Instability of peaked waves

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca

Joint work with Anna Geyer (Delft University of Technology, Netherlands) Fabio Natali (University of Maringa, Brazil)

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

It arises from the dispersion relation for linear waves $e^{i(kx-\omega t)}$:

$$\omega^2 = c^2 k^2 + \beta k^4 + \mathcal{O}(k^6) \quad \Rightarrow \quad \omega - ck = \frac{1}{2c} \beta k^3 + \mathcal{O}(k^5).$$

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

It arises from the dispersion relation for linear waves $e^{i(kx-\omega t)}$:

$$\omega^2 = c^2 k^2 + \beta k^4 + \mathcal{O}(k^6) \quad \Rightarrow \quad \omega - ck = \frac{1}{2c} \beta k^3 + \mathcal{O}(k^5).$$

The Ostrovsky equation (1978) models rotation effects:

$$(u_t + uu_x + \beta u_{xxx})_x = \gamma^2 u,$$

as follows from:

$$\omega^2 = \gamma^2 + c^2 k^2 + \beta k^4 + \cdots \Rightarrow \omega - ck = \frac{\beta}{2c} k^3 + \frac{\gamma^2}{2ck} + \cdots$$

As $\beta \rightarrow 0$, we obtain the reduced Ostrovsky equation.

Dmitry Pelinovsky, McMaster University

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

It arises from the dispersion relation for linear waves $e^{i(kx-\omega t)}$:

$$\omega^2 = c^2 k^2 + \beta k^4 + \mathcal{O}(k^6) \quad \Rightarrow \quad \omega - ck = \frac{1}{2c} \beta k^3 + \mathcal{O}(k^5).$$

The Whitham equation (1967) models full-dispersion effects:

$$u_t + uu_x + K * u_x = 0$$

where the Fourier transform of the convolution kernel:

$$\hat{K}(k) = \sqrt{gh \frac{\tanh(kh)}{kh}} = \sqrt{gh} \left(1 - \frac{1}{6}k^2h^2 + \cdots\right)$$

Dmitry Pelinovsky, McMaster University

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

It arises from the dispersion relation for linear waves $e^{i(kx-\omega t)}$:

$$\omega^2 = c^2 k^2 + \beta k^4 + \mathcal{O}(k^6) \quad \Rightarrow \quad \omega - ck = \frac{1}{2c} \beta k^3 + \mathcal{O}(k^5).$$

The *Camassa–Holm equation* (1994) models dispersion-modified nonlinear effects:

$$u_t + 3uu_x - u_{txx} = 2u_xu_{xx} + uu_{xxx}.$$

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2*T*-periodic or decaying to 0 at infinity.

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2*T*-periodic or decaying to 0 at infinity.

For the KdV equation, U satisfies

$$\beta \frac{d^2 U}{dz^2} - cU + U^2 = 0.$$

All solutions are smooth.

[ODE textbooks]

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2*T*-periodic or decaying to 0 at infinity.

For the reduced Ostrovsky equation, U satisfies

$$\frac{d}{dz}\left((c-U)\frac{dU}{dz}\right) + U(z) = 0.$$

Solutions are smooth if c - U(z) > 0 for all *z*. [A.Geyer, D.P., 2017]

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2*T*-periodic or decaying to 0 at infinity.

For the Whitham equation, U satisfies

K * U = (c - U)U.

Solutions are smooth if c - U(z) > 0 for all *z*.

[M. Ehrnström, H. Kalisch, 2013] [M. Ehrnström, E. Wahlén, 2015]

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2*T*-periodic or decaying to 0 at infinity.

For the Camassa-Holm equation, U satisfies

$$(c-U)\left[\frac{d^2U}{dz^2}-U\right]=0.$$

All solutions are peaked with $U(z_0) = c$ for some $z_0 \in \mathbb{R}$.

[R. Camassa, D. Holm, J. Hyman, 1994]

▷ KdV equation: smooth waves are linearly and orbitally stable

[B. Deconinck et.al. 2009,2010]

- KdV equation: smooth waves are linearly and orbitally stable [B. Deconinck et.al. 2009,2010]
- Reduced Ostrovsky equation: all smooth waves are linearly stable, but the limiting *peaked wave is linearly unstable*.
 [A.Geyer & D.P. 2019]

- KdV equation: smooth waves are linearly and orbitally stable [B. Deconinck et.al. 2009,2010]
- Reduced Ostrovsky equation: all smooth waves are linearly stable, but the limiting *peaked wave is linearly unstable*.
 [A.Geyer & D.P. 2019]
- Whitham equation: small amplitude smooth waves are stable, but become unstable as they approach the peaked wave.
 [J.Carter & H.Kalisch, 2014]

- KdV equation: smooth waves are linearly and orbitally stable [B. Deconinck et.al. 2009,2010]
- Reduced Ostrovsky equation: all smooth waves are linearly stable, but the limiting *peaked wave is linearly unstable*.
 [A.Geyer & D.P. 2019]
- Whitham equation: small amplitude smooth waves are stable, but become unstable as they approach the peaked wave.
 [J.Carter & H.Kalisch, 2014]
- Camassa-Holm, Degasperis–Procesi, Novikov: peaked waves are orbitally and asymptotically stable in energy space.
 [A.Constantin & W.Strauss, 2000], [J.Lenells, 2005], [Z.Lin, Y.Liu, 2006], ... but they are unstable w.r.t. piecewise smooth perturbations
 [F.Natali & D.P. 2019]

Plan of my talk

1. Instability of peaked waves in the reduced Ostrovsky equation

 $(u_t+uu_x)_x=u$

- Cauchy problem in Sobolev spaces
- Existence of peaked periodic waves
- Linear instability of the peaked wave
- 2. Instability of peaked waves in the Camassa-Holm equation

$$u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$$

- Cauchy problem in Sobolev spaces
- \triangleright Orbital stability of peakons in H^1
- ▷ Nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$

Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation

$$\begin{cases} (u_t + uu_x)_x = u, \\ u|_{t=0} = u_0. \end{cases}$$

- ▷ Local well-posedness for $u_0 \in H^s$ with s > 3/2[A.Stefanov et. al., 2010]
- ▷ Zero mass constraint is necessary in the periodic domain: $\int_{-\pi}^{\pi} u_0(x) dx = 0.$

Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation

$$\begin{cases} (u_t + uu_x)_x = u, \\ u|_{t=0} = u_0. \end{cases}$$

- ▷ Local well-posedness for $u_0 \in H^s$ with s > 3/2[A.Stefanov et. al., 2010]
- ▷ Zero mass constraint is necessary in the periodic domain: $\int_{-\pi}^{\pi} u_0(x) dx = 0.$
- Local solutions break in finite time for large initial data. [Y.Liu & D.P. & A.Sakovich 2010]
- ▷ Global solutions exist for small initial data. [R.Grimshaw & D.P. 2014]

Global solutions for small initial data

Theorem (R.Grimshaw & D.P., 2014)

Let $u_0 \in H^3$ such that $1 - 3u_0''(x) > 0$ for all x. There exists a unique solution $u(t) \in C(\mathbb{R}, H^3)$ with $u(0) = u_0$.

Global solutions for small initial data

Theorem (R.Grimshaw & D.P., 2014)

Let $u_0 \in H^3$ such that $1 - 3u_0''(x) > 0$ for all x. There exists a unique solution $u(t) \in C(\mathbb{R}, H^3)$ with $u(0) = u_0$.

The quantity $1 - 3u_{xx}$ appears in the Lax pair [A. Hone & M. Wang (2003)]

$$\begin{cases} 3\lambda\psi_{xxx} + (1 - 3u_{xx})\psi = 0, \\ \psi_t + \lambda\psi_{xx} + u\psi_x - u_x\psi = 0, \end{cases}$$

and in the conserved quantities [J. Brunelli & S.Sakovich (2013)]

$$E_{0} = \int_{\mathbb{R}} u^{2} dx$$

$$E_{1} = \int_{\mathbb{R}} \left[(1 - 3u_{xx})^{1/3} - 1 \right] dx,$$

$$E_{2} = \int_{\mathbb{R}} \frac{(u_{xxx})^{2}}{(1 - 3u_{xx})^{7/3}} dx$$

Dmitry Pelinovsky, McMaster University

Lemma

Let $u_0 \in H^2_{\text{per}}$. The local solution $u \in C([0, T), H^2_{\text{per}})$ blows up in a finite time $T < \infty$ in the sense $\lim_{t \uparrow T} ||u(\cdot, t)||_{H^2} = \infty$ if and only if

 $\lim_{t\uparrow T}\inf_{x}u_{x}(t,x)=-\infty, \quad \text{while} \quad \limsup_{t\uparrow T}|u(t,x)|<\infty.$

Lemma

Let $u_0 \in H^2_{per}$. The local solution $u \in C([0,T), H^2_{per})$ blows up in a finite time $T < \infty$ in the sense $\lim_{t \uparrow T} ||u(\cdot,t)||_{H^2} = \infty$ if and only if

 $\lim_{t\uparrow T}\inf_{x}u_{x}(t,x)=-\infty, \quad \text{while} \quad \limsup_{t\uparrow T}|u(t,x)|<\infty.$

Theorem (J.Hunter, 1990)

Let $u_0 \in C^1_{per}$ and define $\inf_{x \in S} u'_0(x) = -m$ and $\sup_{x \in S} |u_0(x)| = M$. If $m^3 > 4M(4 + m)$, a smooth solution u(t, x) breaks in a finite time.

Dmitry Pelinovsky, McMaster University

Lemma

Let $u_0 \in H^2_{per}$. The local solution $u \in C([0,T), H^2_{per})$ blows up in a finite time $T < \infty$ in the sense $\lim_{t \uparrow T} ||u(\cdot,t)||_{H^2} = \infty$ if and only if

 $\lim_{t\uparrow T} \inf_{x} u_x(t,x) = -\infty, \quad while \quad \limsup_{t\uparrow T} \sup_{x} |u(t,x)| < \infty.$

Theorem (Y.Liu, D.P. & A.Sakovich, 2010)

Assume that $u_0 \in H^2_{per}$. The solution breaks if

either
$$\int_{\mathbb{S}} (u'_0(x))^3 dx < -\left(\frac{3}{2} \|u_0\|_{L^2}\right)^{3/2}$$
,

or
$$\exists x_0: u'_0(x_0) < -(\|u_0\|_{L^{\infty}} + T_1\|u_0\|_{L^2})^{\frac{1}{2}}$$
.

Dmitry Pelinovsky, McMaster University

Lemma

Let $u_0 \in H^2_{per}$. The local solution $u \in C([0,T), H^2_{per})$ blows up in a finite time $T < \infty$ in the sense $\lim_{t \uparrow T} ||u(\cdot,t)||_{H^2} = \infty$ if and only if

 $\lim_{t\uparrow T}\inf_{x}u_{x}(t,x)=-\infty, \quad while \quad \limsup_{t\uparrow T}\sup_{x}|u(t,x)|<\infty.$

Conjecture on sharp wave breaking:

Smooth solutions break in a finite time if $u_0 \in H^3$ yields sign-indefinite $1 - 3u_0''(x)$.

Travelling periodic waves

Let c > 0 and consider a periodic solution U of

$$\frac{d}{dz}\left((c-U)\frac{dU}{dz}\right) + U = 0.$$
 (ODE)

The solution *U* is smooth if and only if (u, v) = (U, U') is a periodic orbit γ_E of the planar system

$$\begin{cases} u' = v, \\ v' = \frac{-u + v^2}{c - u}, \end{cases}$$

which has the first integral

$$E(u,v) = \frac{1}{2}(c-u)^2v^2 + \frac{c}{2}u^2 - \frac{1}{3}u^3.$$

The solution U is smooth if and only if c - U(z) > 0 for every z.

Existence of smooth periodic waves

Let c > 0. The first integral is

$$E(u,v) = \frac{1}{2}(c-u)^2v^2 + \frac{c}{2}u^2 - \frac{1}{3}u^3.$$

There exists a smooth family of periodic solutions parametrized by the energy $E \in (0, E_c)$, where 2*T* depends on *E*.

Dmitry Pelinovsky, McMaster University

For $c = c_* := \pi^2/9$ there exists a solution with parabolic profile

For $c = c_* := \pi^2/9$ there exists a solution with parabolic profile

$$U_*(z) \coloneqq \frac{3z^2 - \pi^2}{18}, \quad z \in [-\pi, \pi],$$

which can be periodically continued.

For $c = c_* := \pi^2/9$ there exists a solution with parabolic profile

$$U_*(z) \coloneqq \frac{3z^2 - \pi^2}{18}, \quad z \in [-\pi, \pi],$$

which can be periodically continued.

The peaked periodic wave $U_* \in H^s_{per}(-\pi, \pi)$ for s < 3/2:

$$U_*(z) = \sum_{n=1}^{\infty} \frac{2(-1)^n}{3n^2} \cos(nz),$$

with $U_*(\pm \pi) = c_*$ and $U'_*(\pm \pi) = \pm \pi/3$.

Dmitry Pelinovsky, McMaster University

For $c = c_* := \pi^2/9$ there exists a solution with parabolic profile

$$U_*(z) \coloneqq \frac{3z^2 - \pi^2}{18}, \quad z \in [-\pi, \pi],$$

which can be periodically continued.

The peaked wave satisfies the border case: $1 - 3U''_*(z) = 0$ for $z \in (-\pi, \pi)$.

For $c = c_* := \pi^2/9$ there exists a solution with parabolic profile

$$U_*(z) \coloneqq \frac{3z^2 - \pi^2}{18}, \quad z \in [-\pi, \pi],$$

which can be periodically continued.

Theorem (A.Geyer & D.P, 2019)

The peaked periodic wave U_* is the unique peaked solution with the jump at $z = \pm \pi$.

See also [Bruell & Dhara, 2019]

Dmitry Pelinovsky, McMaster University

We consider *co-periodic* perturbations of the traveling waves, that is, *perturbations with the same period* 2*T and zero mean*.

Using $u(t, x) = U_*(z) + v(t, z)$, where z = x - ct yields the linearized evolution:

$$\begin{cases} v_t + \partial_z \left[(U_*(z) - c_*) v \right] = \partial_z^{-1} v, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(linO)

Definition

The travelling wave *U* is *linearly unstable* if there exists $v_0 \in \text{dom}(\partial_z L)$ such that the unique global solution $v \in C(\mathbb{R}, \text{dom}(\partial_z L))$ satisfies $\lim_{t\to\infty} ||v(t)||_{L^2} = \infty$, where

$$\operatorname{dom}(\partial_z L) = \left\{ v \in \dot{L}_{\operatorname{per}}^2 : \quad \partial_z \left[(c_* - U_*) v \right] \in \dot{L}_{\operatorname{per}}^2 \right\}.$$

We consider *co-periodic* perturbations of the traveling waves, that is, *perturbations with the same period* 2*T and zero mean*.

Using $u(t, x) = U_*(z) + v(t, z)$, where z = x - ct yields the linearized evolution:

$$\begin{cases} v_t + \partial_z \left[(U_*(z) - c_*) v \right] = \partial_z^{-1} v, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(linO)

Theorem (Geyer & P., 2019)

The peaked travelling wave U is linearly unstable with

$$\|v(t)\|_{L^2} \ge C_0 e^{\pi t/6} \|v_0\|_{L^2}, \quad t > 0$$

for some $C_0 > 0$.

▷ **Step 1**: The *truncated problem*

$$\begin{cases} v_t + \frac{1}{6}\partial_z \left[(z^2 - \pi^2)v \right] = 0, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(truncO)

▷ **Step 1**: The *truncated problem*

$$\begin{cases} v_t + \frac{1}{6}\partial_z \left[(z^2 - \pi^2)v \right] = 0, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(truncO)

Method of characteristics. The characteristic curves z = Z(s, t) are found explicitly and the solution of V(s, t) := v(Z(s, t), t) is

$$V(s,t) = \frac{1}{\pi^2} [\pi \cosh(\pi t/6) - s \sinh(\pi t/6)]^2 v_0(s), \quad s \in [-\pi,\pi], \ t \in \mathbb{R}.$$

▷ **Step 1**: The *truncated problem*

$$\begin{cases} v_t + \frac{1}{6}\partial_z \left[(z^2 - \pi^2)v \right] = 0, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(truncO)

Method of characteristics. The characteristic curves z = Z(s, t) are found explicitly and the solution of V(s, t) := v(Z(s, t), t) is

$$V(s,t) = \frac{1}{\pi^2} [\pi \cosh(\pi t/6) - s \sinh(\pi t/6)]^2 v_0(s), \quad s \in [-\pi,\pi], \ t \in \mathbb{R}.$$

This yields the linear instability result for the truncated problem:

Lemma

For every $v_0 \in \text{dom}(\partial_z L) \exists !$ global solution $v \in C(\mathbb{R}, \text{dom}(\partial_z L))$. If v_0 is odd, then the global solution satisfies

$$\frac{1}{2} \|v_0\|_{L^2} e^{\pi t/6} \le \|v(t)\|_{L^2} \le \|v_0\|_{L^2} e^{\pi t/6}, \quad t > 0.$$

Dmitry Pelinovsky, McMaster University

▷ **Step 2**: The *full evolution problem*

$$\begin{cases} v_t + \frac{1}{6}\partial_z \left[(z^2 - \pi^2)v \right] = \frac{\partial_z^{-1}v}{v}, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(linO)
Linear instability of the peaked periodic wave

▷ **Step 2**: The *full evolution problem*

$$\begin{cases} v_t + \frac{1}{6}\partial_z \left[(z^2 - \pi^2) v \right] = \partial_z^{-1} v, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(linO)

Generalized Meth. of Char. Treat $\partial_z^{-1}v$ as a *source term* in (linO).

- ▷ truncated problem $v_t = A_0 v$ has a unique global solution in \dot{L}_{per}^2
- ▷ Bounded Perturbation Theorem: $A := A_0 + \partial_z^{-1}$ is the generator of C^0 -semigroup on \dot{L}^2_{per}

Linear instability of the peaked periodic wave

▷ **Step 2**: The *full evolution problem*

$$\begin{cases} v_t + \frac{1}{6}\partial_z \left[(z^2 - \pi^2)v \right] = \partial_z^{-1}v, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(linO)

Generalized Meth. of Char. Treat $\partial_z^{-1}v$ as a *source term* in (linO).

- ▷ truncated problem $v_t = A_0 v$ has a unique global solution in \dot{L}_{per}^2
- ▷ Bounded Perturbation Theorem: $A := A_0 + \partial_z^{-1}$ is the generator of C^0 -semigroup on \dot{L}^2_{per}

Lemma

For every $v_0 \in \operatorname{dom}(\partial_z L) \exists !$ global solution $v \in C(\mathbb{R}, \operatorname{dom}(\partial_z L))$. If v_0 is odd and satisfies some constraints, then the solution satisfies $C \|v_0\|_{L^2} e^{\pi t/6} \leq \|v(t)\|_{L^2} \leq \|v_0\|_{L^2} e^{\pi t/6}, \quad t > 0.$

Linear instability of the peaked periodic wave

▷ **Step 2**: The *full evolution problem*

$$\begin{cases} v_t + \frac{1}{6}\partial_z \left[(z^2 - \pi^2) v \right] = \partial_z^{-1} v, \quad t > 0, \\ v|_{t=0} = v_0. \end{cases}$$
(linO)

Generalized Meth. of Char. Treat $\partial_z^{-1}v$ as a *source term* in (linO).

- ▷ truncated problem $v_t = A_0 v$ has a unique global solution in L_{per}^2
- ▷ Bounded Perturbation Theorem: $A := A_0 + \partial_z^{-1}$ is the generator of C^0 -semigroup on \dot{L}^2_{per}

Lemma

For every $v_0 \in \operatorname{dom}(\partial_z L) \exists !$ global solution $v \in C(\mathbb{R}, \operatorname{dom}(\partial_z L))$. If v_0 is odd and satisfies some constraints, then the solution satisfies $C \|v_0\|_{L^2} e^{\pi t/6} \leq \|v(t)\|_{L^2} \leq \|v_0\|_{L^2} e^{\pi t/6}, \quad t > 0.$

The peaked periodic wave is *linearly unstable*.

Dmitry Pelinovsky, McMaster University

Instability of peaked waves

Spectral instability of the peaked periodic wave

Theorem (Geyer & P., 2020)

$$\sigma(\partial_z L) = \left\{ \lambda \in \mathbb{C} : -\frac{\pi}{6} \le \operatorname{Re}(\lambda) \le \frac{\pi}{6} \right\},\,$$

where $\partial_z L v := \partial_z [(c_* - U_*)v] + \partial_z^{-1}v$ with with

$$\operatorname{dom}(\partial_z L) = \left\{ v \in \dot{L}_{\operatorname{per}}^2 : \quad \partial_z \left[(c_* - U_*) v \right] \in \dot{L}_{\operatorname{per}}^2 \right\}.$$

Nonlinear instability ???

Consider Cauchy problem for the reduced Ostrovsky equation

$$\begin{cases} (u_t + uu_x)_x = u, \\ u|_{t=0} = u_0. \end{cases}$$

Does linear instability imply nonlinear instability?

Nonlinear instability ???

Consider Cauchy problem for the reduced Ostrovsky equation

$$\begin{cases} (u_t + uu_x)_x = u, \\ u|_{t=0} = u_0. \end{cases}$$

Does linear instability imply nonlinear instability?

- ▷ Lack of well-posedness results for $u_0 \in H^s_{per}$ with s < 3/2.
- Lack of information on dynamics of peaked perturbations to the peaked periodic wave.

Plan of part II

1. Instability of peaked waves in the reduced Ostrovsky equation

 $(u_t+uu_x)_x=u$

- Cauchy problem in Sobolev spaces
- Existence of peaked periodic waves
- Linear instability of the peaked wave
- 2. Instability of peaked waves in the Camassa–Holm equation

$$u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$$

- Cauchy problem in Sobolev spaces
- \triangleright Orbital stability of peakons in H^1
- ▷ Nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u|_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.

- ▷ Local well-posedness for $u_0 \in H^s$ with s > 3/2. [Y.Li-P.Olver (2000)] [Rodriguez (2001)]
- ▷ Local and global well-posedness for $u_0 \in H^3$ if $m_0 \ge 0$ [A.Constantin (2000)]
- ▷ Wave breaking for $u_0 \in H^3$ if $\exists x_0: (x x_0)m_0(x) \leq 0$. [A.Constantin, J. Escher (1998)]

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.

- ▷ Ill-posedness and norm inflation for $u_0 \in H^s$ with $s \le 3/2$. [P. Byers (2006)] [Z.Guo et al. (2018)]
- ▷ Global existence of weak solutions $u_0 \in H^1$ with $m_0 \ge 0$. [A.Constantin, L. Molinet (2000)]
- ▷ Global existence of weak solutions $u_0 \in H^1$.

[A. Bressan, A.Constantin (2006)] [H. Holden, X. Raynaud (2007)]

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.

▷ Uniqueness of weak global solutions $u_0 \in H^1$.

[A. Bressan, G. Chen, Q. Zhang (2015)

▷ Continuous dependence for $u_0 \in H^1 \cap W^{1,\infty}$ but no global existence in $H^1 \cap W^{1,\infty}$.

[F. Linares, G. Ponce, and T. Sideris (2019)]

▷ Local solutions may break in a finite time with $u_x(t,x) \to -\infty$ at some $x \in \mathbb{R}$ as $t \nearrow T$.

For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$

For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$

There exist two conserved quantities:

$$E(u) = \int_{\mathbb{R}} (u^2 + u_x^2) dx, \quad F(u) = \int_{\mathbb{R}} u(u^2 + u_x^2) dx.$$

such that $||u(t, \cdot)||_{H^1} = ||u_0||_{H^1}$ for almost every $t \in \mathbb{R}$.

Theorem (A. Constantin–L.Molinet (2001))

 φ is a unique (up to translation) minimizer of E(u) in H^1 subject to 3F(u) = 2E(u). Consequently, global solutions with $u_0 \in H^3$ with $m_0 \ge 0$ close to φ in H^1 stay close to $\{\varphi(\cdot - a)\}_{a \in \mathbb{R}}$ in H^1 for all t.

Dmitry Pelinovsky, McMaster University

For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$

Theorem (A. Constantin–W. Strauss (2000))

For every small $\varepsilon > 0$, if the initial data satisfies

$$\|u_0-\varphi\|_{H^1}<\left(\frac{\varepsilon}{3}\right)^4,$$

then the solution satisfies

$$\|u(t,\cdot)-\varphi(\cdot-\xi(t))\|_{H^1}$$

where $\xi(t)$ is a point of maximum for $u(t, \cdot)$ and the maximal existence time T > 0 may be finite.

Dmitry Pelinovsky, McMaster University

Instability of peaked waves

For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$

- ▷ Asymptotic stability of peakons for $u_0 \in H^1$ with $m_0 \ge 0$. [L. Molinet (2018)]
- Asymptotic stability of trains of peakons and anti-peakons.
 [L. Molinet (2019)]
- Inverse scattering for weak global solutions with multi-peakons. [L.Li (2009)] [J. Eckhardt, A. Kostenko (2014)] [J. Eckhardt (2018)]

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases}$$

where $Q[u] := \frac{1}{2}\varphi' * (u^2 + \frac{1}{2}u_x^2)$. Moreover, assume that u_0 is piecewise C^1 with a single peak.

Consider solutions of the Cauchy problem:

<

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases}$$

where $Q[u] := \frac{1}{2}\varphi' * (u^2 + \frac{1}{2}u_x^2)$. Moreover, assume that u_0 is piecewise C^1 with a single peak.

Theorem (F. Natali–D.P. (2019))

For every $\delta > 0$, there exist $t_0 > 0$ and $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^\infty}<\delta,$$

such that the global conservative solution satisfies

$$||u_x(t_0, \cdot) - \varphi'(\cdot - \xi(t_0))||_{L^{\infty}} > 1,$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in [0, t_0]$. Distability of peaked waves

20 / 26

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases}$$

where $Q[u] := \frac{1}{2}\varphi' * (u^2 + \frac{1}{2}u_x^2)$. Moreover, assume that u_0 is piecewise C^1 with a single peak.

Weak formulation of the unique global conservative solution:

$$\int_0^\infty \int_{\mathbb{R}} \left(u\psi_t + \frac{1}{2}u^2\psi_x - Q[u]\psi \right) dxdt + \int_{\mathbb{R}} u_0(x)\psi(0,x)dx = 0,$$

where $\psi \in C_c^1(\mathbb{R}^+ \times \mathbb{R}).$

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases}$$

where $Q[u] := \frac{1}{2}\varphi' * (u^2 + \frac{1}{2}u_x^2)$. Moreover, assume that u_0 is piecewise C^1 with a single peak.

▷ If
$$u \in H^1(\mathbb{R})$$
, then $Q[u] \in C(\mathbb{R})$.

▷ If
$$u \in H^1(\mathbb{R}) \cap C^1(-\infty, 0) \cap C^1(0, \infty)$$
, then
 $Q[u] \in C(\mathbb{R}) \cap C^1(-\infty, 0) \cap C^1(0, \infty)$.

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases}$$

where $Q[u] := \frac{1}{2}\varphi' * (u^2 + \frac{1}{2}u_x^2)$. Moreover, assume that u_0 is piecewise C^1 with a single peak.

If $u(t, \cdot + \xi(t)) \in H^1(\mathbb{R}) \cap C^1(-\infty, 0) \cap C^1(0, \infty)$ for $t \in (0, T)$ with $\xi(t) \in C^1(0, T)$, then

$$\frac{d\xi}{dt} = u(t,\xi(t)), \quad t \in (0,T).$$

Decomposition near a single peakon

Consider a decomposition:

$$u(t,x) = \varphi(x-t-a(t)) + v(t,x-t-a(t)), \quad t \in \mathbb{R}^+, \quad x \in \mathbb{R},$$

where a'(t) = v(t, 0). Then v(t, x) satisfies the Cauchy problem:

$$\begin{cases} v_t = (1 - \varphi)v_x + \varphi w + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0, \end{cases}$$

where $w(t, x) = \int_0^x v(t, y) dy$.

Decomposition near a single peakon

Consider a decomposition:

$$u(t,x) = \varphi(x-t-a(t)) + v(t,x-t-a(t)), \quad t \in \mathbb{R}^+, \quad x \in \mathbb{R},$$

where a'(t) = v(t, 0). Then v(t, x) satisfies the Cauchy problem:

$$\begin{cases} v_t = (1 - \varphi)v_x + \varphi w + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0, \end{cases}$$

where $w(t, x) = \int_0^x v(t, y) dy$.

The characteristic coordinates X(t, s) satisfies the IVP:

$$\begin{cases} \frac{dX}{dt} = \varphi(X) - 1 + v(t, X) - v(t, 0), \quad t \in (0, T), \\ X|_{t=0} = s, \end{cases}$$

which has a unique solution since φ and v is Lipschitz continuous. $\Rightarrow X(t,0) = 0$ is invariant in *t*.

Dmitry Pelinovsky, McMaster University

Instability of peaked waves

On characteristic curves, V(t,s) := v(t, X(t,s)) satisfies:

$$\begin{cases} \frac{dV}{dt} = \varphi(X)w(t,X) - Q[v](X), \\ V|_{t=0} = v_0(s). \end{cases}$$

whereas $V'(t,s) := v_x(t,X(t,s))$ satisfies

4

$$\begin{cases} \frac{dV'}{dt} = -\varphi'(X)V' + \varphi(X)V + \varphi'(X)w(t,X) - \frac{1}{2}(V')^2 + V^2 - P[v](X), \\ V'|_{t=0} = v'_0(s). \end{cases}$$

where $P[v](x) := \frac{1}{2} \int_{\mathbb{R}} \varphi(x-y) \left([v(y)]^2 + \frac{1}{2} [v'(y)]^2 \right) dy.$

On characteristic curves, V(t,s) := v(t, X(t,s)) satisfies:

$$\begin{cases} \frac{dV}{dt} = \varphi(X)w(t,X) - Q[v](X), \\ V|_{t=0} = v_0(s). \end{cases}$$

whereas $V'(t,s) := v_x(t,X(t,s))$ satisfies

4

$$\begin{cases} \frac{dV'}{dt} = -\varphi'(X)V' + \varphi(X)V + \varphi'(X)w(t,X) - \frac{1}{2}(V')^2 + V^2 - P[v](X), \\ V'|_{t=0} = v'_0(s). \end{cases}$$

where
$$P[v](x) := \frac{1}{2} \int_{\mathbb{R}} \varphi(x-y) \left([v(y)]^2 + \frac{1}{2} [v'(y)]^2 \right) dy.$$

From one side of the peak, $V_0(t) = V(t, 0), V'_0(t) = V'(t, +0)$:

$$\frac{d}{dt}(V_0 + V_0') = (V_0 + V_0') + V_0^2 - \frac{1}{2}(V_0')^2 - Q[v](0) - P[v](0).$$

On characteristic curves, V(t,s) := v(t, X(t,s)) satisfies:

$$\begin{cases} \frac{dV}{dt} = \varphi(X)w(t,X) - Q[v](X), \\ V|_{t=0} = v_0(s). \end{cases}$$

whereas $V'(t,s) := v_x(t,X(t,s))$ satisfies

4

$$\begin{cases} \frac{dV'}{dt} = -\varphi'(X)V' + \varphi(X)V + \varphi'(X)w(t,X) - \frac{1}{2}(V')^2 + V^2 - P[v](X), \\ V'|_{t=0} = v'_0(s). \end{cases}$$

where
$$P[v](x) := \frac{1}{2} \int_{\mathbb{R}} \varphi(x-y) \left([v(y)]^2 + \frac{1}{2} [v'(y)]^2 \right) dy.$$

Integrating with the integrating factors,

$$\frac{d}{dt}\left[e^{-t}(V_0+V_0')\right] = e^{-t}\left[V_0^2 - \frac{1}{2}(V_0')^2 - \mathcal{Q}[v](0) - P[v](0)\right] \le e^{-t}V_0^2.$$

Dmitry Pelinovsky, McMaster University

Instability of peaked waves

On characteristic curves, V(t,s) := v(t, X(t,s)) satisfies:

$$\begin{cases} \frac{dV}{dt} = \varphi(X)w(t,X) - Q[v](X), \\ V|_{t=0} = v_0(s). \end{cases}$$

whereas $V'(t,s) := v_x(t,X(t,s))$ satisfies

4

$$\begin{cases} \frac{dV'}{dt} = -\varphi'(X)V' + \varphi(X)V + \varphi'(X)w(t,X) - \frac{1}{2}(V')^2 + V^2 - P[v](X), \\ V'|_{t=0} = v'_0(s). \end{cases}$$

where
$$P[v](x) := \frac{1}{2} \int_{\mathbb{R}} \varphi(x-y) \left([v(y)]^2 + \frac{1}{2} [v'(y)]^2 \right) dy.$$

This yields the bound

$$V_0(t) + V_0'(t) \le e^t \left[V_0(0) + V_0'(0) + \int_0^t e^{-\tau} V_0^2(\tau) d\tau \right], \quad t \in [0,T).$$

Proof of instability

▷ From orbital stability in H^1 [A. Constant, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

Proof of instability

▷ From orbital stability in H^1 [A. Constant, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

Proof of instability

▷ From orbital stability in H^1 [A. Constant, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

▷ From the bound above, we have

$$V_0(t) + V'_0(t) \le -\varepsilon^2 e^t,$$

hence $|V_0(t_0) + V'_0(t_0)| \ge 2$ for $t_0 := \log(2) - 2\log(\varepsilon)$
 $\Rightarrow |V'_0(t_0)| > 1.$

Dmitry Pelinovsky, McMaster University

Instability of peaked waves

 Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for u₀ ∈ H¹ ∩ W^{1,∞} and wave breaking in a finite time: u_x(t,x) → -∞ at some x ∈ ℝ. [F. Linares, G. Ponce, and T. Sideris (2019)]

- Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for u₀ ∈ H¹ ∩ W^{1,∞} and wave breaking in a finite time: u_x(t,x) → -∞ at some x ∈ ℝ. [F. Linares, G. Ponce, and T. Sideris (2019)]
- 2. By means of characteristics, it follows that if $v_0 \in C^1(\mathbb{R})$, then $v(t, \cdot) \notin C^1(\mathbb{R})$ for t > 0 because of the single peak at $x = \xi(t)$.

- Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for u₀ ∈ H¹ ∩ W^{1,∞} and wave breaking in a finite time: u_x(t,x) → -∞ at some x ∈ ℝ. [F. Linares, G. Ponce, and T. Sideris (2019)]
- 2. By means of characteristics, it follows that if $v_0 \in C^1(\mathbb{R})$, then $v(t, \cdot) \notin C^1(\mathbb{R})$ for t > 0 because of the single peak at $x = \xi(t)$.
- 3. Since $v_0(0) + v'_0(0) < 0$ for instability, the unstable solution actually breaks in a finite time [L. Brandolese (2014)].

- Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for u₀ ∈ H¹ ∩ W^{1,∞} and wave breaking in a finite time: u_x(t,x) → -∞ at some x ∈ ℝ. [F. Linares, G. Ponce, and T. Sideris (2019)]
- 2. By means of characteristics, it follows that if $v_0 \in C^1(\mathbb{R})$, then $v(t, \cdot) \notin C^1(\mathbb{R})$ for t > 0 because of the single peak at $x = \xi(t)$.
- 3. Since $v_0(0) + v'_0(0) < 0$ for instability, the unstable solution actually breaks in a finite time [L. Brandolese (2014)].
- 4. The same instability can be detected in the linearized equation

$$\frac{d}{dt}(V_0 + V_0') = V_0 + V_0',$$

from which $V_0(t) + V'_0(t) = e^t [V_0(0) + V'_0(0)].$

Linearized instability

Consider the linearized equation at the single peakon:

$$\begin{cases} v_t = (1 - \varphi)v_x + \varphi w, \\ v|_{t=0} = v_0, \end{cases}$$

where $w(t, x) = \int_0^x v(t, y) dy$.

Theorem (F. Natali–D.P. (2019))

For every $v_0 \in H^1$, there exists a unique global solution $v \in C(\mathbb{R}, H^1)$ satisfying

$$\begin{aligned} \|v(t,\cdot)\|_{H^1(0,\infty)}^2 &= \|v_0\|_{H^1(0,\infty)}^2 \\ &+ 2(e^t - 1) \int_0^\infty \varphi(s) \left([v_0(s)]^2 + \frac{1}{2} [v_0'(s)]^2 \right) ds \end{aligned}$$

Linear instability in H^1 contradicts orbital stability of peakons in H^1 !

Dmitry Pelinovsky, McMaster University

Instability of peaked waves

Summary

1. Global solutions and wave breaking in the Ostrovsky equation

 $(u_t+uu_x)_x=u.$

▷ *Peaked* wave is spectrally and linearly *unstable*.

2. Global solutions and breaking in the Camassa-Holm equation

$$u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$$

 \triangleright *Peakons* are orbitally *stable* in H^1 .

▷ *Peakons* are orbitally *unstable* in $H^1 \cap W^{1,\infty}$.

Summary

1. Global solutions and wave breaking in the Ostrovsky equation

 $(u_t+uu_x)_x=u.$

▷ *Peaked* wave is spectrally and linearly *unstable*.

2. Global solutions and breaking in the Camassa-Holm equation

$$u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$$

Peakons are orbitally *stable* in H¹.
 Peakons are orbitally *unstable* in H¹ ∩ W^{1,∞}.

Thank you! Questions ???

Dmitry Pelinovsky, McMaster University

Instability of peaked waves