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Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

where u is a real-valued function of (x, t) and p ∈ N.

. For p = 1, the equation arises as β → 0 from the Ostrovsky
equation

(ut + uux + βuxxx)x = γu

derived in the context of long gravity waves in a rotating fluid, as
a generalization of the KdV equation (γ = 0). [Ostrovsky, 1978]
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Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

where p ∈ N.

. Local well-posedness in Hs for s > 3/2. [Stefanov et. al., 2010]

. Solutions break in finite time for sufficiently large initial data.
[Liu & P. & Sakovich 2009, 2010 for p = 1, p = 2.]

. Global solutions exist for sufficiently small initial data.
[P & Sakovich 2010 for p = 2, Grimshaw & P. 2014 for p = 1].

. Zero mass constraint is necessary:
∫

udx = 0.
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Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

in the physically relevant cases: p = 1, 2

. The equations can be transformed to an integrable equation of
Klein–Gordon type by a solution-dependent coordinate change.
[Vakhnenko & Parkes, 1998], [Kraenkel & Leblond & Manna 2014]

. For p = 1: explicit periodic traveling waves exist;
smooth solutions in terms of Jacobi elliptic functions
[Grimshaw & Helfrich & Johnson 2012],
peaked solutions with parabolic shape [Ostrovsky, 1978]
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Introduction

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

where p ∈ N.

. p = 1, 2: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]

. p = 1, 2: Nonlinear stability of smooth periodic waves for
subharmonic perturbations. [Johnson & P., 2016]

. Any p ∈ N: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Geyer & P., 2017]

Next goal: Linear and nonlinear instability of the limiting peaked
periodic wave for p = 1.
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c > 0 is the
wave speed. The wave profile U is 2T-periodic for fixed c > 0.

The wave profile U satisfies the boundary-value problem

d
dz

(
(c− Up)

dU
dz

)
+ U(z) = 0,

U(−T) = U(T),
U′(−T) = U′(T),

}
(ODE)

where
∫ T
−T U(z)dz = 0, i.e. the periodic waves have zero mean.
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Existence of periodic traveling waves

Let c > 0 and p ∈ N. A function U is a smooth periodic solution of

d
dz

(
(c− Up)

dU
dz

)
+ U = 0 (ODE)

iff (u, v) = (U,U′) is a periodic orbit γE of the planar system u′ = v,

v′ =
−u + pup−1v2

c− up ,

which has the first integral

E(u, v) =
1
2
(c− up)2v2 +

c
2

u2 − 1
p + 2

up+2.

The periodic wave U is smooth iff c− U(z)p > 0 for every z.
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Existence of periodic traveling waves

Let c > 0 and p ∈ N. A function U is a smooth periodic solution of

d
dz

(
(c− Up)

dU
dz

)
+ U = 0 (ODE)

iff (u, v) = (U,U′) is a periodic orbit γE of the planar system with
first integral E(u, v) = 1

2(c− up)2v2 + c
2 u2 − 1

p+2 up+2.
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There exists a smooth family of periodic solutions U ∈ Ḣ∞per of (ODE)
parametrized by the energy E ∈ (0,Ec), where 2T depends on E.
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Scaling transformation

For fixed c, the map E 7→ T is decreasing with T(0) = πc1/2.
For fixed T , the map E 7→ c is increasing with c(0) = T2/π2.

The map E 7→ T for fixed c is transferred to the map E 7→ c for fixed
T by the scaling transformation

U(z; c) = c1/pŨ(z̃), z = c1/2z̃, T = c1/2T̃,

where Ũ is a 2T̃-periodic solution of the same (ODE) with c = 1.
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Peaked periodic wave for p = 1

The 2π periodic traveling wave solutions U(z) satisfy the BVP{
[c− U(z)]U′(z) + (∂−1

z U)(z) = 0, z ∈ (−π, π)

U(−π) = U(π),

where z = x− ct and
∫ π
−π U(z)dz = 0.

Lemma (Existence of smooth periodic waves)

There exists c∗ > 1 such that for every c ∈ (1, c∗), the BVP admits a
unique smooth periodic wave U satisfying U(z) < c for z ∈ [−π, π].
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

. The peaked periodic wave U∗ ∈ Ḣs
per(−π, π) for s < 3/2:

U∗(z) =
∞∑

n=1

2(−1)n

3n2 cos(nz),
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per(−π, π) for s < 3/2:

U∗(z) =
∞∑

n=1

2(−1)n

3n2 cos(nz),

. U∗(z) < c∗ for z ∈ (−π, π), U∗(±π) = c∗, and U′∗(±π) = ±π/3.
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

Lemma
The peaked periodic wave U∗ is the unique solution with a jump
discontinuity in the derivative at z = ±π.
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Broader picture on stability of peaked periodic waves

. KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]

. Camassa-Holm: both smooth and peaked waves are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

. Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

. Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2018]
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Spectral stability of the peaked periodic wave

Let u = U + v and consider the linearized evolution for a co-periodic
perturbation v to the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0,

or equivalently

vt = ∂zLv, where L = P0
(
∂−2

z + c∗ − U∗
)

P0 : L̇2
per → L̇2

per,

where L̇2
per is the L2 space of periodic function with zero mean.
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)
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per,

where L̇2
per is the L2 space of periodic function with zero mean.

Lemma
The spectrum of the self-adjoint operator L is σ(L) = {λ−} ∪

[
0, π

2

6

]
.
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where L̇2
per is the L2 space of periodic function with zero mean.

Lemma
The spectrum of the self-adjoint operator L is σ(L) = {λ−} ∪

[
0, π

2

6

]
.

The spectral stability problem can not be solved by applying standard
energy methods due to the lack of coercivity.
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Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0.
(linO)

Goal: show that the peaked periodic wave is linearly unstable.

Definition
The travelling wave U is linearly stable if for every v0 ∈ Ḣ1

per

there exists a unique global solution v ∈ C(R, Ḣ1
per) to (linO) s.t.

‖v(t)‖H1
per
≤ C‖v0‖H1

per
, t > 0.

Otherwise, it is said to be linearly unstable.
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per

there exists a unique global solution v ∈ C(R, Ḣ1
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Linear instability of the peaked periodic wave

. Step 1: The truncated problem{
vt +

1
6∂z
[
(z2 − π2)v

]
= 0, t > 0,

v|t=0 = v0 ∈ Ḣ1
per.

(truncO)

Method of characteristics. The characteristic curves z = Z(s, t) are
found explicitly and the solution of V(s, t) := v(Z(s, t), t) is

V(s, t) =
1
π2 [π cosh(πt/6)−s sinh(πt/6)]2v0(s), s ∈ [−π, π], t ∈ R.

This yields the linear instability result for the truncated problem:

Lemma
For every v0 ∈ Ḣ1

per ∃! global solution v ∈ C(R, Ḣ1
per) to (truncO).

If v0 is odd, then the global solution satisfies

1
2
‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.
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per) to (truncO).

If v0 is odd, then the global solution satisfies

1
2
‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.

Dmitry Pelinovsky, McMaster University Instability of peaked periodic waves 14 / 23



Linear instability of the peaked periodic wave

. Step 1: The truncated problem{
vt +

1
6∂z
[
(z2 − π2)v

]
= 0, t > 0,

v|t=0 = v0 ∈ Ḣ1
per.

(truncO)

Method of characteristics. The characteristic curves z = Z(s, t) are
found explicitly and the solution of V(s, t) := v(Z(s, t), t) is

V(s, t) =
1
π2 [π cosh(πt/6)−s sinh(πt/6)]2v0(s), s ∈ [−π, π], t ∈ R.

This yields the linear instability result for the truncated problem:

Lemma
For every v0 ∈ Ḣ1
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Linear instability of the peaked periodic wave

. Step 2: The full evolution problem{
vt +

1
6∂z
[
(z2 − π2)v

]
=∂−1

z v, t > 0,
v|t=0 = v0 ∈ Ḣ1

per.
(linO)

Generalized Meth. of Char. Treat ∂−1
z v as a source term in (linO).

. truncated problem vt = A0v has a unique global solution in Ḣ1
per

. Bounded Perturbation Theorem:
A0 + ∂−1

z is the generator of C0-semigroup on Ḣ1
per

Lemma
For every v0 ∈ Ḣ1

per ∃! global solution v ∈ C(R, Ḣ1
per) to (linO).

If v0 is odd, then the solution satisfies
C‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.

Conclusion: The reduced Ostrovsky equation is linearly unstable.
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per.
(linO)

Generalized Meth. of Char. Treat ∂−1
z v as a source term in (linO).

. truncated problem vt = A0v has a unique global solution in Ḣ1
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per) to (linO).

If v0 is odd, then the solution satisfies
C‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.

Conclusion: The reduced Ostrovsky equation is linearly unstable.

Dmitry Pelinovsky, McMaster University Instability of peaked periodic waves 15 / 23



Linear instability of the peaked periodic wave

. Step 2: The full evolution problem{
vt +

1
6∂z
[
(z2 − π2)v

]
=∂−1

z v, t > 0,
v|t=0 = v0 ∈ Ḣ1
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per

Lemma
For every v0 ∈ Ḣ1
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Nonlinear instability

Does linear instability of the peaked periodic wave U∗ imply
nonlinear instability?

. True in finite dimensional case

. In infinite dimensions:

vt = Av + F(v)

A is a linear operator generating a C0-semigroup in Banach space
X and F is strongly continuous in X

If A has positive spectrum {Rλ > 0},
then v = 0 is nonlinearly unstable. [Shatah & Strauss ’00]

. Here: A = ∂zL but

so we do not know whether the spectral assumption is satisfied.
. We need a different approach!
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Nonlinear instability

Consider an orbit {U∗(z− a), a ∈ [−π, π]} of the peaked wave U∗.

Definition
The travelling wave U is said to be orbitally stable if for every ε > 0,
there exists δ > 0 such that

for every u0 ∈ Ḣ1
per satisfying ‖u0 − U‖H1

per
< δ,

there exists a unique global solution u ∈ C(R, Ḣ1
per) to{

ut + uux = ∂−1
x u, t > 0,

u|t=0 = u0,
(redO)

such that for every t > 0,

inf
a∈[−π,π]

‖u(t, ·)− U(· − a)‖H1
per
< ε.

Otherwise, the periodic wave U is said to be orbitally unstable.
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Nonlinear instability

We consider decomposition of the solution u ∈ Ḣ1
per

u(t, x) = U∗(x− ct − a(t)) + v(t, x− ct − a(t)),

for a co-periodic perturbation v satisfying the orthogonality condition

〈∂xU∗, v〉L2 = 0.
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of the inverse function theorem.
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, t > 0,
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For local existence, we need v ∈ Ḣs
per with s > 3/2.
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Nonlinear instability

Theorem (Orbital instability)

There exists ε > 0 such that for every small δ > 0,
there exists v0 ∈ Ḣs

per satisfying

‖v0‖Hs
per
≤ δ

s.t. the unique solution v ∈ C([0,T], Ḣs
per) to (CPv)–(CPa) satisfies

‖v(t1)‖L2 ≥ ε

for some t1 ∈ (0,T) with T = O(δ−1), a ∈ C([0,T],R) and s > 3/2 .
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Nonlinear instability – Proof

. Write (CPv){
vt +

1
6∂z
[
(z2 − π2)v

]
+ v∂zv = ∂−1

z v + a′(t)(∂zU∗ + ∂zv),
v|t=0 = v0,

as the inhomogeneous evolution equation

vt = Av + F(v)

where A := A0 + ∂−1
z generates the C0-semigroup in L̇2

per

and F(v) : L̇2
per → L̇2

per is continuous.

. Every solution v to (CPv) satisfies the integral formulation

v(t) = S(t)v0 +

∫ t

0
S(t − s)F(s)ds, t ∈ [0,T].
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Nonlinear instability – Proof

. Every solution v of (CPv) satisfies the integral formulation

v(t) = S(t)v0 +

∫ t

0
S(t − s)F(s)ds, t ∈ [0,T].

. Using bounds from linear theory

C‖v0‖L2
per

eπt/6 ≤ ‖S(t)v0‖L2
per
≤ ‖v0‖L2

per
eπt/6

. we obtain

‖v(t)‖L2 ≥ C‖v0‖L2eπt/6 −
∫ t

0
eπ(t−t′)/6 ∥∥F(t′)

∥∥
L2 dt′

. Using the translation equation (CPa) for a(t), we obtain that for
any fixed ε > 0 there exists t1 ∈ [0,T] such that

‖v(t)‖L2
per
≥ eπt/6C(δ) ≥ ε, t ∈ [t1,T],

. This yields orbital instability of U∗.
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Summary

. Periodic traveling waves of the reduced Ostrovsky equation

(ut + upux)x = u.
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. The smooth periodic waves are spectrally stable for any p ∈ N.
[Geyer & P., LMP 2017]

. The peaked periodic wave is linearly and nonlinearly unstable
for p = 1. [Geyer & P., SIMA 2018]
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