Stability of periodic waves in the reduced Ostrovsky equation

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Joint work with Anna Geyer
(Delft University of Technology, Netherlands)

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where u is a real-valued function of (x, t) and $p \in \mathbb{N}$.

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where u is a real-valued function of (x, t) and $p \in \mathbb{N}$.
\triangleright For $p=1$, the equation arises as $\beta \rightarrow 0$ from the Ostrovsky equation

$$
\left(u_{t}+u u_{x}+\beta u_{x x x}\right)_{x}=\gamma u
$$

derived in the context of long gravity waves in a rotating fluid, as a generalization of the KdV equation ($\gamma=0$). [Ostrovsky, 1978]
\triangleright For $p=2$, the equation arises from the modified equation

$$
\left(u_{t}+u^{2} u_{x}+\beta u_{x x x}\right)_{x}=\gamma u
$$

derived from Euler's equations in the context of internal waves [Grimshaw et al., 1998].

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where $p \in \mathbb{N}$ and u is a real-valued function of (x, t).
\triangleright Local well-posedness in H^{s} for $s>3 / 2$. [Stefanov et. al., 2010]

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where $p \in \mathbb{N}$ and u is a real-valued function of (x, t).
\triangleright Local well-posedness in H^{s} for $s>3 / 2$. [Stefanov et. al., 2010]
\triangleright Solutions break in finite time for sufficiently large initial data. [Liu \& P. \& Sakovich 2009, 2010 for $p=1, p=2$.]

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

where $p \in \mathbb{N}$ and u is a real-valued function of (x, t).
\triangleright Local well-posedness in H^{s} for $s>3 / 2$. [Stefanov et. al., 2010]
\triangleright Solutions break in finite time for sufficiently large initial data.
[Liu \& P. \& Sakovich 2009, 2010 for $p=1, p=2$.]
\triangleright Global solutions exist for sufficiently small initial data. [Stefanov et. al., 2010 for $p \geq 4$, P \& Sakovich 2010 for $p=2$,
Grimshaw \& P. 2014 for $p=1]$

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$
\triangleright The equations can be transformed to an integrable equation of Klein-Gordon type by a solution-dependent coordinate change. [Vakhnenko \& Parkes, 1998], [Kraenkel \& Leblond \& Manna 2014]

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$
\triangleright The equations can be transformed to an integrable equation of Klein-Gordon type by a solution-dependent coordinate change. [Vakhnenko \& Parkes, 1998], [Kraenkel \& Leblond \& Manna 2014]
\triangleright For $p=1$: explicit periodic traveling waves exist; smooth solutions in terms of Jacobi elliptic functions
[Grimshaw \& Helfrich \& Johnson 2012], peaked solutions with parabolic shape [Ostrovsky, 1978]

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$
\triangleright The equations can be transformed to an integrable equation of Klein-Gordon type by a solution-dependent coordinate change. [Vakhnenko \& Parkes, 1998], [Kraenkel \& Leblond \& Manna 2014]
\triangleright For $p=1$: explicit periodic traveling waves exist; smooth solutions in terms of Jacobi elliptic functions
[Grimshaw \& Helfrich \& Johnson 2012], peaked solutions with parabolic shape [Ostrovsky, 1978]
\triangleright For $p=2$: the equation is different from the short-pulse equation derived from Maxwell's equations. [Schäfer \& Wayne, 2004]

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$
\triangleright Spectral stability of smooth periodic traveling waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$
\triangleright Spectral stability of smooth periodic traveling waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]
\triangleright Nonlinear stability for smooth periodic traveling waves for subharmonic perturbations. [Johnson \& P., 2016]

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$
\triangleright Spectral stability of smooth periodic traveling waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]
\triangleright Nonlinear stability for smooth periodic traveling waves for subharmonic perturbations. [Johnson \& P., 2016]

Goals:
\triangleright Part I: Stability of smooth periodic waves for arbitrary $p \in \mathbb{N}$.

Introduction

The generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

in the physically relevant cases: $p=1,2$
\triangleright Spectral stability of smooth periodic traveling waves for co-periodic perturbations. [Hakkaev \& Stanislavova \& Stefanov, 2017]
\triangleright Nonlinear stability for smooth periodic traveling waves for subharmonic perturbations. [Johnson \& P., 2016]

Goals:
\triangleright Part I: Stability of smooth periodic waves for arbitrary $p \in \mathbb{N}$.
\triangleright Part II: Instability of the limiting peaked periodic wave for $p=1$.

Traveling wave solutions

We are interested in existence and stability of traveling wave solutions of the form

$$
u(x, t)=U(x-c t)
$$

where $z=x-c t$ is the travelling wave coordinate and $c>0$ is the wave speed. The wave profile U is $2 T$-periodic.

Traveling wave solutions

We are interested in existence and stability of traveling wave solutions of the form

$$
u(x, t)=U(x-c t)
$$

where $z=x-c t$ is the travelling wave coordinate and $c>0$ is the wave speed. The wave profile U is $2 T$-periodic.

The wave profile U satisfies the boundary-value problem

$$
\left.\frac{d}{d z}\left(\left(c-U^{p}\right) \frac{d U}{d z}\right)+U(z)=0, \quad \begin{array}{l}
U(-T)=U(T) \tag{ODE}\\
U^{\prime}(-T)=U^{\prime}(T)
\end{array}\right\}
$$

where $\int_{-T}^{T} U(t) d t=0$, i.e. the periodic waves have zero mean.

Part I - Stability of smooth periodic solutions

We consider co-periodic perturbations of the traveling waves, that is, perturbations with the same period $2 T$.

Part I - Stability of smooth periodic solutions

We consider co-periodic perturbations of the traveling waves, that is, perturbations with the same period $2 T$.

Using $u(t, x)=U(z)+v(z) e^{\lambda t}$, where $z=x-c t$, the spectral stability problem for a perturbation of the wave profile U is given by

$$
\partial_{z} L v=\lambda v
$$

with the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

Here $\dot{L}_{\mathrm{per}}^{2}$ denote the space of L_{per}^{2} functions with zero mean and $P_{0}: L_{\text {per }}^{2} \mapsto \dot{L}_{\text {per }}^{2}$ is the projection operator that sets mean to zero.

Part I - Stability of smooth periodic solutions

We consider co-periodic perturbations of the traveling waves, that is, perturbations with the same period $2 T$.

Using $u(t, x)=U(z)+v(z) e^{\lambda t}$, where $z=x-c t$, the spectral stability problem for a perturbation of the wave profile U is given by

$$
\partial_{z} L v=\lambda v
$$

with the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

Here $\dot{L}_{\mathrm{per}}^{2}$ denote the space of L_{per}^{2} functions with zero mean and $P_{0}: L_{\text {per }}^{2} \mapsto \dot{L}_{\mathrm{per}}^{2}$ is the projection operator that sets mean to zero.

Definition

The travelling wave is spectrally stable with respect to co-periodic perturbations if the spectral problem $\partial_{z} L v=\lambda v$ with $v \in \dot{H}_{\mathrm{per}}^{1}(-T, T)$ has no eigenvalues $\lambda \notin i \mathbb{R}$.

Stability - course of action

\triangleright Construct a Lyapunov-type functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\left.\begin{array}{rl}
\text { (energy) } & H[u]
\end{array}=-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x\right] \text { (momentum) } \quad Q[u]=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2} .
$$

Stability - course of action

\triangleright Construct a Lyapunov-type functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\left.\begin{array}{rl}
\text { (energy) } & H[u]
\end{array}=-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x\right] \text { (momentum) } \quad Q[u]=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2} .
$$

\triangleright A traveling wave U is a critical point of $F[u]$, i.e. $\delta F[U]=0$.

Stability - course of action

\triangleright Construct a Lyapunov-type functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\left.\begin{array}{rl}
\text { (energy) } & H[u]
\end{array}=-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u u^{p+2} d x\right] \text { (momentum) } \quad Q[u]=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2} .
$$

\triangleright A traveling wave U is a critical point of $F[u]$, i.e. $\delta F[U]=0$.
\triangleright The Hessian of $F[u]$ is the operator L, i.e. $\delta^{2} F[U] v=\frac{1}{2}\langle L v, v\rangle$.

Stability - course of action

\triangleright Construct a Lyapunov-type functional:

$$
F[u]:=H[u]+c Q[u],
$$

where

$$
\begin{aligned}
\text { (energy) } \quad H[u] & =-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x \\
\text { (momentum) } \quad Q[u] & =\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}
\end{aligned}
$$

\triangleright A traveling wave U is a critical point of $F[u]$, i.e. $\delta F[U]=0$.
\triangleright The Hessian of $F[u]$ is the operator L, i.e. $\delta^{2} F[U] v=\frac{1}{2}\langle L v, v\rangle$.
\triangleright We will show that
a traveling wave U is a constrained minimizer of the energy $H[u]$ with fixed momentum $Q[u]$.

Stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

Stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

Indeed,

$$
\begin{aligned}
0 & =Q[U+v]-Q[U]=\frac{1}{2} \int_{-T}^{T}(U+v)^{2} d z-\frac{1}{2} \int_{-T}^{T} U^{2} d z \\
& =\int_{-T}^{T} U v d z+O\left(v^{2}\right) \\
& =\langle U, v\rangle
\end{aligned}
$$

Stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.

Stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.
\triangleright Hamilton-Krein index theory for the spectral problem

$$
\partial_{z} L v=\lambda v
$$

states that [Haragus \& Kapitula, 08]

$$
\# \text { unstable EV of } \partial_{z} L \leq \# \text { negative EV of }\left.L\right|_{U^{\perp}}
$$

Stability - course of action

\triangleright The constraint of fixed momentum $Q[u]:=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}=q$ is equivalent to restricting the self-adjoint linear operator L to the subspace

$$
U^{\perp}=\left\{v \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, v\rangle_{L_{\mathrm{per}}^{2}}=0\right\}
$$

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.
\triangleright Hamilton-Krein index theory for the spectral problem

$$
\partial_{z} L v=\lambda v
$$

states that [Haragus \& Kapitula, 08]

$$
\# \text { unstable EV of } \partial_{z} L \leq \# \text { negative EV of }\left.L\right|_{U^{\perp}}
$$

\triangleright Result: the smooth periodic wave U is stable. [Geyer \& P., LMP ' 17]

Existence of periodic traveling waves

Let $c>0$ and $p \in \mathbb{N}$. A function U is a smooth periodic solution of

$$
\begin{equation*}
\frac{d}{d z}\left(\left(c-U^{p}\right) \frac{d U}{d z}\right)+U=0 \tag{ODE}
\end{equation*}
$$

iff $(u, v)=\left(U, U^{\prime}\right)$ is a periodic orbit γ_{E} of the planar system

$$
\left\{\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =\frac{-u+p u^{p-1} v^{2}}{c-u^{p}}
\end{aligned}\right.
$$

which has the first integral

$$
E(u, v)=\frac{1}{2}\left(c-u^{p}\right)^{2} v^{2}+\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2} .
$$

Note that $c-U(z)^{p}>0$ for every z if U is smooth.

Existence of periodic traveling waves

Let $c>0$ and $p \in \mathbb{N}$. A function U is a smooth periodic solution of

$$
\begin{equation*}
\frac{d}{d z}\left(\left(c-U^{p}\right) \frac{d U}{d z}\right)+U=0 \tag{ODE}
\end{equation*}
$$

if and only if $(u, v)=\left(U, U^{\prime}\right)$ is a periodic orbit γ_{E} of the planar system with first integral $E(u, v)=\frac{1}{2}\left(c-u^{p}\right)^{2} v^{2}+\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2}$.

There exists a smooth family of periodic solutions $U \in \dot{H}_{\text {per }}^{\infty}$ of (ODE) parametrized by the energy $E \in\left(0, E_{c}\right)$.

Monotonicity of energy-to-period map

For every $c>0$ and $p \in \mathbb{N}$ the period function

$$
T:\left(0, E_{c}\right) \longrightarrow \mathbb{R}^{+}, \quad E \longmapsto T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}
$$

is strictly monotonically decreasing: $T^{\prime}(E)<0$

Classical monotonicity criteria do not apply. [Chicone, Schaaf, 1980's]
Our proof is inspired by [Mañosas \& Villadelprat, 2009].

Monotonicity of energy-to-period map $T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}$

Recall the first integral

$$
E(u, v)=B(u) v^{2}+A(u), \quad B(u):=\frac{1}{2}\left(c-u^{p}\right)^{2}, \quad A(u):=\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2} .
$$

Monotonicity of energy-to-period map $T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}$

Recall the first integral
$E(u, v)=B(u) v^{2}+A(u), \quad B(u):=\frac{1}{2}\left(c-u^{p}\right)^{2}, \quad A(u):=\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2}$.
Since E is constant along an orbit γ_{E}, we find that

$$
2 E T(E)=\int_{\gamma_{E}} B(u) v d u+\int_{\gamma_{E}} A(u) \frac{d u}{v} .
$$

Monotonicity of energy-to-period map $T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}$

Recall the first integral

$$
E(u, v)=B(u) v^{2}+A(u), \quad B(u):=\frac{1}{2}\left(c-u^{p}\right)^{2}, \quad A(u):=\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2} .
$$

Since E is constant along an orbit γ_{E}, we find that

$$
2 E T(E)=\int_{\gamma_{E}} B(u) v d u+\int_{\gamma_{E}} A(u) \frac{d u}{v} .
$$

To resolve the singularity, note that

$$
\frac{d v}{d u}=\frac{\frac{d E}{d u}}{\frac{d E}{d v}}=\frac{B^{\prime}(u) v^{2}+A^{\prime}(u)}{2 B(u) v} .
$$

Monotonicity of energy-to-period map $T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}$

Since E is constant along an orbit γ_{E}, we find that

$$
2 E T(E)=\int_{\gamma_{E}} B(u) v d u+\int_{\gamma_{E}} A(u) \frac{d u}{v} .
$$

To resolve the singularity, note that

$$
\frac{d v}{d u}=\frac{B^{\prime}(u) v^{2}+A^{\prime}(u)}{2 B(u) v} .
$$

Then

$$
\begin{aligned}
0 & =\int_{\gamma_{E}} \mathrm{~d}(g(u) v)=\int_{\gamma_{E}} g^{\prime}(u) v \mathrm{~d} u+\int_{\gamma_{E}} g(u) \mathrm{d} v \\
& =\int_{\gamma_{E}}\left(g^{\prime}(u)-\frac{B^{\prime} g}{2 B}\right) v \mathrm{~d} u-\int_{\gamma_{E}} g \frac{A^{\prime}}{2 B} \frac{\mathrm{~d} u}{v}
\end{aligned}
$$

Monotonicity of energy-to-period map $T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}$

Since E is constant along an orbit γ_{E}, we find that

$$
2 E T(E)=\int_{\gamma_{E}} B(u) v d u+\int_{\gamma_{E}} A(u) \frac{d u}{v} .
$$

To resolve the singularity, note that

$$
\frac{d v}{d u}=\frac{B^{\prime}(u) v^{2}+A^{\prime}(u)}{2 B(u) v} .
$$

Then

$$
\begin{aligned}
0 & =\int_{\gamma_{E}} \mathrm{~d}(g(u) v)=\int_{\gamma_{E}} g^{\prime}(u) v \mathrm{~d} u+\int_{\gamma_{E}} g(u) \mathrm{d} v \\
& =\int_{\gamma_{E}}\left(g^{\prime}(u)-\frac{B^{\prime} g}{2 B}\right) v \mathrm{~d} u-\int_{\gamma_{E}} g \frac{A^{\prime}}{2 B} \frac{\mathrm{~d} u}{v}
\end{aligned}
$$

and choosing $g=\frac{2 B}{A^{\prime}} A$ we find

$$
0=\int_{\gamma_{E}} G(u) v \mathrm{~d} u-\int_{\gamma_{E}} A \frac{\mathrm{~d} u}{v} .
$$

[Grau, Mañosas \& Villadelprat, '11]

Monotonicity of energy-to-period map $T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}$

Recall the first integral

$$
E(u, v)=B(u) v^{2}+A(u), \quad B(u):=\frac{1}{2}\left(c-u^{p}\right)^{2}, \quad A(u):=\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2} .
$$

Since E is constant along an orbit γ_{E}, we find that

$$
2 E T(E)=\int_{\gamma_{E}} B(u) v d u+\int_{\gamma_{E}} A(u) \frac{d u}{v}=\int_{\gamma_{E}}(B(u)+G(u)) v \mathrm{~d} u .
$$

Taking the derivative w.r.t. E we obtain

$$
T^{\prime}(E)=-\frac{p}{4(2+p) E} \int_{\gamma_{E}} \frac{u^{p}}{\left(c-u^{p}\right)} \frac{d u}{v}<0 .
$$

Monotonicity of energy-to-period map $T(E)=\frac{1}{2} \int_{\gamma_{E}} \frac{d u}{v}$

Recall the first integral

$$
E(u, v)=B(u) v^{2}+A(u), \quad B(u):=\frac{1}{2}\left(c-u^{p}\right)^{2}, \quad A(u):=\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2} .
$$

Since E is constant along an orbit γ_{E}, we find that

$$
2 E T(E)=\int_{\gamma_{E}} B(u) v d u+\int_{\gamma_{E}} A(u) \frac{d u}{v}=\int_{\gamma_{E}}(B(u)+G(u)) v \mathrm{~d} u .
$$

Taking the derivative w.r.t. E we obtain

$$
T^{\prime}(E)=-\frac{p}{4(2+p) E} \int_{\gamma_{E}} \frac{u^{p}}{\left(c-u^{p}\right)} \frac{d u}{v}<0 .
$$

The period function is strictly monotone!

Operator L restricted to constrained space

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.

Operator L restricted to constrained space

- Claim: The operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.

This is true if the following two conditions hold:
[Vakhitov-Kolokolov, 1975], [Grillakis-Shatah-Strauss, 1987]
$\triangleright L$ has exactly one negative eigenvalue, a simple zero eigenvalue with eigenvector $\partial_{z} U$, and the rest of its spectrum is positive and bounded away from 0
$\triangleright\left\langle L^{-1} U, U\right\rangle=-\frac{d}{d c}\|U\|_{L_{\text {per }}^{2}(-T, T)}^{2}<0$, where the period T is fixed.
We show that these conditions hold using the fact that the energy-to-period map $T(E)$ is strictly monotone.

Spectral properties of the operator L

Recall the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

Spectral properties of the operator L

Recall the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

When $E \rightarrow 0$, then $U \rightarrow 0, T(E) \rightarrow T(0)=\sqrt{c} \pi$, and

$$
L \rightarrow L_{0}=P_{0}\left(\partial_{z}^{-2}+c\right) P_{0}
$$

$\sigma\left(L_{0}\right)=\left\{c\left(1-n^{-2}\right), n \in \mathbb{Z} \backslash\{0\}\right\}$ all eigenvalues are double.

Spectral properties of the operator L

Recall the self-adjoint linear operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

When $E \rightarrow 0$, then $U \rightarrow 0, T(E) \rightarrow T(0)=\sqrt{c} \pi$, and

$$
L \rightarrow L_{0}=P_{0}\left(\partial_{z}^{-2}+c\right) P_{0}
$$

$\sigma\left(L_{0}\right)=\left\{c\left(1-n^{-2}\right), n \in \mathbb{Z} \backslash\{0\}\right\}$ all eigenvalues are double.

When $E>0$ the double zero eigenvalue splits into a simple negative eigenvalue and a simple zero eigenvalue of L.

Spectral properties of the operator L

Consider the eigenvalue problem

$$
\left(\partial_{z}^{-2}+c-U^{p}\right) v=\lambda v, \quad v \in \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

Zero eigenvalue $\lambda_{0}=0$:
$\triangleright \partial_{z} U$ is an eigenvector for $\lambda_{0}: L \partial_{z} U=0$
$\triangleright U_{E}$ is also a solution of the spectral equation for $\lambda_{0}=0$:

$$
\partial_{E}(\mathrm{ODE}) \Longleftrightarrow U_{E}+\partial_{z}^{2}\left[\left(c-U^{p}\right) U_{E}\right]=0
$$

Spectral properties of the operator L

Consider the eigenvalue problem

$$
\left(\partial_{z}^{-2}+c-U^{p}\right) v=\lambda v, \quad v \in \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

Zero eigenvalue $\lambda_{0}=0$:
$\triangleright \partial_{z} U$ is an eigenvector for $\lambda_{0}: L \partial_{z} U=0$
$\triangleright U_{E}$ is also a solution of the spectral equation for $\lambda_{0}=0$:

$$
\partial_{E}(\mathrm{ODE}) \Longleftrightarrow U_{E}+\partial_{z}^{2}\left[\left(c-U^{p}\right) U_{E}\right]=0
$$

Differentiating the $\mathrm{BC} U(\pm T(E) ; E)=0$ w.r.t. E yields

$$
\partial_{E} U(-T(E) ; E)-T^{\prime}(E) \underbrace{\partial_{z} U(-T(E) ; E)}_{\neq 0}=\partial_{E} U(T(E) ; E)+T^{\prime}(E) \underbrace{\partial_{z} U(T(E) ; E)}_{\neq 0} .
$$

Since $T^{\prime}(E) \neq 0$ the solution U_{E} is not $2 T(E)$-periodic!
\rightsquigarrow the zero eigenvalue is simple, i.e. $\operatorname{Ker}(L)=\operatorname{span}\left\{U_{z}\right\}$.

Spectral properties of the operator L

Sign condition $-\frac{d}{d c}\|U\|_{L_{\operatorname{per}}^{2}(-T, T)}^{2}<0$, where the period T is fixed.
Here the monotonicity $T^{\prime}(E)<0$ also plays a role.

For fixed c, the map $E \mapsto T$ is monotonically decreasing for $E \in\left(0, E_{c}\right)$ with $T(0)=\pi c^{1 / 2}$.
For fixed T, the map $c \mapsto E$ is monotonically increasing for $c \in\left(c_{0}, c_{*}\right)$ with $c_{0}=T^{2} / \pi^{2}$.

Summary - Part I

\triangleright We consider smooth periodic traveling waves $u(x, t)=U(x-c t)$ of the generalized reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

\triangleright The spectral stability problem is given by

$$
\partial_{z} L v=\lambda v
$$

\triangleright For every $p \in \mathbb{N}$ and every c for which smooth U exists, the operator $\left.L\right|_{U^{\perp}}$ has a simple zero eigenvalue and a positive spectrum bounded away from zero.
\triangleright Hamilton-Krein index theory implies
\# unstable EV of $\partial_{z} L \leq$ \#negative EV of $\left.L\right|_{U^{\perp}}$

- Result: the smooth periodic traveling waves U are spectrally stable. [Geyer \& P., LMP ' 17]

Part II - Peaked periodic wave

We now consider the peaked periodic traveling waves of the reduced Ostrovsky equation ($p=1$)

$$
\left(u_{t}+u u_{x}\right)_{x}=u
$$

Part II - Peaked periodic wave

Some results for periodic waves of other equations:
\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et. al. 2009,2010]

Part II - Peaked periodic wave

Some results for periodic waves of other equations:
\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et. al. 2009,2010]
\triangleright Camassa-Holm equation: both smooth and peaked are stable [Constantin \& Strauss, 2000], [Lenells, 2005]

Part II - Peaked periodic wave

Some results for periodic waves of other equations:
\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et. al. 2009,2010]
\triangleright Camassa-Holm equation: both smooth and peaked are stable [Constantin \& Strauss, 2000], [Lenells, 2005]
\triangleright Whitham equation: small amplitude smooth solutions are stable, but become unstable as they approach the peaked solution. [Carter, Kalisch et. al. 2014]

Part II - Peaked periodic wave

Some results for periodic waves of other equations:
\triangleright KdV equation: smooth solutions are stable, no peaked solutions [Deconinck et. al. 2009,2010]
\triangleright Camassa-Holm equation: both smooth and peaked are stable [Constantin \& Strauss, 2000], [Lenells, 2005]
\triangleright Whitham equation: small amplitude smooth solutions are stable, but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]
\triangleright Ostrovsky equation: all smooth solutions are stable, but the limiting peaked solution is unstable.
[Geyer \& P. 2018]

Peaked periodic wave

The 2π periodic traveling wave solutions $U(z)$ satisfy the BVP

$$
\left\{\begin{array}{l}
{[c-U(z)] U^{\prime}(z)+\left(\partial_{z}^{-1} U\right)(z)=0, \quad z \in(-\pi, \pi)} \\
U(-\pi)=U(\pi)
\end{array}\right.
$$

where $z=x-c t$ and $\int_{-\pi}^{\pi} U(z) d z=0$.

Peaked periodic wave

The 2π periodic traveling wave solutions $U(z)$ satisfy the BVP

$$
\left\{\begin{array}{l}
{[c-U(z)] U^{\prime}(z)+\left(\partial_{z}^{-1} U\right)(z)=0, \quad z \in(-\pi, \pi)} \\
U(-\pi)=U(\pi)
\end{array}\right.
$$

where $z=x-c t$ and $\int_{-\pi}^{\pi} U(z) d z=0$.
Lemma (Existence of smooth periodic traveling waves)
There exists $c_{*}>1$ such that for every $c \in\left(1, c_{*}\right)$, the BVP admits a unique smooth periodic wave U satisfying $U(z)<c$ for $z \in[-\pi, \pi]$.

Peaked periodic wave

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

Peaked periodic wave

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

Peaked periodic wave

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

\triangleright The peaked periodic wave $U_{*} \in \dot{H}_{\mathrm{per}}^{s}(-\pi, \pi)$ for $s<3 / 2$:

$$
U_{*}(z)=\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{3 n^{2}} \cos (n z)
$$

Peaked periodic wave

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

\triangleright The peaked periodic wave $U_{*} \in \dot{H}_{\text {per }}^{s}(-\pi, \pi)$ for $s<3 / 2$:

$$
U_{*}(z)=\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{3 n^{2}} \cos (n z)
$$

$\triangleright U_{*}(z)<c_{*}$ for $z \in(-\pi, \pi), U_{*}(\pm \pi)=c_{*}$, and $U_{*}^{\prime}(\pm \pi)= \pm \pi / 3$.

Peaked periodic wave

For $c=c_{*}:=\pi^{2} / 9$ there exists a solution with parabolic profile

$$
U_{*}(z):=\frac{3 z^{2}-\pi^{2}}{18}, \quad z \in[-\pi, \pi]
$$

which can be periodically continued.

Lemma

The peaked periodic wave U_{*} is the unique solution with a jump discontinuity in the derivative at $z= \pm \pi$.

Spectral stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

or equivalently

$$
v_{t}=\partial_{z} L v, \quad \text { where } L=P_{0}\left(\partial_{z}^{-2}+c_{*}-U_{*}\right) P_{0}: \quad \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2} .
$$

Spectral stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

or equivalently

$$
v_{t}=\partial_{z} L v, \quad \text { where } L=P_{0}\left(\partial_{z}^{-2}+c_{*}-U_{*}\right) P_{0}: \quad \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2} .
$$

Lemma

The spectrum of the self-adjoint operator L is $\sigma(L)=\left\{\lambda_{-}\right\} \cup\left[0, \frac{\pi^{2}}{6}\right]$.

Spectral stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

or equivalently

$$
v_{t}=\partial_{z} L v, \quad \text { where } L=P_{0}\left(\partial_{z}^{-2}+c_{*}-U_{*}\right) P_{0}: \quad \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2} .
$$

Lemma

The spectrum of the self-adjoint operator L is $\sigma(L)=\left\{\lambda_{-}\right\} \cup\left[0, \frac{\pi^{2}}{6}\right]$.

The spectral stability problem can not be solved by applying standard energy methods due to the lack of coercivity.

Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Goal: show that the peaked periodic wave is linearly unstable.

Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to the travelling wave U :

$$
\left\{\begin{array}{l}
v_{t}+\partial_{z}\left[\left(U_{*}(z)-c_{*}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

Goal: show that the peaked periodic wave is linearly unstable.

Definition

The travelling wave U is linearly stable if for every $v_{0} \in \dot{H}_{\text {per }}^{1}$ satisfying $\left\langle U, v_{0}\right\rangle_{L^{2}}=0$, there exists a unique global solution $v \in C\left(\mathbb{R}, \dot{H}_{\text {per }}^{1}\right)$ to (linO) s.t.

$$
\|v(t)\|_{H_{\mathrm{per}}^{1}} \leq C\left\|v_{0}\right\|_{H_{\mathrm{per}}^{1}}, \quad t>0
$$

Otherwise, it is said to be linearly unstable.

Linear instability of the peaked periodic wave

\triangleright Step 1: The truncated problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=0, \quad t>0 \tag{truncO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1}
\end{array}\right.
$$

Linear instability of the peaked periodic wave

\triangleright Step 1: The truncated problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=0, \quad t>0 \tag{truncO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1} .
\end{array}\right.
$$

Method of characteristics. The family of char. curves $z=Z(s, t)$ can be solved explicitly and the solution of $V(s, t):=v(Z(s, t), t)$ is

$$
V(s, t)=\frac{1}{\pi^{2}}[\pi \cosh (\pi t / 6)-s \sinh (\pi t / 6)]^{2} v_{0}(s), \quad s \in[-\pi, \pi], \quad t \in \mathbb{R}
$$

Linear instability of the peaked periodic wave

\triangleright Step 1: The truncated problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=0, \quad t>0 \tag{truncO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1}
\end{array}\right.
$$

Method of characteristics. The family of char. curves $z=Z(s, t)$ can be solved explicitly and the solution of $V(s, t):=v(Z(s, t), t)$ is

$$
V(s, t)=\frac{1}{\pi^{2}}[\pi \cosh (\pi t / 6)-s \sinh (\pi t / 6)]^{2} v_{0}(s), \quad s \in[-\pi, \pi], \quad t \in \mathbb{R}
$$

This yields the linear instability result for the truncated problem:

Lemma

For every $v_{0} \in \dot{H}_{\text {per }}^{1} \exists$! global solution $v \in C\left(\mathbb{R}, \dot{H}_{\mathrm{per}}^{1}\right)$ to (truncO).
If v_{0} is odd, then the global solution satisfies

$$
\frac{1}{2}\left\|v_{0}\right\|_{L^{2} e^{\pi t / 6}} \leq\|v(t)\|_{L^{2}} \leq\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6}, \quad t>0 .
$$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1}
\end{array}\right.
$$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1}
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1}
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{H}_{\mathrm{per}}^{1}$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0 \tag{linO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1}
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{H}_{\mathrm{per}}^{1}$
\triangleright Bounded Perturbation Theorem: $A_{0}+\partial_{z}^{-1}$ is the generator of C^{0}-semigroup on $\dot{L}_{\text {per }}^{2}$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0, \tag{linO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1} .
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{H}_{\text {per }}^{1}$
\triangleright Bounded Perturbation Theorem: $A_{0}+\partial_{z}^{-1}$ is the generator of C^{0}-semigroup on $\dot{L}_{\text {per }}^{2}$

Lemma

For every $v_{0} \in \dot{H}_{\mathrm{per}}^{1} \exists$! global solution $v \in C\left(\mathbb{R}, \dot{H}_{\mathrm{per}}^{1}\right)$ to (linO).
If v_{0} is odd, then the solution satisfies

$$
C\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6} \leq\|v(t)\|_{L^{2}} \leq\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6}, \quad t>0 .
$$

Linear instability of the peaked periodic wave

\triangleright Step 2: The full evolution problem

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]=\partial_{z}^{-1} v, \quad t>0, \tag{linO}\\
\left.v\right|_{t=0}=v_{0} \in \dot{H}_{\mathrm{per}}^{1} .
\end{array}\right.
$$

Generalized Meth. of Char. Treat $\partial_{z}^{-1} v$ as a source term in (linO).
\triangleright truncated problem $v_{t}=A_{0} v$ has a unique global solution in $\dot{H}_{\text {per }}^{1}$
\triangleright Bounded Perturbation Theorem: $A_{0}+\partial_{z}^{-1}$ is the generator of C^{0}-semigroup on $\dot{L}_{\text {per }}^{2}$

Lemma

For every $v_{0} \in \dot{H}_{\mathrm{per}}^{1} \exists$! global solution $v \in C\left(\mathbb{R}, \dot{H}_{\mathrm{per}}^{1}\right)$ to (linO).
If v_{0} is odd, then the solution satisfies

$$
C\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6} \leq\|v(t)\|_{L^{2}} \leq\left\|v_{0}\right\|_{L^{2}} e^{\pi t / 6}, \quad t>0 .
$$

Conclusion: The reduced Ostrovsky equation is linearly unstable.

Nonlinear instability

Does linear instability of the peaked periodic wave U_{*} imply nonlinear instability?

Nonlinear instability

Does linear instability of the peaked periodic wave U_{*} imply nonlinear instability?
\triangleright True in finite dimensional case

Nonlinear instability

Does linear instability of the peaked periodic wave U_{*} imply nonlinear instability?
\triangleright True in finite dimensional case
\triangleright In infinite dimensions:

$$
v_{t}=A v+F(v)
$$

A is a linear operator generating a C^{0}-semigroup in Banach space X and F is strongly continuous in X If A has positive spectrum $\{\mathcal{R} \lambda>0\}$, then $v=0$ is nonlinearly unstable. [Shatah \& Strauss '00]

Nonlinear instability

Does linear instability of the peaked periodic wave U_{*} imply nonlinear instability?
\triangleright True in finite dimensional case
\triangleright In infinite dimensions:

$$
v_{t}=A v+F(v)
$$

A is a linear operator generating a C^{0}-semigroup in Banach space
X and F is strongly continuous in X
If A has positive spectrum $\{\mathcal{R} \lambda>0\}$, then $v=0$ is nonlinearly unstable. [Shatah \& Strauss '00]
\triangleright Here: $A=\partial_{z} L$ but

so we do not know whether the spectral assumption is satisfied.
\triangleright We need a different approach!

Nonlinear instability

Consider an orbit $\left\{U_{*}(z-a), a \in[-\pi, \pi]\right\}$ of the peaked wave U_{*}.

Nonlinear instability

Consider an orbit $\left\{U_{*}(z-a), a \in[-\pi, \pi]\right\}$ of the peaked wave U_{*}.

Definition

The travelling wave U is said to be orbitally stable if for every $\epsilon>0$, there exists $\delta>0$ such that
for every $u_{0} \in \dot{H}_{\text {per }}^{1}$ satisfying $\left\|u_{0}-U\right\|_{H_{\text {per }}^{1}}<\delta$, there exists a unique global solution $u \in C\left(\mathbb{R}, \dot{H}_{\text {per }}^{1}\right)$ to

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=\partial_{x}^{-1} u, \quad t>0 \tag{redO}\\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
$$

such that for every $t>0$,

$$
\inf _{a \in[-\pi, \pi]}\|u(t, \cdot)-U(\cdot-a)\|_{H_{\mathrm{per}}^{1}}<\epsilon
$$

Otherwise, the periodic wave U is said to be orbitally unstable.

Nonlinear instability

\triangleright We consider decomposition of the solution $u \in \dot{H}_{\mathrm{per}}^{1}$

$$
u(t, x)=U_{*}(x-c t-a(t))+v(t, x-c t-a(t))
$$

for a co-periodic perturbation $v \in \dot{H}_{\text {per }}^{s}$ with $s>3 / 2$ satisfying the orthogonality condition

$$
\left\langle\partial_{x} U_{*}, v\right\rangle_{L^{2}}=0 .
$$

Nonlinear instability

\triangleright We consider decomposition of the solution $u \in \dot{H}_{\mathrm{per}}^{1}$

$$
u(t, x)=U_{*}(x-c t-a(t))+v(t, x-c t-a(t))
$$

for a co-periodic perturbation $v \in \dot{H}_{\mathrm{per}}^{s}$ with $s>3 / 2$ satisfying the orthogonality condition

$$
\left\langle\partial_{x} U_{*}, v\right\rangle_{L^{2}}=0 .
$$

Such a decomposition always exists and is unique by an application of the inverse function theorem.

Nonlinear instability

\triangleright We consider decomposition of the solution $u \in \dot{H}_{\mathrm{per}}^{1}$

$$
u(t, x)=U_{*}(x-c t-a(t))+v(t, x-c t-a(t)), \quad\left\langle\partial_{x} U_{*}, v\right\rangle_{L^{2}}=0
$$

for a co-periodic perturbation $v \in \dot{H}_{\text {per }}^{s}$ with $s>3 / 2$ satisfying

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]+v \partial_{z} v=\partial_{z}^{-1} v+a^{\prime}(t)\left(\partial_{z} U_{*}+\partial_{z} v\right) \tag{CPv}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

where $z=x-c t-a(t)$.

Nonlinear instability

\triangleright We consider decomposition of the solution $u \in \dot{H}_{\mathrm{per}}^{1}$

$$
u(t, x)=U_{*}(x-c t-a(t))+v(t, x-c t-a(t)), \quad\left\langle\partial_{x} U_{*}, v\right\rangle_{L^{2}}=0
$$

for a co-periodic perturbation $v \in \dot{H}_{\text {per }}^{s}$ with $s>3 / 2$ satisfying

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]+v \partial_{z} v=\partial_{z}^{-1} v+a^{\prime}(t)\left(\partial_{z} U_{*}+\partial_{z} v\right) \tag{CPv}\\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

where $z=x-c t-a(t)$.
\triangleright Using the orthogonality condition we obtain an evolution equation for the translation parameter a :

$$
\left\{\begin{array}{l}
a^{\prime}(t)=-\frac{\left\langle\partial_{z} U, \partial_{z} L v\right\rangle_{L^{2}}-\left\langle\partial_{z} U, v \partial_{z} v\right\rangle_{L^{2}}}{\left\|\partial_{z} U\right\|_{L^{2}}^{2}+\left\langle\partial_{z} U, \partial_{z} v\right\rangle_{L^{2}}}, \quad t>0 \tag{CPa}\\
a(0)=0
\end{array}\right.
$$

Nonlinear instability

Theorem (Orbital instability)

There exists $\epsilon>0$ such that for every small $\delta>0$, there exists $v_{0} \in \dot{H}_{\text {per }}^{s}$ satisfying

$$
\left\|v_{0}\right\|_{H_{\mathrm{per}}^{\mathrm{s}}} \leq \delta
$$

s.t. the unique solution $v \in C\left([0, T], \dot{H}_{\mathrm{per}}^{s}\right)$ to $(\mathrm{CPv})-(\mathrm{CPa})$ satisfies

$$
\left\|v\left(t_{1}\right)\right\|_{L^{2}} \geq \epsilon
$$

for some $t_{1} \in(0, T)$ with $T=\mathcal{O}\left(\delta^{-1}\right), a \in C([0, T], \mathbb{R})$ and $s>3 / 2$.

Nonlinear instability - Proof

\triangleright Write (CPv)

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]+v \partial_{z} v=\partial_{z}^{-1} v+a^{\prime}(t)\left(\partial_{z} U_{*}+\partial_{z} v\right) \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

as the inhomogeneous evolution equation

$$
v_{t}=A v+F(v)
$$

where $A:=A_{0}+\partial_{z}^{-1}$ generates the C^{0}-semigroup in $\dot{L}_{\text {per }}^{2}$ and $F(v): \dot{L}_{\text {per }}^{2} \rightarrow \dot{L}_{\text {per }}^{2}$ is continuous.

Nonlinear instability - Proof

\triangleright Write (CPv)

$$
\left\{\begin{array}{l}
v_{t}+\frac{1}{6} \partial_{z}\left[\left(z^{2}-\pi^{2}\right) v\right]+v \partial_{z} v=\partial_{z}^{-1} v+a^{\prime}(t)\left(\partial_{z} U_{*}+\partial_{z} v\right) \\
\left.v\right|_{t=0}=v_{0}
\end{array}\right.
$$

as the inhomogeneous evolution equation

$$
v_{t}=A v+F(v)
$$

where $A:=A_{0}+\partial_{z}^{-1}$ generates the C^{0}-semigroup in $\dot{L}_{\text {per }}^{2}$ and $F(v): \dot{L}_{\text {per }}^{2} \rightarrow \dot{L}_{\text {per }}^{2}$ is continuous.
\triangleright Every solution v to (CPv) satisfies the integral formulation

$$
v(t)=S(t) v_{0}+\int_{0}^{t} S(t-s) F(s) d s, \quad t \in[0, T]
$$

Nonlinear instability - Proof

\triangleright Every solution v of (CPv) satisfies the integral formulation

$$
v(t)=S(t) v_{0}+\int_{0}^{t} S(t-s) F(s) d s, \quad t \in[0, T]
$$

\triangleright Using bounds from linear theory

$$
C\left\|v_{0}\right\|_{L_{\text {per }}^{2}} e^{\pi t / 6} \leq\left\|S(t) v_{0}\right\|_{L_{\text {per }}^{2}} \leq\left\|v_{0}\right\|_{L_{\text {per }}^{2}} e^{\pi t / 6}
$$

Nonlinear instability - Proof

\triangleright Every solution v of (CPv) satisfies the integral formulation

$$
v(t)=S(t) v_{0}+\int_{0}^{t} S(t-s) F(s) d s, \quad t \in[0, T]
$$

\triangleright Using bounds from linear theory

$$
C\left\|v_{0}\right\|_{L_{\text {per }}^{2}} e^{\pi t / 6} \leq\left\|S(t) v_{0}\right\|_{L_{\text {per }}^{2}} \leq\left\|v_{0}\right\|_{L_{\text {per }}^{2}} e^{\pi t / 6}
$$

\triangleright we obtain

$$
\|v(t)\|_{L^{2}} \geq C\left\|v_{0}\right\|_{L^{2} e^{\pi t / 6}}-\int_{0}^{t} e^{\pi\left(t-t^{\prime}\right) / 6}\left\|F\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime}
$$

\triangleright Using the translation equation (CPa) for $a(t)$, we obtain that for any fixed $\varepsilon>0$ there exists $t_{1} \in[0, T]$ such that

$$
\|v(t)\|_{L_{\text {per }}^{2}} \geq e^{\pi t / 6} C(\delta) \geq \varepsilon, \quad t \in\left[t_{1}, T\right]
$$

Nonlinear instability - Proof

\triangleright Every solution v of (CPv) satisfies the integral formulation

$$
v(t)=S(t) v_{0}+\int_{0}^{t} S(t-s) F(s) d s, \quad t \in[0, T]
$$

\triangleright Using bounds from linear theory

$$
C\left\|v_{0}\right\|_{L_{\text {per }}^{2}} e^{\pi t / 6} \leq\left\|S(t) v_{0}\right\|_{L_{\text {per }}^{2}} \leq\left\|v_{0}\right\|_{L_{\text {per }}^{2}} e^{\pi t / 6}
$$

\triangleright we obtain

$$
\|v(t)\|_{L^{2}} \geq C\left\|v_{0}\right\|_{L^{2} e^{\pi t / 6}}-\int_{0}^{t} e^{\pi\left(t-t^{\prime}\right) / 6}\left\|F\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime}
$$

\triangleright Using the translation equation (CPa) for $a(t)$, we obtain that for any fixed $\varepsilon>0$ there exists $t_{1} \in[0, T]$ such that

$$
\|v(t)\|_{L_{\text {per }}^{2}} \geq e^{\pi t / 6} C(\delta) \geq \varepsilon, \quad t \in\left[t_{1}, T\right]
$$

\triangleright This yields orbital instability of U_{*}.

Summary

\triangleright Periodic traveling waves of the reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

\triangleright The smooth periodic waves are spectrally stable for any $p \in \mathbb{N}$. [Geyer \& P., LMP 2017]
\triangleright The peaked periodic wave is linearly and nonlinearly unstable for $p=1$. [Geyer \& P., SIMA 2018]

Further questions

\triangleright Periodic traveling waves of the reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

\triangleright Are the smooth periodic waves transversally stable?
\triangleright Are they stable w.r.t. subharmonic perturbations?
\triangleright Is the peaked periodic wave unstable for $p=2$?

Further questions

\triangleright Periodic traveling waves of the reduced Ostrovsky equation

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

\triangleright Are the smooth periodic waves transversally stable?
\triangleright Are they stable w.r.t. subharmonic perturbations?
\triangleright Is the peaked periodic wave unstable for $p=2$?

Thank you for your attention!

