=0: & \sigma(\mathcal{K})=\left\{-\lambda_{1}, 0,0, \ldots\right\} \\
\triangleright \mathfrak{L}^{\prime}(b)>0: & \sigma(\mathcal{K})=\left\{-\lambda_{1}, 0, \ldots\right\}
\end{array}
$$

Since $\mathfrak{L}^{\prime}(b)>0, \sigma(\mathcal{K})$ admits only one simple negative eigenvalue.

Standard approach to spectral stability

\triangleright Construct an action functional $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of $\Lambda: \underbrace{\Lambda^{\prime}(\phi)=0}_{\text {TW-eq }}$
\triangleright Compute the spectrum of the linearized operator $\mathcal{L}=\Lambda^{\prime \prime}(\phi)$ and control the number of negative eigenvalues in L^{2}.
\triangleright If \mathcal{L} has only one negative simple eigenvalue and a simple zero eigenvalue, then we need to prove that the traveling wave ϕ is a constrained minimizer of energy, i.e. $\left.\mathcal{L}\right|_{X_{0}} \geq 0$, where X_{0} is constrained by the momentum conservation.
\triangleright The traveling wave ϕ is spectrally stable if $\left.\mathcal{L}\right|_{X_{0}} \geq 0$.

Constrained minimizers of energy

Recall the three conserved quantities
$M(u)=\int_{0}^{L} u d x, \quad E(u)=\frac{1}{2} \int_{0}^{L}\left(u^{2}+u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int_{0}^{L}\left(u^{3}+u u_{x}^{2}\right) d x$, and the action functional $\Lambda_{c, b}(u)=c E(u)-F(u)-b M(u)$.

Constrained minimizers of energy

Recall the three conserved quantities

$$
M(u)=\int_{0}^{L} u d x, \quad E(u)=\frac{1}{2} \int_{0}^{L}\left(u^{2}+u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int_{0}^{L}\left(u^{3}+u u_{x}^{2}\right) d x
$$

and the action functional $\Lambda_{c, b}(u)=c E(u)-F(u)-b M(u)$.
The constrained space is

$$
X_{0}:=\left\{u \in L_{\mathrm{per}}^{2}: \quad\langle 1, u\rangle=0, \quad\left\langle\phi-\phi^{\prime \prime}, u\right\rangle=0\right\} .
$$

In variable $m:=u-u_{x x}$ for $u \in H_{\mathrm{per}}^{2}$, the constraints become

$$
Y_{0}:=\left\{m \in L_{\mathrm{per}}^{2}: \quad\langle 1, m\rangle=0, \quad\langle\phi, m\rangle=0\right\}
$$

Constrained minimizers of energy

Recall the three conserved quantities

$$
M(u)=\int_{0}^{L} u d x, \quad E(u)=\frac{1}{2} \int_{0}^{L}\left(u^{2}+u_{x}^{2}\right) d x, \quad F(u)=\frac{1}{2} \int_{0}^{L}\left(u^{3}+u u_{x}^{2}\right) d x
$$

and the action functional $\Lambda_{c, b}(u)=c E(u)-F(u)-b M(u)$.
The constrained space is

$$
X_{0}:=\left\{u \in L_{\mathrm{per}}^{2}: \quad\langle 1, u\rangle=0, \quad\left\langle\phi-\phi^{\prime \prime}, u\right\rangle=0\right\} .
$$

In variable $m:=u-u_{x x}$ for $u \in H_{\mathrm{per}}^{2}$, the constraints become

$$
Y_{0}:=\left\{m \in L_{\mathrm{per}}^{2}: \quad\langle 1, m\rangle=0, \quad\langle\phi, m\rangle=0\right\}
$$

How many negative eigenvalues exist in $\sigma\left(\left.\mathcal{K}\right|_{Y_{0}}\right)$?

Constrained minimizers of energy - scalar case

Consider the constrained spectral problem for $\left.K\right|_{Y_{0}}$:

$$
\mathcal{K} m=\lambda m-\alpha \phi, \quad\langle\phi, m\rangle=0,
$$

where α is a Lagrange multiplier.

Constrained minimizers of energy - scalar case

Consider the constrained spectral problem for $\left.K\right|_{Y_{0}}$:

$$
\mathcal{K} m=\lambda m-\alpha \phi, \quad\langle\phi, m\rangle=0,
$$

where α is a Lagrange multiplier. We can write

$$
m=-\alpha(\mathcal{K}-\lambda I)^{-1} \phi, \quad \lambda \notin \sigma(\mathcal{K})
$$

and hence $\langle\phi, m\rangle=\underbrace{\left\langle(\mathcal{K}-\lambda I)^{-1} \phi, \phi\right\rangle}_{=: A(\lambda)}=0$.

Constrained minimizers of energy - scalar case

Consider the constrained spectral problem for $\left.K\right|_{Y_{0}}$:

$$
\mathcal{K} m=\lambda m-\alpha \phi, \quad\langle\phi, m\rangle=0,
$$

where α is a Lagrange multiplier. We can write

$$
m=-\alpha(\mathcal{K}-\lambda I)^{-1} \phi, \quad \lambda \notin \sigma(\mathcal{K})
$$

and hence $\langle\phi, m\rangle=\underbrace{\left\langle(\mathcal{K}-\lambda I)^{-1} \phi, \phi\right\rangle}_{=: A(\lambda)}=0$.
If $\lim _{\lambda \uparrow 0} A(\lambda)=\left\langle\mathcal{K}^{-1} \phi, \phi\right\rangle<0$, $\lambda \uparrow 0$

then $\left.\mathcal{K}\right|_{Y_{0}} \geq 0$.
[Vakhitov-Kolokolov, 1974]

Constrained minimizers of energy - vector case

Theorem

Let $A(\lambda)$ be the matrix-valued function defined by

$$
A_{i j}(\lambda):=\left\langle(\mathcal{K}-\lambda I)^{-1} v_{i}, v_{j}\right\rangle, \quad 1 \leq i, j \leq N, \quad \lambda \notin \sigma(\mathcal{K})
$$

where $\left\langle p, v_{i}\right\rangle=0$ for $p \in Y_{0}$ and let $A_{0}:=\lim _{\lambda \uparrow 0} A(\lambda)$. Then,

$$
n\left(\left.\mathcal{K}\right|_{Y_{0}}\right)=n(\mathcal{K})-n_{0}-z_{0}, \quad z\left(\left.\mathcal{K}\right|_{Y_{0}}\right)=z(\mathcal{K})+2 z_{0}+n_{0}+p_{0}-N
$$

where n_{0}, z_{0}, and p_{0} are the numbers of negative, zero, and positive eigenvalues of A_{0} and $N=\operatorname{dim} Y_{0}$.
[Pelinovsky, 2011], [Kapitula-Promislow, 2013]

Sharp condition that $\left.\mathcal{K}\right|_{Y_{0}} \geq 0$

We find that for $Y_{0}=\left\{m \in L_{\text {per }}^{2}:\langle 1, m\rangle=0,\langle\phi, m\rangle=0\right\}$,

$$
A_{0}=\left[\begin{array}{ll}
\left\langle\mathcal{K}^{-1} 1,1\right\rangle & \left\langle\mathcal{K}^{-1} \phi, 1\right\rangle \\
\left\langle\mathcal{K}^{-1} 1, \phi\right\rangle & \left\langle\mathcal{K}^{-1} \phi, \phi\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2 a} \partial_{c} M & -\partial_{a} M-\frac{c}{2 a} \partial_{c} M \\
-\frac{1}{2 a} \partial_{c} E & -\partial_{a} E-\frac{c}{2 a} \partial_{c} E
\end{array}\right],
$$

where E and M are momentum and mass functionals as function of (a, c) along the fixed period curve $\mathfrak{L}(a, b, c)=L$.

Sharp condition that $\left.\mathcal{K}\right|_{Y_{0}} \geq 0$

We find that for $Y_{0}=\left\{m \in L_{\text {per }}^{2}:\langle 1, m\rangle=0,\langle\phi, m\rangle=0\right\}$,

$$
A_{0}=\left[\begin{array}{ll}
\left\langle\mathcal{K}^{-1} 1,1\right\rangle & \left\langle\mathcal{K}^{-1} \phi, 1\right\rangle \\
\left\langle\mathcal{K}^{-1} 1, \phi\right\rangle & \left\langle\mathcal{K}^{-1} \phi, \phi\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2 a} \partial_{c} M & -\partial_{a} M-\frac{c}{2 a} \partial_{c} M \\
-\frac{1}{2 a} \partial_{c} E & -\partial_{a} E-\frac{c}{2 a} \partial_{c} E
\end{array}\right],
$$

where E and M are momentum and mass functionals as function of (a, c) along the fixed period curve $\mathfrak{L}(a, b, c)=L$.

Since $n(\mathcal{K})=1$, then $\left.\mathcal{K}\right|_{Y_{0}} \geq 0$ if and only if

$$
\operatorname{det}\left(A_{0}\right)=\frac{1}{2 a}\left[\partial_{c} M \partial_{a} E-\partial_{a} M \partial_{c} E\right] \leq 0 \Longleftrightarrow \frac{d}{d a}\left(\frac{E}{M^{2}}\right) \leq 0
$$

Sharp condition $\frac{d}{d a}\left(\frac{E}{M^{2}}\right) \leq 0$ for $\left.\mathcal{K}\right|_{Y_{0}} \geq 0$

Sharp condition $\frac{d}{d a}\left(\frac{E}{M^{2}}\right) \leq 0$ for $\left.\mathcal{K}\right|_{Y_{0}} \geq 0$

Existence of peaked periodic waves

Let $\varphi(x)$ be the Green function satisfying $\left(1-\partial_{x}^{2}\right) \varphi=\delta$ such that the CH equation is written as

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right)=0 \\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
$$

Green function gives the peaked TW $u(x, t)=\varphi(x-c t)$ with $c=\varphi(0)$ so that $c-\varphi \geq 0$. Hence, $\mathcal{K}:=(c-\varphi)^{3}-2 a\left(1-\partial_{x}^{2}\right)^{-1}$ does not have spectral gap near zero eigenvalue.

Stability of peaked periodic waves

Theorem (Constantin-Molinet (2001); Lenells (2005))

φ is a unique (up to translation) minimizer of $F(u)$ in H^{1} subject to $E(u)$ and $M(u)$.

Theorem (Constantin-Strauss (2000); Lenells (2005))

For every small $\varepsilon>0$, if the initial data satisfies

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}<\left(\frac{\varepsilon}{3}\right)^{4}
$$

then the solution satisfies

$$
\|u(t, \cdot)-\varphi(\cdot-\xi(t))\|_{H^{1}}<\varepsilon, \quad t \in(0, T)
$$

where $\xi(t)$ is a point of maximum for $u(t, \cdot)$.

Instability of peakons

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Assume that u_{0} is piecewise C^{1} with a single peak.

Instability of peakons

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Assume that u_{0} is piecewise C^{1} with a single peak.

Theorem (Natali-P. (2020); Madiyeva-P (2021))

For every $\delta>0$, there exist $t_{0}>0$ and $u_{0} \in H^{1} \cap W^{1, \infty}$ satisfying

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}+\left\|u_{0}^{\prime}-\varphi^{\prime}\right\|_{L^{\infty}}<\delta
$$

s.t. the unique solution $u \in C\left([0, T), H^{1} \cap W^{1, \infty}\right)$ with $T>t_{0}$ satisfies

$$
\left\|u_{x}\left(t_{0}, \cdot\right)-\varphi^{\prime}\left(\cdot-\xi\left(t_{0}\right)\right)\right\|_{L^{\infty}}>1
$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in[0, T)$.

Instability of peakons

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Assume that u_{0} is piecewise C^{1} with a single peak.

Weak formulation of the unique global conservative solution:

$$
\int_{0}^{\infty} \int_{\mathbb{R}}\left(u \psi_{t}+\frac{1}{2} u^{2} \psi_{x}-Q[u] \psi\right) d x d t+\int_{\mathbb{R}} u_{0}(x) \psi(0, x) d x=0
$$

where $\psi \in C_{c}^{1}\left(\mathbb{R}^{+} \times \mathbb{R}\right)$.

Instability of peakons

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Assume that u_{0} is piecewise C^{1} with a single peak.
\triangleright If $u \in H^{1}(\mathbb{R})$, then $Q[u] \in C(\mathbb{R})$.
\triangleright If $u \in H^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$, then $Q[u]$ is Lipschitz continuous.

Instability of peakons

Consider solutions of the Cauchy problem:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+Q[u]=0, \\
\left.u\right|_{t=0}=u_{0} \in H^{1} \cap W^{1, \infty},
\end{array} \quad Q[u]:=\varphi^{\prime} *\left(u^{2}+\frac{1}{2} u_{x}^{2}\right) .\right.
$$

Assume that u_{0} is piecewise C^{1} with a single peak.

If $u(t, \cdot) \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{\xi(t)\})$ for $t \in[0, T)$. Then, $\xi(t) \in C^{1}(0, T)$ and

$$
\frac{d \xi}{d t}=u(t, \xi(t)), \quad t \in(0, T)
$$

Decomposition near a single peakon

Consider a decomposition:
$u(t, x)=\varphi(x-c t-a(t))+v(t, x-c t-a(t)), \quad t \in[0, T), \quad x \in \mathbb{R}$, with the peak at $\xi(t)=c t+a(t)$ for $v(t, \cdot) \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{\xi(t)\})$.

Then,

$$
\begin{gathered}
(\varphi-c) \varphi^{\prime}+Q(\varphi)=0 \\
\frac{d a}{d t}=v(t, 0)
\end{gathered}
$$

and
$v_{t}=(c-\varphi) v_{x}+\left(\left.v\right|_{x=0}-v\right) \varphi^{\prime}+\left(\left.v\right|_{x=0}-v\right) v_{x}-\varphi^{\prime} *\left(\varphi v+\frac{1}{2} \varphi^{\prime} v_{x}\right)-Q[v]$.

Decomposition near a single peakon

Consider a decomposition:
$u(t, x)=\varphi(x-c t-a(t))+v(t, x-c t-a(t)), \quad t \in[0, T), \quad x \in \mathbb{R}$, with the peak at $\xi(t)=c t+a(t)$ for $v(t, \cdot) \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{\xi(t)\})$.

Due to

$$
[v(0)-v(x)] \varphi^{\prime}(x)-\varphi^{\prime} * \varphi v-\frac{1}{2} \varphi^{\prime} * \varphi^{\prime} v_{x}=\varphi(x) \int_{0}^{x} v(y) d y
$$

the evolution of $v(t, x)$ simplifies to

$$
v_{t}=(c-\varphi) v_{x}+\varphi w+\left(\left.v\right|_{x=0}-v\right) v_{x}-Q[v],
$$

where $w(t, x)=\int_{0}^{x} v(t, y) d y$.

Linearized evolution

Truncation of the quadratic terms yields the linearized problem:

$$
\left\{\begin{array}{l}
v_{t}=(c-\varphi) v_{x}+\varphi w, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}(x)
\end{array}\right.
$$

where $w(t, x)=\int_{0}^{x} v(t, y) d y$.
Solution with the method of characteristic curves:

$$
x=X(t, s), \quad v(t, X(t, s))=V(t, s), \quad w(t, X(t, s))=W(t, s) .
$$

Linearized evolution

Truncation of the quadratic terms yields the linearized problem:

$$
\left\{\begin{array}{l}
v_{t}=(c-\varphi) v_{x}+\varphi w, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}(x)
\end{array}\right.
$$

where $w(t, x)=\int_{0}^{x} v(t, y) d y$.
The evolution problem splits into

$$
\left\{\begin{array} { l }
{ \frac { d X } { d t } = \varphi (X) - c , } \\
{ X | _ { t = 0 } = s , }
\end{array} \quad \left\{\begin{array} { l }
{ \frac { d W } { d t } = \varphi ^ { \prime } (X) W , } \\
{ W | _ { t = 0 } = w _ { 0 } (s) , }
\end{array} \quad \left\{\begin{array}{l}
\frac{d V}{d t}=\varphi(X) W \\
\left.V\right|_{t=0}=v_{0}(s)
\end{array}\right.\right.\right.
$$

Since φ is Lipschitz, there exists unique characteristic function $X(t, s)$ for each $s \in \mathbb{R}$. The peak location $X(t, 0)=0$ is invariant in time.

Properties of the linearized evolution

Assume $v_{0} \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{0\})$. For every $t>0$, we proved that

$$
\begin{aligned}
& \triangleright\|v(t, \cdot)\|_{L^{\infty}} \leq C \text { for some } C>0 \\
& \triangleright\|v(t, \cdot)\|_{H^{1}}^{2}=C_{+} e^{t}+C_{0}+C_{-} e^{-t} \text { for some } C_{+}, C_{0}, C_{-}
\end{aligned}
$$

Properties of the linearized evolution

Assume $v_{0} \in H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{0\})$. For every $t>0$, we proved that

$$
\begin{aligned}
& \triangleright\|v(t, \cdot)\|_{L^{\infty}} \leq C \text { for some } C>0 \\
& \triangleright\|v(t, \cdot)\|_{H^{1}}^{2}=C_{+} e^{t}+C_{0}+C_{-} e^{-t} \text { for some } C_{+}, C_{0}, C_{-}
\end{aligned}
$$

It may seem that the growth of $\|v(t, \cdot)\|_{H^{1}}^{2}$ contradicts to H^{1} orbital stability of peakons, but $v(t, \cdot)$ satisfies the linearized equations of motion and indicates linear and spectral instability of peakons in H^{1}.

Illustration of the linear instability

Figure: The plots of $v(t, x)$ versus x on $[-2 \pi, 2 \pi]$ for different values of t in the case $v_{0}(x)=\sin (x)$.

Nonlinear evolution

Recall the evolution problem:

$$
\left\{\begin{array}{l}
v_{t}=(c-\varphi) v_{x}+\varphi w+\left(\left.v\right|_{x=0}-v\right) v_{x}-Q[v], \quad t \in(0, T) \\
\left.v\right|_{t=0}=v_{0}(x)
\end{array}\right.
$$

where $w(t, x)=\int_{0}^{x} v(t, y) d y$ and $Q[v]:=\varphi^{\prime} *\left(v^{2}+\frac{1}{2} v_{x}^{2}\right)$.
Solution with the method of characteristic curves:

$$
x=X(t, s), \quad v(t, X(t, s))=V(t, s), \quad w(t, X(t, s))=W(t, s) .
$$

Nonlinear evolution

Recall the evolution problem:

$$
\left\{\begin{array}{l}
v_{t}=(c-\varphi) v_{x}+\varphi w+\left(\left.v\right|_{x=0}-v\right) v_{x}-Q[v], \quad t \in(0, T) \\
\left.v\right|_{t=0}=v_{0}(x)
\end{array}\right.
$$

where $w(t, x)=\int_{0}^{x} v(t, y) d y$ and $Q[v]:=\varphi^{\prime} *\left(v^{2}+\frac{1}{2} v_{x}^{2}\right)$.
The characteristic coordinates $X(t, s)$ satisfies

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=\varphi(X)-1+v(t, X)-v(t, 0), \quad t \in(0, T) \\
\left.X\right|_{t=0}=s
\end{array}\right.
$$

Since φ is Lipschitz, there exists the unique characteristic function $X(t, s)$ for each $s \in \mathbb{R}$ if $v(t, \cdot)$ remains in $H^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R} \backslash\{0\})$ The peak location $X(t, 0)=0$ is invariant in time.

Instability theorem

Theorem (Natali-P. (2020); Madiyeva-P (2021))

For every $\delta>0$, there exist $t_{0}>0$ and $u_{0} \in H^{1} \cap W^{1, \infty}$ satisfying

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}+\left\|u_{0}^{\prime}-\varphi^{\prime}\right\|_{L^{\infty}}<\delta
$$

such that the unique solution $u \in C\left([0, T), H^{1} \cap W^{1, \infty}\right)$ with $T>t_{0}$ satisfies

$$
\left\|u_{x}\left(t_{0}, \cdot\right)-\varphi^{\prime}\left(\cdot-\xi\left(t_{0}\right)\right)\right\|_{L^{\infty}}>1
$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in[0, T)$.

Instability theorem

Theorem (Natali-P. (2020); Madiyeva-P (2021))

For every $\delta>0$, there exist $t_{0}>0$ and $u_{0} \in H^{1} \cap W^{1, \infty}$ satisfying

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}+\left\|u_{0}^{\prime}-\varphi^{\prime}\right\|_{L^{\infty}}<\delta
$$

such that the unique solution $u \in C\left([0, T), H^{1} \cap W^{1, \infty}\right)$ with $T>t_{0}$ satisfies

$$
\left\|u_{x}\left(t_{0}, \cdot\right)-\varphi^{\prime}\left(\cdot-\xi\left(t_{0}\right)\right)\right\|_{L^{\infty}}>1
$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in[0, T)$.

From the right side of the peak, $V_{0}(t)=v(t, 0), U_{0}(t)=v_{x}\left(t, 0^{+}\right)$:

$$
\frac{d U_{0}}{d t}=U_{0}+V_{0}+V_{0}^{2}-\frac{1}{2} U_{0}^{2}-P[v](0), \quad P[v]:=\varphi *\left(v^{2}+\frac{1}{2} v_{x}^{2}\right) .
$$

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)] If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon .
$$

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon
$$

From the equation on the right side of the peak:

$$
\frac{d U_{0}}{d t}=U_{0}+V_{0}+V_{0}^{2}-\frac{1}{2} U_{0}^{2}-P[v](0)
$$

and since $P[v]>0$, we have

$$
\frac{d U_{0}}{d t} \leq U_{0}+C \varepsilon \quad \Rightarrow \quad U_{0}(t) \leq\left[U_{0}(0)+C \varepsilon\right] e^{t}
$$

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon .
$$

If $U_{0}(0)=-2 C \varepsilon$, then

$$
U_{0}(t) \leq-C \varepsilon e^{t}
$$

hence $\left|U_{0}\left(t_{0}\right)\right| \geq 1$ for $t_{0}:=-\log (C \varepsilon)$.

Proof of instability

From orbital stability in H^{1} [A. Constant, W. Strauss (2000)]
If $\left\|v_{0}\right\|_{H^{1}}<(\varepsilon / 3)^{4}$, then

$$
\left|V_{0}(t)\right| \leq\|v(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|v(t, \cdot)\|_{H^{1}}<\varepsilon
$$

If $U_{0}(0)=-2 C \varepsilon$, then

$$
U_{0}(t) \leq-C \varepsilon e^{t}
$$

hence $\left|U_{0}\left(t_{0}\right)\right| \geq 1$ for $t_{0}:=-\log (C \varepsilon)$.
The initial constraint $\left\|v_{0}\right\|_{L^{\infty}}+\left\|v_{0}^{\prime}\right\|_{L^{\infty}}<\delta$, is satisfied if $\forall \delta>0, \exists \varepsilon>0$ such that

$$
\left(\frac{\varepsilon}{3}\right)^{4}+2 C \varepsilon<\delta
$$

Strong instability theorem

Theorem (Natali-P. (2020); Madiyeva-P (2021))

For every $\delta>0$, there exist $u_{0} \in H^{1} \cap W^{1, \infty}$ satisfying

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}+\left\|u_{0}^{\prime}-\varphi^{\prime}\right\|_{L^{\infty}}<\delta
$$

such that the maximal existence time of the unique solution $u \in C\left([0, T), H^{1} \cap W^{1, \infty}\right)$ is finite.

Strong instability theorem

Theorem (Natali-P. (2020); Madiyeva-P (2021))

For every $\delta>0$, there exist $u_{0} \in H^{1} \cap W^{1, \infty}$ satisfying

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}+\left\|u_{0}^{\prime}-\varphi^{\prime}\right\|_{L^{\infty}}<\delta
$$

such that the maximal existence time of the unique solution $u \in C\left([0, T), H^{1} \cap W^{1, \infty}\right)$ is finite.

From the right side of the peak, $V_{0}(t)=V(t, 0), U_{0}(t)=U(t,+0)$:

$$
\frac{d U_{0}}{d t}=U_{0}+V_{0}+V_{0}^{2}-\frac{1}{2} U_{0}^{2}-P[v](0) \leq U_{0}-\frac{1}{2} U_{0}^{2}+C \varepsilon .
$$

is controlled by Ricatti differential inequality.

Strong instability theorem

Theorem (Natali-P. (2020); Madiyeva-P (2021))

For every $\delta>0$, there exist $u_{0} \in H^{1} \cap W^{1, \infty}$ satisfying

$$
\left\|u_{0}-\varphi\right\|_{H^{1}}+\left\|u_{0}^{\prime}-\varphi^{\prime}\right\|_{L^{\infty}}<\delta
$$

such that the maximal existence time of the unique solution $u \in C\left([0, T), H^{1} \cap W^{1, \infty}\right)$ is finite.

By the ODE comparison theory, $U_{0}(t) \leq \bar{U}(t)$, where the supersolution satisfies

$$
\frac{d \bar{U}}{d t}=\bar{U}-\frac{1}{2} \bar{U}^{2}+C \varepsilon
$$

with $U_{0}(0)=\bar{U}(0)=-C \varepsilon$ and $\bar{U}(t) \rightarrow-\infty$ as $t \rightarrow \bar{T}$.

Concluding remarks

1. Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for $u_{0} \in H^{1} \cap W^{1, \infty}$ and wave breaking in a finite time: $u_{x}(t, x) \rightarrow-\infty$ at some $x \in \mathbb{R}$. [De Lellis, Kappeler \& Topalov (2007)] [Linares, Ponce, \& Sideris (2019)]
2. It follows from the method of characteristics that if $v_{0} \in C^{1}(\mathbb{R})$, then $v(t, \cdot) \notin C^{1}(\mathbb{R})$ for $t>0$ due to the single peak at $x=\xi(t)$:

$$
u(t, x)=\varphi(x-c t-a(t))+v(t, x-c t-a(t)), \quad t \in[0, T)
$$

3. The H^{1} orbital stability results on peakons are misleading as the perturbations near the peakon are growing in $W^{1, \infty}$ norm.
4. Instability of peakons can be confirmed from the spectral stability analysis for the b-family of Camassa-Holm equations [Lafortune \& Pelinovsky (2022)]

Summary

We considered the Camassa-Holm equation

$$
u_{t}+3 u u_{x}-u_{t x x}=2 u_{x} u_{x x}+u u_{x x x}
$$

which models small-amplitude waves in shallow fluids.
\triangleright Smooth periodic and solitary waves are stable in $H^{1} \cap W^{1, \infty}$
\triangleright Key idea: use alternative Hamiltonian structure
\triangleright Linearized operator has only one negative eigenvalue
\triangleright TW is constrained minimizer of action functional
\triangleright Peaked periodic and solitary waves are unstable in $H^{1} \cap W^{1, \infty}$
\triangleright LWP only holds in $H^{1} \cap W^{1, \infty}$.
\triangleright Perturbations are bounded in H^{1}.
\triangleright Perturbations grow in $W^{1, \infty}$.

