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Long-wave models

The Korteweg–De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0.

It arises from the dispersion relation for linear waves ei(kx−ωt):

ω2 = c2k2 + βk4 +O(k6) ⇒ ω − ck =
1
2c
βk3 +O(k5).
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small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0.

It arises from the dispersion relation for linear waves ei(kx−ωt):

ω2 = c2k2 + βk4 +O(k6) ⇒ ω − ck =
1
2c
βk3 +O(k5).

The Ostrovsky equation (1978) models rotation effects:

(ut + uux + βuxxx)x = γ2u,

as follows from:

ω2 = γ2 + c2k2 + βk4 + · · · ⇒ ω − ck =
β

2c
k3 +

γ2

2ck
+ · · ·

As β → 0, we obtain the reduced Ostrovsky equation.
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Long-wave models

The Korteweg–De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0.

It arises from the dispersion relation for linear waves ei(kx−ωt):

ω2 = c2k2 + βk4 +O(k6) ⇒ ω − ck =
1
2c
βk3 +O(k5).

The Whitham equation (1967) models full-dispersion effects:

ut + uux + K ∗ ux = 0,

where the Fourier transform of the convolution kernel:

K̂(k) =

√
gh

tanh(kh)
kh

=
√

gh
(

1− 1
6

k2h2 + · · ·
)
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Long-wave models

The Korteweg–De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0.

It arises from the dispersion relation for linear waves ei(kx−ωt):

ω2 = c2k2 + βk4 +O(k6) ⇒ ω − ck =
1
2c
βk3 +O(k5).

The Camassa–Holm equation (1994) models dispersion-modified
nonlinear effects:

ut + 3uux − utxx = 2uxuxx + uuxxx.
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2T-periodic or
decaying to 0 at infinity.
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2T-periodic or
decaying to 0 at infinity.

For the KdV equation, U satisfies

β
d2U
dz2 − cU + U2 = 0.

All solutions are smooth.
[ODE textbooks]
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2T-periodic or
decaying to 0 at infinity.

For the reduced Ostrovsky equation, U satisfies

d
dz

(
(c− U)

dU
dz

)
+ U(z) = 0.

Solutions are smooth if c− U(z) > 0 for all z.
[A.Geyer, D.P., 2017]
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2T-periodic or
decaying to 0 at infinity.

For the Whitham equation, U satisfies

K ∗ U = (c− U)U.

Solutions are smooth if c− U(z) > 0 for all z.
[M. Ehrnström, H. Kalisch, 2013] [M. Ehrnström, E.Wahlén, 2015]
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2T-periodic or
decaying to 0 at infinity.

For the Camassa-Holm equation, U satisfies

(c− U)

[
d2U
dz2 − U

]
= 0.

All solutions are peaked with U(z0) = c for some z0 ∈ R.
[R. Camassa, D. Holm, J. Hyman, 1994]
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Stability of smooth and peaked periodic waves

. KdV equation: smooth waves are linearly and orbitally stable
[B. Deconinck et.al. 2009,2010]

. Reduced Ostrovsky equation: all smooth waves are linearly
stable, but the limiting peaked wave is linearly unstable.
[A.Geyer & D.P. 2019]

. Whitham equation: small amplitude smooth waves are stable, but
become unstable as they approach the peaked wave.
[J.Carter & H.Kalisch, 2014]

. Camassa-Holm, Degasperis–Procesi, Novikov: peaked waves are
orbitally and asymptotically stable in energy space.
[A.Constantin & W.Strauss, 2000], [J.Lenells, 2005], [Z.Lin, Y.Liu, 2006], ...

but they are unstable w.r.t. piecewise smooth perturbations
[F.Natali & D.P. 2019]
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Plan of my talk

1. Instability of peaked waves in the reduced Ostrovsky equation

(ut + uux)x = u

. Cauchy problem in Sobolev spaces

. Existence of peaked periodic waves

. Linear instability of the peaked wave

2. Instability of peaked waves in the Camassa–Holm equation

ut + 3uux − utxx = 2uxuxx + uuxxx.

. Cauchy problem in Sobolev spaces

. Orbital stability of peakons in H1

. Nonlinear instability of peakons in H1 ∩W1,∞
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Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation{
(ut + uux)x = u,
u|t=0 = u0.

. Local well-posedness for u0 ∈ Hs with s > 3/2
[A.Stefanov et. al., 2010]

. Zero mass constraint is necessary in the periodic domain:∫ π
−π u0(x)dx = 0.

. Local solutions break in finite time for large initial data.
[Y.Liu & D.P. & A.Sakovich 2010]

. Global solutions exist for small initial data.
[R.Grimshaw & D.P. 2014]
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Global solutions for small initial data

Theorem (R.Grimshaw & D.P., 2014)

Let u0 ∈ H3 such that 1− 3u′′0(x) > 0 for all x. There exists a unique
solution u(t) ∈ C(R,H3) with u(0) = u0.

The quantity 1− 3uxx appears in the Lax pair [A. Hone & M. Wang (2003)]{
3λψxxx + (1− 3uxx)ψ = 0,
ψt + λψxx + uψx − uxψ = 0,

and in the conserved quantities [J. Brunelli & S.Sakovich (2013)]

E0 =

∫
R

u2dx

E1 =

∫
R

[
(1− 3uxx)

1/3 − 1
]

dx,

E2 =

∫
R

(uxxx)
2

(1− 3uxx)7/3 dx
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Wave breaking for large initial data

Lemma
Let u0 ∈ H2

per. The local solution u ∈ C([0,T),H2
per) blows up in a

finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 =∞ if and only if

lim
t↑T

inf
x

ux(t, x) = −∞, while lim
t↑T

sup
x
|u(t, x)| <∞.
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Wave breaking for large initial data

Lemma
Let u0 ∈ H2

per. The local solution u ∈ C([0,T),H2
per) blows up in a

finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 =∞ if and only if

lim
t↑T

inf
x

ux(t, x) = −∞, while lim
t↑T

sup
x
|u(t, x)| <∞.

Theorem (J.Hunter, 1990)

Let u0 ∈ C1
per and define

inf
x∈S

u′0(x) = −m and sup
x∈S
|u0(x)| = M.

If m3 > 4M(4 + m), a smooth solution u(t, x) breaks in a finite time.
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Wave breaking for large initial data

Lemma
Let u0 ∈ H2

per. The local solution u ∈ C([0,T),H2
per) blows up in a

finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 =∞ if and only if

lim
t↑T

inf
x

ux(t, x) = −∞, while lim
t↑T

sup
x
|u(t, x)| <∞.

Theorem (Y.Liu, D.P. & A.Sakovich, 2010)
Assume that u0 ∈ H2

per. The solution breaks if

either
∫
S
(u′

0(x))
3 dx < −

(
3
2
‖u0‖L2

)3/2

,

or ∃x0 : u′0(x0) < − (‖u0‖L∞ + T1‖u0‖L2)
1
2 .
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Wave breaking for large initial data

Lemma
Let u0 ∈ H2

per. The local solution u ∈ C([0,T),H2
per) blows up in a

finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 =∞ if and only if

lim
t↑T

inf
x

ux(t, x) = −∞, while lim
t↑T

sup
x
|u(t, x)| <∞.

Conjecture on sharp wave breaking:
Smooth solutions break in a finite time if u0 ∈ H3 yields
sign-indefinite 1− 3u′′0(x).
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Travelling periodic waves

Let c > 0 and consider a periodic solution U of

d
dz

(
(c− U)

dU
dz

)
+ U = 0. (ODE)

The solution U is smooth if and only if (u, v) = (U,U′) is a periodic
orbit γE of the planar system u′ = v,

v′ =
−u + v2

c− u
,

which has the first integral

E(u, v) =
1
2
(c− u)2v2 +

c
2

u2 − 1
3

u3.

The solution U is smooth if and only if c− U(z) > 0 for every z.

Dmitry Pelinovsky, McMaster University Instability of peaked waves 9 / 26



Existence of smooth periodic waves

Let c > 0. The first integral is

E(u, v) =
1
2
(c− u)2v2 +

c
2

u2 − 1
3

u3.

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0
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1.0

1.5

u

v

There exists a smooth family of periodic solutions parametrized by
the energy E ∈ (0,Ec), where 2T depends on E.
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

Dmitry Pelinovsky, McMaster University Instability of peaked waves 11 / 26



Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

The peaked periodic wave U∗ ∈ Hs
per(−π, π) for s < 3/2:

U∗(z) =
∞∑

n=1

2(−1)n

3n2 cos(nz),

with U∗(±π) = c∗ and U′∗(±π) = ±π/3.
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

The peaked wave satisfies the border case:
1− 3U′′∗ (z) = 0 for z ∈ (−π, π).
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Peaked periodic wave

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

Theorem (A.Geyer & D.P, 2019)

The peaked periodic wave U∗ is the unique peaked solution with the
jump at z = ±π.

See also [Bruell & Dhara, 2019]
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Linear instability of the peaked periodic wave

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T and zero mean.

Using u(t, x) = U∗(z) + v(t, z), where z = x− ct yields the linearized
evolution:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0.
(linO)

Definition
The travelling wave U is linearly unstable if there exists
v0 ∈ dom(∂zL) such that the unique global solution
v ∈ C(R, dom(∂zL)) satisfies limt→∞ ‖v(t)‖L2 =∞, where

dom(∂zL) =
{

v ∈ L̇2
per : ∂z [(c∗ − U∗)v] ∈ L̇2

per
}
.
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Linear instability of the peaked periodic wave

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T and zero mean.

Using u(t, x) = U∗(z) + v(t, z), where z = x− ct yields the linearized
evolution:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0.
(linO)

Theorem (Geyer & P., 2019)

The peaked travelling wave U is linearly unstable with

‖v(t)‖L2 ≥ C0eπt/6‖v0‖L2 , t > 0

for some C0 > 0.
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Linear instability of the peaked periodic wave

. Step 1: The truncated problem{
vt +

1
6∂z
[
(z2 − π2)v

]
= 0, t > 0,

v|t=0 = v0.
(truncO)

Method of characteristics. The characteristic curves z = Z(s, t) are
found explicitly and the solution of V(s, t) := v(Z(s, t), t) is

V(s, t) =
1
π2 [π cosh(πt/6)−s sinh(πt/6)]2v0(s), s ∈ [−π, π], t ∈ R.

This yields the linear instability result for the truncated problem:

Lemma
For every v0 ∈ dom(∂zL) ∃! global solution v ∈ C(R, dom(∂zL)). If
v0 is odd, then the global solution satisfies

1
2
‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.
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Linear instability of the peaked periodic wave

. Step 2: The full evolution problem{
vt +

1
6∂z
[
(z2 − π2)v

]
=∂−1

z v, t > 0,
v|t=0 = v0.

(linO)

Generalized Meth. of Char. Treat ∂−1
z v as a source term in (linO).

. truncated problem vt = A0v has a unique global solution in L̇2
per

. Bounded Perturbation Theorem:
A := A0 + ∂−1

z is the generator of C0-semigroup on L̇2
per

Lemma
For every v0 ∈ dom(∂zL) ∃! global solution v ∈ C(R, dom(∂zL)). If
v0 is odd and satisfies some constraints, then the solution satisfies

C‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.

The peaked periodic wave is linearly unstable.
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Spectral instability of the peaked periodic wave

-
Π

6

Π

6

ReHΛL

ImHΛL

Theorem (Geyer & P., 2020)

σ(∂zL) =
{
λ ∈ C : −π

6
≤ Re(λ) ≤ π

6

}
,

where ∂zLv := ∂z [(c∗ − U∗)v] + ∂−1
z v with with

dom(∂zL) =
{

v ∈ L̇2
per : ∂z [(c∗ − U∗)v] ∈ L̇2

per
}
.
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Nonlinear instability ???

Consider Cauchy problem for the reduced Ostrovsky equation{
(ut + uux)x = u,
u|t=0 = u0.

Does linear instability imply nonlinear instability?

. Lack of well-posedness results for u0 ∈ Hs
per with s < 3/2.

. Lack of information on dynamics of peaked perturbations to the
peaked periodic wave.
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Plan of part II

1. Instability of peaked waves in the reduced Ostrovsky equation

(ut + uux)x = u

. Cauchy problem in Sobolev spaces

. Existence of peaked periodic waves

. Linear instability of the peaked wave

2. Instability of peaked waves in the Camassa–Holm equation

ut + 3uux − utxx = 2uxuxx + uuxxx.

. Cauchy problem in Sobolev spaces

. Orbital stability of peakons in H1

. Nonlinear instability of peakons in H1 ∩W1,∞
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Cauchy problem in Sobolev spaces

Let ϕ(x) = e−|x| be the Greens function satisfying (1− ∂2
x )ϕ = 2δ.

The Cauchy problem for the Camassa–Holm equation can be written
in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.
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in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.

. Local well-posedness for u0 ∈ Hs with s > 3/2.
[Y.Li-P.Olver (2000)] [Rodriguez (2001)]

. Local and global well-posedness for u0 ∈ H3 if m0 ≥ 0
[A.Constantin (2000)]

. Wave breaking for u0 ∈ H3 if ∃x0: (x− x0)m0(x) ≤ 0.
[A.Constantin, J. Escher (1998)]
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The Cauchy problem for the Camassa–Holm equation can be written
in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.

. Ill-posedness and norm inflation for u0 ∈ Hs with s ≤ 3/2.
[P. Byers (2006)] [Z.Guo et al. (2018)]

. Global existence of weak solutions u0 ∈ H1 with m0 ≥ 0.
[A.Constantin, L. Molinet (2000)]

. Global existence of weak solutions u0 ∈ H1.
[A. Bressan, A.Constantin (2006)] [H. Holden, X. Raynaud (2007)]
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Let ϕ(x) = e−|x| be the Greens function satisfying (1− ∂2
x )ϕ = 2δ.

The Cauchy problem for the Camassa–Holm equation can be written
in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.

. Uniqueness of weak global solutions u0 ∈ H1.
[A. Bressan, G. Chen, Q. Zhang (2015)

. Continuous dependence for u0 ∈ H1 ∩W1,∞ but no global
existence in H1 ∩W1,∞.
[F. Linares, G. Ponce, and T. Sideris (2019)]

. Local solutions may break in a finite time with ux(t, x)→ −∞ at
some x ∈ R as t↗ T .

Dmitry Pelinovsky, McMaster University Instability of peaked waves 18 / 26



Existence and stability of peakons

For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.
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For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.

There exist two conserved quantities:

E(u) =
∫
R
(u2 + u2

x)dx, F(u) =
∫
R

u(u2 + u2
x)dx.

such that ‖u(t, ·)‖H1 = ‖u0‖H1 for almost every t ∈ R.

Theorem (A. Constantin–L.Molinet (2001))

ϕ is a unique (up to translation) minimizer of E(u) in H1 subject to
3F(u) = 2E(u). Consequently, global solutions with u0 ∈ H3 with
m0 ≥ 0 close to ϕ in H1 stay close to {ϕ(· − a)}a∈R in H1 for all t.
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For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.

Theorem (A. Constantin–W. Strauss (2000))

For every small ε > 0, if the initial data satisfies

‖u0 − ϕ‖H1 <
(ε

3

)4
,

then the solution satisfies

‖u(t, ·)− ϕ(· − ξ(t))‖H1 < ε, t ∈ (0,T),

where ξ(t) is a point of maximum for u(t, ·) and the maximal existence
time T > 0 may be finite.
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Existence and stability of peakons

For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.

. Asymptotic stability of peakons for u0 ∈ H1 with m0 ≥ 0.
[L. Molinet (2018)]

. Asymptotic stability of trains of peakons and anti-peakons.
[L. Molinet (2019)]

. Inverse scattering for weak global solutions with multi-peakons.
[L.Li (2009)] [J. Eckhardt, A. Kostenko (2014)] [J. Eckhardt (2018)]
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

where Q[u] := 1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
. Moreover, assume that u0 is

piecewise C1 with a single peak.
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where Q[u] := 1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
. Moreover, assume that u0 is

piecewise C1 with a single peak.

Theorem (F. Natali–D.P. (2019))

For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the global conservative solution satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0, t0].
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

where Q[u] := 1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
. Moreover, assume that u0 is

piecewise C1 with a single peak.

Weak formulation of the unique global conservative solution:∫ ∞
0

∫
R

(
uψt +

1
2

u2ψx − Q[u]ψ
)

dxdt +
∫
R

u0(x)ψ(0, x)dx = 0,

where ψ ∈ C1
c(R+ × R).
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u|t=0 = u0 ∈ H1 ∩W1,∞,

where Q[u] := 1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
. Moreover, assume that u0 is

piecewise C1 with a single peak.

. If u ∈ H1(R), then Q[u] ∈ C(R).

. If u ∈ H1(R) ∩ C1(−∞, 0) ∩ C1(0,∞), then
Q[u] ∈ C(R) ∩ C1(−∞, 0) ∩ C1(0,∞).
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

where Q[u] := 1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
. Moreover, assume that u0 is

piecewise C1 with a single peak.

If u(t, ·+ ξ(t)) ∈ H1(R) ∩ C1(−∞, 0) ∩ C1(0,∞) for t ∈ (0,T) with
ξ(t) ∈ C1(0,T), then

dξ
dt

= u(t, ξ(t)), t ∈ (0,T).
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ R+, x ∈ R,

where a′(t) = v(t, 0). Then v(t, x) satisfies the Cauchy problem:{
vt = (1− ϕ)vx + ϕw + (v|x=0 − v)vx − Q[v], t ∈ (0,T),
v|t=0 = v0,

where w(t, x) =
∫ x

0 v(t, y)dy.

The characteristic coordinates X(t, s) satisfies the IVP:{ dX
dt = ϕ(X)− 1 + v(t,X)− v(t, 0), t ∈ (0,T),
X|t=0 = s,

which has a unique solution since ϕ and v is Lipschitz continuous.
⇒ X(t, 0) = 0 is invariant in t.
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Evolution near a single peakon

On characteristic curves, V(t, s) := v(t,X(t, s)) satisfies:{ dV
dt = ϕ(X)w(t,X)− Q[v](X),

V|t=0 = v0(s).

whereas V ′(t, s) := vx(t,X(t, s)) satisfies{
dV′

dt = −ϕ′(X)V ′ + ϕ(X)V + ϕ′(X)w(t,X)− 1
2(V
′)2 + V2 − P[v](X),

V ′|t=0 = v′0(s).

where P[v](x) := 1
2

∫
R ϕ(x− y)

(
[v(y)]2 + 1

2 [v
′(y)]2

)
dy.
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whereas V ′(t, s) := vx(t,X(t, s)) satisfies{
dV′

dt = −ϕ′(X)V ′ + ϕ(X)V + ϕ′(X)w(t,X)− 1
2(V
′)2 + V2 − P[v](X),

V ′|t=0 = v′0(s).

where P[v](x) := 1
2

∫
R ϕ(x− y)

(
[v(y)]2 + 1

2 [v
′(y)]2

)
dy.

From one side of the peak, V0(t) = V(t, 0), V ′0(t) = V ′(t,+0):

d
dt
(V0 + V ′0) = (V0 + V ′0) + V2

0 −
1
2
(V ′0)

2 − Q[v](0)− P[v](0).
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whereas V ′(t, s) := vx(t,X(t, s)) satisfies{
dV′

dt = −ϕ′(X)V ′ + ϕ(X)V + ϕ′(X)w(t,X)− 1
2(V
′)2 + V2 − P[v](X),

V ′|t=0 = v′0(s).

where P[v](x) := 1
2

∫
R ϕ(x− y)

(
[v(y)]2 + 1

2 [v
′(y)]2

)
dy.

Integrating with the integrating factors,

d
dt

[
e−t(V0 + V ′0)

]
= e−t

[
V2

0 −
1
2
(V ′0)

2 − Q[v](0)− P[v](0)
]
≤ e−tV2

0 .
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Evolution near a single peakon

On characteristic curves, V(t, s) := v(t,X(t, s)) satisfies:{ dV
dt = ϕ(X)w(t,X)− Q[v](X),

V|t=0 = v0(s).

whereas V ′(t, s) := vx(t,X(t, s)) satisfies{
dV′

dt = −ϕ′(X)V ′ + ϕ(X)V + ϕ′(X)w(t,X)− 1
2(V
′)2 + V2 − P[v](X),

V ′|t=0 = v′0(s).

where P[v](x) := 1
2

∫
R ϕ(x− y)

(
[v(y)]2 + 1

2 [v
′(y)]2

)
dy.

This yields the bound

V0(t) + V ′0(t) ≤ et
[

V0(0) + V ′0(0) +
∫ t

0
e−τV2

0 (τ)dτ
]
, t ∈ [0,T).
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Proof of instability

. From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

. Let limx→0+ v′0(x) = −‖v′0‖L∞ = −2ε2. If v0 ∈ H1 ∩W1,∞

satisfies ‖v0‖L∞ + ‖v′0‖L∞ < δ, then ∀δ > 0, ∃ε > 0 such that(ε
3

)4
+ 2ε2 < δ,

. From the bound above, we have

V0(t) + V ′0(t) ≤ −ε2et,

hence |V0(t0) + V ′0(t0)| ≥ 2 for t0 := log(2)− 2 log(ε)
⇒ |V ′0(t0)| > 1.
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Remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for u0 ∈ H1 ∩W1,∞ and
wave breaking in a finite time: ux(t, x)→ −∞ at some x ∈ R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. By means of characteristics, it follows that if v0 ∈ C1(R), then
v(t, ·) /∈ C1(R) for t > 0 because of the single peak at x = ξ(t).

3. Since v0(0) + v′0(0) < 0 for instability, the unstable solution
actually breaks in a finite time [L. Brandolese (2014)].

4. The same instability can be detected in the linearized equation

d
dt
(V0 + V ′0) = V0 + V ′0,

from which V0(t) + V ′0(t) = et [V0(0) + V ′0(0)].

Dmitry Pelinovsky, McMaster University Instability of peaked waves 24 / 26



Remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for u0 ∈ H1 ∩W1,∞ and
wave breaking in a finite time: ux(t, x)→ −∞ at some x ∈ R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. By means of characteristics, it follows that if v0 ∈ C1(R), then
v(t, ·) /∈ C1(R) for t > 0 because of the single peak at x = ξ(t).

3. Since v0(0) + v′0(0) < 0 for instability, the unstable solution
actually breaks in a finite time [L. Brandolese (2014)].

4. The same instability can be detected in the linearized equation

d
dt
(V0 + V ′0) = V0 + V ′0,

from which V0(t) + V ′0(t) = et [V0(0) + V ′0(0)].

Dmitry Pelinovsky, McMaster University Instability of peaked waves 24 / 26



Remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for u0 ∈ H1 ∩W1,∞ and
wave breaking in a finite time: ux(t, x)→ −∞ at some x ∈ R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. By means of characteristics, it follows that if v0 ∈ C1(R), then
v(t, ·) /∈ C1(R) for t > 0 because of the single peak at x = ξ(t).

3. Since v0(0) + v′0(0) < 0 for instability, the unstable solution
actually breaks in a finite time [L. Brandolese (2014)].

4. The same instability can be detected in the linearized equation

d
dt
(V0 + V ′0) = V0 + V ′0,

from which V0(t) + V ′0(t) = et [V0(0) + V ′0(0)].

Dmitry Pelinovsky, McMaster University Instability of peaked waves 24 / 26



Remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for u0 ∈ H1 ∩W1,∞ and
wave breaking in a finite time: ux(t, x)→ −∞ at some x ∈ R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. By means of characteristics, it follows that if v0 ∈ C1(R), then
v(t, ·) /∈ C1(R) for t > 0 because of the single peak at x = ξ(t).

3. Since v0(0) + v′0(0) < 0 for instability, the unstable solution
actually breaks in a finite time [L. Brandolese (2014)].

4. The same instability can be detected in the linearized equation

d
dt
(V0 + V ′0) = V0 + V ′0,

from which V0(t) + V ′0(t) = et [V0(0) + V ′0(0)].

Dmitry Pelinovsky, McMaster University Instability of peaked waves 24 / 26



Linearized instability

Consider the linearized equation at the single peakon:{
vt = (1− ϕ)vx + ϕw,
v|t=0 = v0,

where w(t, x) =
∫ x

0 v(t, y)dy.

Theorem (F. Natali–D.P. (2019))

For every v0 ∈ H1, there exists a unique global solution v ∈ C(R,H1)
satisfying

‖v(t, ·)‖2
H1(0,∞) = ‖v0‖2

H1(0,∞)

+2(et − 1)
∫ ∞

0
ϕ(s)

(
[v0(s)]2 +

1
2
[v′0(s)]

2
)

ds

Linear instability in H1 contradicts orbital stability of peakons in H1!
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Summary

1. Global solutions and wave breaking in the Ostrovsky equation

(ut + uux)x = u.

. Peaked wave is spectrally and linearly unstable.

2. Global solutions and breaking in the Camassa–Holm equation

ut + 3uux − utxx = 2uxuxx + uuxxx.

. Peakons are orbitally stable in H1.

. Peakons are orbitally unstable in H1 ∩W1,∞.

Thank you! Questions ???
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