
Stability of periodic waves
in the reduced Ostrovsky equation

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u

v

Joint work with Anna Geyer
(Delft University of Technology, Netherlands)

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 1 / 33



Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

where u is a real-valued function of (x, t) and p ∈ N.

. For p = 1, the equation arises as β → 0 from the Ostrovsky
equation

(ut + uux + βuxxx)x = γu

derived in the context of long gravity waves in a rotating fluid, as
a generalization of the KdV equation (γ = 0). [Ostrovsky, 1978]

. For p = 2, the equation arises from the modified equation

(ut + u2ux + βuxxx)x = γu

derived from Euler’s equations in the context of internal waves
[Grimshaw et al., 1998].
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Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

where p ∈ N and u is a real-valued function of (x, t).

. Local well-posedness in Hs for s > 3/2. [Stefanov et. al., 2010]

. Solutions break in finite time for sufficiently large initial data.
[Liu & P. & Sakovich 2009, 2010 for p = 1, p = 2.]

. Global solutions exist for sufficiently small initial data.
[Stefanov et. al., 2010 for p ≥ 4,
P & Sakovich 2010 for p = 2,

Grimshaw & P. 2014 for p = 1]
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Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

in the physically relevant cases: p = 1, 2

. The equations can be transformed to an integrable equation of
Klein–Gordon type by a solution-dependent coordinate change.
[Vakhnenko & Parkes, 1998], [Kraenkel & Leblond & Manna 2014]

. For p = 1: explicit periodic traveling waves exist;
smooth solutions in terms of Jacobi elliptic functions
[Grimshaw & Helfrich & Johnson 2012],
peaked solutions with parabolic shape [Ostrovsky, 1978]

. For p = 2: the equation is different from the short-pulse equation
derived from Maxwell’s equations. [Schäfer & Wayne, 2004]
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Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

in the physically relevant cases: p = 1, 2

. Spectral stability of smooth periodic traveling waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]

. Nonlinear stability for smooth periodic traveling waves for
subharmonic perturbations. [Johnson & P., 2016]

Goals:
. Part I: Stability of smooth periodic waves for arbitrary p ∈ N.

. Part II: Instability of the limiting peaked periodic wave for p = 1.
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Traveling wave solutions

We are interested in existence and stability of traveling wave solutions
of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c > 0 is the
wave speed. The wave profile U is 2T-periodic.

The wave profile U satisfies the boundary-value problem

d
dz

(
(c− Up)

dU
dz

)
+ U(z) = 0,

U(−T) = U(T),
U′(−T) = U′(T),

}
(ODE)

where
∫ T
−T U(t)dt = 0, i.e. the periodic waves have zero mean.
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Part I - Stability of smooth periodic solutions

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T .

Using u(t, x) = U(z) + v(z)eλt, where z = x− ct, the spectral stability
problem for a perturbation of the wave profile U is given by

∂zLv = λv

with the self-adjoint linear operator

L = P0
(
∂−2

z + c− Up)P0 : L̇2
per(−T,T)→ L̇2

per(−T,T).

Here L̇2
per denote the space of L2

per functions with zero mean and
P0 : L2

per 7→ L̇2
per is the projection operator that sets mean to zero.

Definition
The travelling wave is spectrally stable with respect to co-periodic
perturbations if the spectral problem ∂zLv = λv with v ∈ Ḣ1

per(−T,T)
has no eigenvalues λ /∈ iR.
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Stability - course of action

. Construct a Lyapunov-type functional:

F[u] := H[u] + cQ[u],
where

(energy) H[u] = −1
2
‖∂−1

x u‖2
L2

per
− 1

(p + 1)(p + 2)

∫ T

−T
up+2dx

(momentum) Q[u] =
1
2
‖u‖2

L2
per

. A traveling wave U is a critical point of F[u], i.e. δF[U] = 0.

. The Hessian of F[u] is the operator L, i.e. δ2F[U]v = 1
2〈Lv, v〉.

. We will show that

a traveling wave U is a constrained minimizer of
the energy H[u] with fixed momentum Q[u].
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Stability - course of action

. The constraint of fixed momentum Q[u] := 1
2‖u‖

2
L2

per
= q is equivalent

to restricting the self-adjoint linear operator L to the subspace

U⊥ =
{

v ∈ L̇2
per(−T,T) : 〈U, v〉L2

per
= 0
}
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= q is equivalent

to restricting the self-adjoint linear operator L to the subspace

U⊥ =
{

v ∈ L̇2
per(−T,T) : 〈U, v〉L2

per
= 0
}

Indeed,

0 = Q[U + v]− Q[U] =
1
2

∫ T

−T
(U + v)2dz− 1

2

∫ T

−T
U2dz

=

∫ T

−T
U v dz + O(v2)

= 〈U, v〉.
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. Hamilton-Krein index theory for the spectral problem
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states that [Haragus & Kapitula, 08]

# unstable EV of ∂zL ≤# negative EV of L|U⊥
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. Hamilton-Krein index theory for the spectral problem

∂zLv = λv

states that [Haragus & Kapitula, 08]

# unstable EV of ∂zL ≤# negative EV of L|U⊥

. Result: the smooth periodic wave U is stable. [Geyer & P., LMP ’17]
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Existence of periodic traveling waves

Let c > 0 and p ∈ N. A function U is a smooth periodic solution of

d
dz

(
(c− Up)

dU
dz

)
+ U = 0 (ODE)

iff (u, v) = (U,U′) is a periodic orbit γE of the planar system u′ = v,

v′ =
−u + pup−1v2

c− up ,

which has the first integral

E(u, v) =
1
2
(c− up)2v2 +

c
2

u2 − 1
p + 2

up+2.

Note that c− U(z)p > 0 for every z if U is smooth.
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Existence of periodic traveling waves

Let c > 0 and p ∈ N. A function U is a smooth periodic solution of

d
dz

(
(c− Up)

dU
dz

)
+ U = 0 (ODE)

if and only if (u, v) = (U,U′) is a periodic orbit γE of the planar
system with first integral E(u, v) = 1

2(c− up)2v2 + c
2 u2 − 1

p+2 up+2.
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There exists a smooth family of periodic solutions U ∈ Ḣ∞per of (ODE)
parametrized by the energy E ∈ (0,Ec).
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Monotonicity of energy-to-period map

For every c > 0 and p ∈ N the period function

T : (0,Ec) −→ R+, E 7−→ T(E) =
1
2

∫
γE

du
v
,

is strictly monotonically decreasing: T ′(E) < 0
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Classical monotonicity criteria do not apply. [Chicone, Schaaf, 1980’s]

Our proof is inspired by [Mañosas & Villadelprat, 2009].
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Monotonicity of energy-to-period map T(E) = 1
2

∫
γE

du
v

Recall the first integral

E(u, v) = B(u)v2+A(u), B(u) :=
1
2
(c−up)2, A(u) :=

c
2

u2− 1
p + 2

up+2.
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c
2
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up+2.

Since E is constant along an orbit γE, we find that

2E T(E) =
∫
γE

B(u)vdu +

∫
γE

A(u)
du
v
.
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Since E is constant along an orbit γE, we find that

2E T(E) =
∫
γE

B(u)vdu +

∫
γE

A(u)
du
v
.

To resolve the singularity, note that

dv
du

=
dE
du
dE
dv

=
B′(u)v2 + A′(u)

2B(u)v
.
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To resolve the singularity, note that

dv
du

=
B′(u)v2 + A′(u)

2B(u)v
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Then 0 =

∫
γE

d (g(u) v) =
∫
γE

g′(u) vdu +

∫
γE

g(u)dv

=

∫
γE

(
g′(u)− B′g

2B

)
vdu−

∫
γE

g
A′

2B
du
v
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=

∫
γE

(
g′(u)− B′g

2B

)
vdu−

∫
γE

g
A′

2B
du
v

and choosing g = 2B
A′ A we find

0 =

∫
γE

G(u)vdu−
∫
γE

A
du
v
.

[Grau, Mañosas & Villadelprat, ’11]
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Monotonicity of energy-to-period map T(E) = 1
2

∫
γE

du
v

Recall the first integral

E(u, v) = B(u)v2+A(u), B(u) :=
1
2
(c−up)2, A(u) :=

c
2

u2− 1
p + 2

up+2.

Since E is constant along an orbit γE, we find that

2E T(E) =
∫
γE

B(u)vdu +

∫
γE

A(u)
du
v

=

∫
γE

(B(u) + G(u)) vdu.

Taking the derivative w.r.t. E we obtain

T ′(E) = − p
4(2 + p)E

∫
γE

up

(c− up)

du
v
< 0.
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Taking the derivative w.r.t. E we obtain

T ′(E) = − p
4(2 + p)E

∫
γE

up

(c− up)

du
v
< 0.

The period function is strictly monotone!
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Operator L restricted to constrained space

I Claim: The operator L|U⊥ has a simple zero eigenvalue and a
positive spectrum bounded away from zero.

This is true if the following two conditions hold:
[Vakhitov-Kolokolov, 1975], [Grillakis–Shatah–Strauss, 1987]

. L has exactly one negative eigenvalue,
a simple zero eigenvalue with eigenvector ∂zU,
and the rest of its spectrum is positive and bounded away from 0

. 〈L−1U,U〉 = − d
dc‖U‖

2
L2

per(−T,T) < 0, where the period T is fixed.

We show that these conditions hold using the fact that the
energy-to-period map T(E) is strictly monotone.
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Spectral properties of the operator L

Recall the self-adjoint linear operator

L = P0
(
∂−2

z + c− Up)P0 : L̇2
per(−T,T)→ L̇2

per(−T,T).
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Recall the self-adjoint linear operator

L = P0
(
∂−2

z + c− Up)P0 : L̇2
per(−T,T)→ L̇2

per(−T,T).

When E → 0, then U → 0, T(E)→ T(0) =
√

cπ, and

L→ L0 = P0
(
∂−2

z + c
)

P0.

σ(L0) = {c(1− n−2), n ∈ Z \ {0}} all eigenvalues are double.
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√

cπ, and

L→ L0 = P0
(
∂−2

z + c
)

P0.

σ(L0) = {c(1− n−2), n ∈ Z \ {0}} all eigenvalues are double.
 

When E > 0 the double zero eigenvalue splits into a simple negative
eigenvalue and a simple zero eigenvalue of L.
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Spectral properties of the operator L

Consider the eigenvalue problem(
∂−2

z + c− Up) v = λv, v ∈ L̇2
per(−T,T).

Zero eigenvalue λ0 = 0:
. ∂zU is an eigenvector for λ0: L∂zU = 0
. UE is also a solution of the spectral equation for λ0 = 0:

∂E(ODE) ⇐⇒ UE + ∂2
z [(c− Up)UE] = 0

Differentiating the BC U(±T(E);E) = 0 w.r.t. E yields

∂EU(−T(E);E)− T ′(E) ∂zU(−T(E);E)︸ ︷︷ ︸
6=0

= ∂EU(T(E);E) + T ′(E) ∂zU(T(E);E)︸ ︷︷ ︸
6=0

.

Since T ′(E) 6= 0 the solution UE is not 2T(E)-periodic!

 the zero eigenvalue is simple, i.e. Ker(L) = span{Uz}.
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Spectral properties of the operator L

Sign condition − d
dc‖U‖

2
L2

per(−T,T) < 0, where the period T is fixed.

Here the monotonicity T ′(E) < 0 also plays a role.

0 1 2 3
0

2

4

6

c

T

T = π c
1/2

T = T
1
 c

1/2

For fixed c, the map E 7→ T is monotonically decreasing for
E ∈ (0,Ec) with T(0) = πc1/2.

For fixed T , the map c 7→ E is monotonically increasing for
c ∈ (c0, c∗) with c0 = T2/π2.
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Summary - Part I

. We consider smooth periodic traveling waves u(x, t) = U(x− ct)
of the generalized reduced Ostrovsky equation

(ut + u pux)x = u.

. The spectral stability problem is given by

∂zLv = λv

. For every p ∈ N and every c for which smooth U exists, the
operator L|U⊥ has a simple zero eigenvalue and a positive spectrum
bounded away from zero.

. Hamilton-Krein index theory implies
# unstable EV of ∂zL ≤#negative EV of L|U⊥

I Result: the smooth periodic traveling waves U are spectrally
stable. [Geyer & P., LMP ’17]
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Part II - Peaked periodic wave

We now consider the peaked periodic traveling waves of the reduced
Ostrovsky equation (p = 1)

(ut + uux)x = u.
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Part II - Peaked periodic wave

Some results for periodic waves of other equations:

. KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]

. Camassa-Holm equation: both smooth and peaked are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

. Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

. Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2018]

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 19 / 33



Part II - Peaked periodic wave

Some results for periodic waves of other equations:

. KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]

. Camassa-Holm equation: both smooth and peaked are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

. Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

. Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2018]

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 19 / 33



Part II - Peaked periodic wave

Some results for periodic waves of other equations:

. KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]

. Camassa-Holm equation: both smooth and peaked are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

. Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

. Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2018]

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 19 / 33



Part II - Peaked periodic wave

Some results for periodic waves of other equations:

. KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]

. Camassa-Holm equation: both smooth and peaked are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

. Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

. Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2018]

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 19 / 33



Peaked periodic wave

The 2π periodic traveling wave solutions U(z) satisfy the BVP{
[c− U(z)]U′(z) + (∂−1

z U)(z) = 0, z ∈ (−π, π)

U(−π) = U(π),

where z = x− ct and
∫ π
−π U(z)dz = 0.

Lemma (Existence of smooth periodic traveling waves)

There exists c∗ > 1 such that for every c ∈ (1, c∗), the BVP admits a
unique smooth periodic wave U satisfying U(z) < c for z ∈ [−π, π].
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

. The peaked periodic wave U∗ ∈ Ḣs
per(−π, π) for s < 3/2:

U∗(z) =
∞∑

n=1

2(−1)n

3n2 cos(nz),
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For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

. The peaked periodic wave U∗ ∈ Ḣs
per(−π, π) for s < 3/2:

U∗(z) =
∞∑

n=1

2(−1)n

3n2 cos(nz),

. U∗(z) < c∗ for z ∈ (−π, π), U∗(±π) = c∗, and U′∗(±π) = ±π/3.
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

Lemma
The peaked periodic wave U∗ is the unique solution with a jump
discontinuity in the derivative at z = ±π.
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Spectral stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0,

or equivalently

vt = ∂zLv, where L = P0
(
∂−2

z + c∗ − U∗
)

P0 : L̇2
per → L̇2

per.

Lemma
The spectrum of the self-adjoint operator L is σ(L) = {λ−} ∪

[
0, π

2

6

]
.

The spectral stability problem can not be solved by applying standard
energy methods due to the lack of coercivity.
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Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0.
(linO)

Goal: show that the peaked periodic wave is linearly unstable.

Definition
The travelling wave U is linearly stable if

for every v0 ∈ Ḣ1
per satisfying 〈U, v0〉L2 = 0,

there exists a unique global solution v ∈ C(R, Ḣ1
per) to (linO) s.t.

‖v(t)‖H1
per
≤ C‖v0‖H1

per
, t > 0.

Otherwise, it is said to be linearly unstable.
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Linear instability of the peaked periodic wave

. Step 1: The truncated problem{
vt +

1
6∂z
[
(z2 − π2)v

]
= 0, t > 0,

v|t=0 = v0 ∈ Ḣ1
per.

(truncO)

Method of characteristics. The family of char. curves z = Z(s, t) can
be solved explicitly and the solution of V(s, t) := v(Z(s, t), t) is

V(s, t) =
1
π2 [π cosh(πt/6)−s sinh(πt/6)]2v0(s), s ∈ [−π, π], t ∈ R.

This yields the linear instability result for the truncated problem:

Lemma
For every v0 ∈ Ḣ1

per ∃! global solution v ∈ C(R, Ḣ1
per) to (truncO).

If v0 is odd, then the global solution satisfies

1
2
‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.
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Linear instability of the peaked periodic wave

. Step 2: The full evolution problem{
vt +

1
6∂z
[
(z2 − π2)v

]
=∂−1

z v, t > 0,
v|t=0 = v0 ∈ Ḣ1

per.
(linO)

Generalized Meth. of Char. Treat ∂−1
z v as a source term in (linO).

. truncated problem vt = A0v has a unique global solution in Ḣ1
per

. Bounded Perturbation Theorem:
A0 + ∂−1

z is the generator of C0-semigroup on L̇2
per

Lemma
For every v0 ∈ Ḣ1

per ∃! global solution v ∈ C(R, Ḣ1
per) to (linO).

If v0 is odd, then the solution satisfies
C‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.

Conclusion: The reduced Ostrovsky equation is linearly unstable.
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Nonlinear instability

Does linear instability of the peaked periodic wave U∗ imply
nonlinear instability?

. True in finite dimensional case

. In infinite dimensions:

vt = Av + F(v)

A is a linear operator generating a C0-semigroup in Banach space
X and F is strongly continuous in X

If A has positive spectrum {Rλ > 0},
then v = 0 is nonlinearly unstable. [Shatah & Strauss ’00]

. Here: A = ∂zL but

so we do not know whether the spectral assumption is satisfied.
. We need a different approach!
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Nonlinear instability

Consider an orbit {U∗(z− a), a ∈ [−π, π]} of the peaked wave U∗.

Definition
The travelling wave U is said to be orbitally stable if for every ε > 0,
there exists δ > 0 such that

for every u0 ∈ Ḣ1
per satisfying ‖u0 − U‖H1

per
< δ,

there exists a unique global solution u ∈ C(R, Ḣ1
per) to{

ut + uux = ∂−1
x u, t > 0,

u|t=0 = u0,
(redO)

such that for every t > 0,

inf
a∈[−π,π]

‖u(t, ·)− U(· − a)‖H1
per
< ε.

Otherwise, the periodic wave U is said to be orbitally unstable.
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per) to{

ut + uux = ∂−1
x u, t > 0,

u|t=0 = u0,
(redO)

such that for every t > 0,

inf
a∈[−π,π]

‖u(t, ·)− U(· − a)‖H1
per
< ε.

Otherwise, the periodic wave U is said to be orbitally unstable.

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 27 / 33



Nonlinear instability

. We consider decomposition of the solution u ∈ Ḣ1
per

u(t, x) = U∗(x− ct − a(t)) + v(t, x− ct − a(t)),

for a co-periodic perturbation v ∈ Ḣs
per with s > 3/2 satisfying

the orthogonality condition

〈∂xU∗, v〉L2 = 0.
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for a co-periodic perturbation v ∈ Ḣs
per with s > 3/2 satisfying

the orthogonality condition

〈∂xU∗, v〉L2 = 0.

Such a decomposition always exists and is unique by an
application of the inverse function theorem.
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Nonlinear instability

. We consider decomposition of the solution u ∈ Ḣ1
per

u(t, x) = U∗(x− ct − a(t)) + v(t, x− ct − a(t)), 〈∂xU∗, v〉L2 = 0,

for a co-periodic perturbation v ∈ Ḣs
per with s > 3/2 satisfying{

vt +
1
6∂z
[
(z2 − π2)v

]
+ v∂zv = ∂−1

z v + a′(t)(∂zU∗ + ∂zv),
v|t=0 = v0,

(CPv)
where z = x− ct − a(t).
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vt +
1
6∂z
[
(z2 − π2)v

]
+ v∂zv = ∂−1

z v + a′(t)(∂zU∗ + ∂zv),
v|t=0 = v0,

(CPv)
where z = x− ct − a(t).

. Using the orthogonality condition we obtain an evolution
equation for the translation parameter a:{

a′(t) = − 〈∂zU,∂zLv〉L2−〈∂zU,v∂zv〉L2

‖∂zU‖2
L2+〈∂zU,∂zv〉L2

, t > 0,

a(0) = 0.
(CPa)
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Nonlinear instability

Theorem (Orbital instability)

There exists ε > 0 such that for every small δ > 0,
there exists v0 ∈ Ḣs

per satisfying

‖v0‖Hs
per
≤ δ

s.t. the unique solution v ∈ C([0,T], Ḣs
per) to (CPv)–(CPa) satisfies

‖v(t1)‖L2 ≥ ε

for some t1 ∈ (0,T) with T = O(δ−1), a ∈ C([0,T],R) and s > 3/2 .
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Nonlinear instability – Proof

. Write (CPv){
vt +

1
6∂z
[
(z2 − π2)v

]
+ v∂zv = ∂−1

z v + a′(t)(∂zU∗ + ∂zv),
v|t=0 = v0,

as the inhomogeneous evolution equation

vt = Av + F(v)

where A := A0 + ∂−1
z generates the C0-semigroup in L̇2

per

and F(v) : L̇2
per → L̇2

per is continuous.

. Every solution v to (CPv) satisfies the integral formulation

v(t) = S(t)v0 +

∫ t

0
S(t − s)F(s)ds, t ∈ [0,T].
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Nonlinear instability – Proof

. Every solution v of (CPv) satisfies the integral formulation

v(t) = S(t)v0 +

∫ t

0
S(t − s)F(s)ds, t ∈ [0,T].

. Using bounds from linear theory

C‖v0‖L2
per

eπt/6 ≤ ‖S(t)v0‖L2
per
≤ ‖v0‖L2

per
eπt/6

. we obtain

‖v(t)‖L2 ≥ C‖v0‖L2eπt/6 −
∫ t

0
eπ(t−t′)/6 ∥∥F(t′)

∥∥
L2 dt′

. Using the translation equation (CPa) for a(t), we obtain that for
any fixed ε > 0 there exists t1 ∈ [0,T] such that

‖v(t)‖L2
per
≥ eπt/6C(δ) ≥ ε, t ∈ [t1,T],

. This yields orbital instability of U∗.
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Summary

. Periodic traveling waves of the reduced Ostrovsky equation

(ut + upux)x = u.
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. The smooth periodic waves are spectrally stable for any p ∈ N.
[Geyer & P., LMP 2017]

. The peaked periodic wave is linearly and nonlinearly unstable
for p = 1. [Geyer & P., SIMA 2018]

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 32 / 33



Further questions

. Periodic traveling waves of the reduced Ostrovsky equation

(ut + upux)x = u.
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. Are the smooth periodic waves transversally stable?

. Are they stable w.r.t. subharmonic perturbations?

. Is the peaked periodic wave unstable for p = 2?

Thank you for your attention!
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