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Long-wave models

The Korteweg—De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

u; + utty + Bty = 0.

It arises from the dispersion relation for linear waves ¢! (K*—«)

1
W= 4B+ OKY) = w—ck= %/318 + O(K°).

Dmitry Pelinovsky, McMaster University Instability of peaked waves 2/26



Long-wave models

The Korteweg—De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

u; + utty + Bty = 0.

It arises from the dispersion relation for linear waves ¢! (K*—«)

1
W= 4B+ OKY) = w—ck= Eﬁl& + O(K°).

The Ostrovsky equation (1978) models rotation effects:

(”I + uuy, + ﬁ”xxx)x = 72”7

as follows from:

B v

W=+ = w—ck= K+

2c 2ck

As 8 — 0, we obtain the reduced Ostrovsky equation.
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Long-wave models

The Korteweg—De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:
u; + utty + Bty = 0.

It arises from the dispersion relation for linear waves ¢¥*—«1):

1
Wt = A4 B+ Ok = w—wzawﬂmmn

The Whitham equation (1967) models full-dispersion effects:
u; + uuy, + K x u, = 0,
where the Fourier transform of the convolution kernel:

k(k) = snnE ¢( Lew ”)
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Long-wave models

The Korteweg—De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

u; + utty + Bty = 0.

It arises from the dispersion relation for linear waves ¢! (K*—«)

=R B+ OR) = w—ck= %,813 + OW).
The Camassa—Holm equation (1994) models dispersion-modified
nonlinear effects:

Uy + Uty — Upey = 2Uylye + Ullyyy.
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Traveling wave solutions

Traveling wave solutions are solutions of the form
u(x,t) = U(x — ct),

where z = x — ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 27-periodic or
decaying to O at infinity.

Dmitry Pelinovsky, McMaster University Instability of peaked waves

3/26



Traveling wave solutions

Traveling wave solutions are solutions of the form
u(x,t) = U(x — ct),

where z = x — ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 27-periodic or
decaying to O at infinity.

For the KdV equation, U satisfies

d’U
672,2 —cU+U*=0.

All solutions are smooth.
[ODE textbooks]
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Traveling wave solutions

Traveling wave solutions are solutions of the form
u(x,t) = U(x — ct),

where z = x — ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 27-periodic or
decaying to O at infinity.

For the reduced Ostrovsky equation, U satisfies

jz ((c - U)ngj) +U(z) =0,

Solutions are smooth if ¢ — U(z) > 0 for all z.
[A.Geyer, D.P., 2017]
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x,t) = U(x — ct),
where z = x — ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 27-periodic or
decaying to O at infinity.
For the Whitham equation, U satisfies

KxU=(c—U)U.

Solutions are smooth if ¢ — U(z) > 0 for all z.
[M. Ehrnstrom, H. Kalisch, 2013] [M. Ehrnstrom, E.Wahlén, 2015]
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Traveling wave solutions

Traveling wave solutions are solutions of the form
u(x,t) = U(x — ct),

where z = x — ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 27-periodic or
decaying to O at infinity.

For the Camassa-Holm equation, U satisfies

R L

All solutions are peaked with U(zg) = ¢ for some zp € R.
[R. Camassa, D. Holm, J. Hyman, 1994]

Dmitry Pelinovsky, McMaster University Instability of peaked waves 3/26



Stability of smooth and peaked periodic waves

> KdV equation: smooth waves are linearly and orbitally stable
[B. Deconinck et.al. 2009,2010]
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Stability of smooth and peaked periodic waves

> KdV equation: smooth waves are linearly and orbitally stable
[B. Deconinck et.al. 2009,2010]

> Reduced Ostrovsky equation: all smooth waves are linearly
stable, but the limiting peaked wave is linearly unstable.
[A.Geyer & D.P. 2019]
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Stability of smooth and peaked periodic waves

> KdV equation: smooth waves are linearly and orbitally stable
[B. Deconinck et.al. 2009,2010]

> Reduced Ostrovsky equation: all smooth waves are linearly
stable, but the limiting peaked wave is linearly unstable.
[A.Geyer & D.P. 2019]

> Whitham equation: small amplitude smooth waves are stable, but
become unstable as they approach the peaked wave.
[J.Carter & H.Kalisch, 2014]
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Stability of smooth and peaked periodic waves

> KdV equation: smooth waves are linearly and orbitally stable
[B. Deconinck et.al. 2009,2010]

> Reduced Ostrovsky equation: all smooth waves are linearly
stable, but the limiting peaked wave is linearly unstable.
[A.Geyer & D.P. 2019]

> Whitham equation: small amplitude smooth waves are stable, but
become unstable as they approach the peaked wave.
[J.Carter & H.Kalisch, 2014]

> Camassa-Holm, Degasperis—Procesi, Novikov: peaked waves are
orbitally and asymptotically stable in energy space.
[A.Constantin & W.Strauss, 2000], [J.Lenells, 2005], [Z.Lin, Y.Liu, 2006], ...
but they are unstable w.r.t. piecewise smooth perturbations
[ENatali & D.P. 2019]
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Plan of my talk

1. Instability of peaked waves in the reduced Ostrovsky equation
(ty + uuy)y = u
> Cauchy problem in Sobolev spaces
> Existence of peaked periodic waves
> Linear instability of the peaked wave
2. Instability of peaked waves in the Camassa—Holm equation
U + 3uty — Uy = 2Uylyy + Ullyyy.
> Cauchy problem in Sobolev spaces
> Orbital stability of peakons in H'

> Nonlinear instability of peakons in H' N W
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Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation

{ (ty + uny)y = u,

ui—o = up.

> Local well-posedness for ugp € H* with s > 3/2
[A.Stefanov et. al., 2010]

> Zero mass constraint is necessary in the periodic domain:
T
J7uo(x)dx = 0.
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Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation

{ (ty + uny)y = u,

ui—o = up.

> Local well-posedness for ugp € H* with s > 3/2
[A.Stefanov et. al., 2010]

> Zero mass constraint is necessary in the periodic domain:
T
J7uo(x)dx = 0.
> Local solutions break in finite time for large initial data.
[Y.Liu & D.P. & A.Sakovich 2010]

> Global solutions exist for small initial data.
[R.Grimshaw & D.P. 2014]
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Global solutions for small initial data
Theorem (R.Grimshaw & D.P., 2014)

Let ug € H? such that 1 — 3ufj(x) > 0 for all x. There exists a unique
solution u(t) € C(R, H?) with u(0) = uy.
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Global solutions for small initial data

Theorem (R.Grimshaw & D.P., 2014)

Let ug € H? such that 1 — 3ufj(x) > 0 for all x. There exists a unique
solution u(t) € C(R, H?) with u(0) = uy.

The quantity 1 — 3u,, appears in the Lax pair [A. Hone & M. Wang (2003)]

3)\¢xxx + (1 - 3”)&){)1/) - 07
Yy + M + )y — up = 0,

and in the conserved quantities [J. Brunelli & S.Sakovich (2013)]

Ey, = /uzdx
R

E = /[(l—3uxx)l/3—l]dx,
R

(”xxx)2
E, = | —2 4
’ /R (1 =3u)

Dmitry Pelinovsky, McMaster University Instability of peaked waves 7126



Wave breaking for large initial data

Lemma
Let uy € H>,,. The local solution u € C([0,T), H>,) blows up in a

per » M per
finite time T < oo in the sense limyr ||u(-, )|z = oo if and only if

liminfu,(t,x) = — hile i t < 00.
Doninifey (o) = —oe, Wi tlTr;lsgp]u(,x)\ 00
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Wave breaking for large initial data

Lemma

Let ug € Hy,. The local solution u € C([0,T), Hy,,) blows up in a
finite time T < oo in the sense limyr ||u(-, )|z = oo if and only if

liminfu,(t, x) = — hile i 1, %) < co.
it ) = —ee, WA ,#rpsgplu(,X)\ 00

Theorem (J .Hunter, 1990)

Let up € C per and define
inf uy(x) = —m and sup|up(x)| = M.
x€S X€S

Ifm® > 4M(4 + m), a smooth solution u(t,x) breaks in a finite time.
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Wave breaking for large initial data

Lemma

Let ug € Hy,. The local solution u € C([0,T), Hy,,) blows up in a
finite time T < oo in the sense limyr ||u(-, )|z = oo if and only if

liminfu,(r,x) = —oo, while limsup |u(t,x)| < oco.

0T x 0Ty

Theorem (Y.Liu, D.P. & A.Sakovich, 2010)

Assume that uy € Hper The solution breaks if

3 3/2
either /(ug(x)f dx < — (2u0L2> ,
S

1
or Ixo: (o) < — (lluollzee + Tluollz2)* -
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Wave breaking for large initial data

Lemma
Let uy € H>,,. The local solution u € C([0,T), H>,) blows up in a

per » M per
finite time T < oo in the sense limyr ||u(-, )|z = oo if and only if

lim inf uy (£, x) = — hile i 1, %)| < oo.
Doninifey (o) = —oe, Wi rlTrpSI;p!M(,X)\ 00

Conjecture on sharp wave breaking:
Smooth solutions break in a finite time if uy € H? yields
sign-indefinite 1 — 3u( (x).

Dmitry Pelinovsky, McMaster University Instability of peaked waves 8/26



Travelling periodic waves

Let ¢ > 0 and consider a periodic solution U of

d du
- —_U)— =0. DE
dz((c U)dz)+U 0 (ODE)
The solution U is smooth if and only if (u,v) = (U, U’) is a periodic
orbit g of the planar system
u =v,
,  —u+ v

V= —
c—u

which has the first integral

1 : 1
E(u,v) = E(c —u)h? + %uz — §u3.

The solution U is smooth if and only if ¢ — U(z) > O for every z.
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Existence of smooth periodic waves

Let ¢ > 0. The first integral is

_ Lo € 1
E(M,V)—z(c M)V +2M 31/{
B I
=\
——
{7
00 xf /ft(f((,
NN
\_@g;,
W77
o W
i

N /
LN =\

There exists a smooth family of periodic solutions parametrized by
the energy E € (0, E.), where 27 depends on E.
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile
372 — 72
18 7

\ |/

N

Ui(z) = 7 € [-m, 7,
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

Uela) = =g

Z € [—m, 7],

which can be periodically continued.

ACATA A
N
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

Uela) = =g

z€ [771-7 ﬂ-]a
which can be periodically continued.

VACAACA

VANV VANV AN,

N

The peaked periodic wave U, €

per

o 2(—1)"
Z 2 cos(nz),

n=1

with U, (+7) = ¢, and U, (£7) = +7/3.
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

Uela) = =g

z € [—m,m],

which can be periodically continued.

A AT N
\\.// / AN 4 ’ \I_/ \\\/’/ \\\_/,/

The peaked wave satisfies the border case:
1 —3U)(z) =0forz € (—m,m).
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

Uela) = =g

z € [—m,m],

which can be periodically continued.

A AT N
\\.// / AN 4 ’ \I_/ \\\/’/ \\\_/,/

Theorem (A.Geyer & D.P, 2019)

The peaked periodic wave U, is the unique peaked solution with the
Jjump at 7 = +.

See also [Bruell & Dhara, 2019]
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Linear instability of the peaked periodic wave

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T and zero mean.

Using u(t, x) = U.(z) + v(t, z), where z = x — ct yields the linearized
evolution:

{ v+ 0, [(Us(z) — v =07y, >0,

1inO
V]i=0 = vo. ( )

Definition

The travelling wave U is linearly unstable if there exists
vo € dom(9;L) such that the unique global solution
v € C(R,dom(0,L)) satisfies lim,_,o ||v(f)||;2 = oo, where

dom(9.L) = {v € Lger i O (ex — U] € Lger} .

Z
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Linear instability of the peaked periodic wave

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T and zero mean.

Using u(t, x) = U.(z) + v(t, z), where z = x — ct yields the linearized
evolution:

{ v+ 0, [(Us(z) — v =07y, >0,

1inO
V]i=0 = vo. ( )

Theorem (Geyer & P., 2019)

The peaked travelling wave U is linearly unstable with
@z > Coe™®|voll 2, >0

for some Cy > 0.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

1 2 2
v+ 20, [(Z—7)v| =0, >0
5: [( ] ’ ’ (truncO)
V]i=0 = vo.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7m*)v] =0, >0,

(truncO)
V]i=0 = vo.

Method of characteristics. The characteristic curves z = Z(s, 1) are
found explicitly and the solution of V (s, 7) := v(Z(s, 1),1) is

V(s, 1) = %[w cosh(71/6)—ssinh(7z/6)]*vo(s), s € [—m, @], tE€R.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7m*)v] =0, >0,

(truncO)
V]i=0 = vo.

Method of characteristics. The characteristic curves z = Z(s, t) are
found explicitly and the solution of V (s, 7) := v(Z(s, 1),1) is

1

V(s,t) = —[m cosh(nt/6)—s sinh(2/6)]*vo(s), s € [-m, 7], tER.
T

This yields the linear instability result for the truncated problem:

Lemma

For every vy € dom(9;L) 3! global solution v € C(R,dom(0.L)). If
Vo is odd, then the global solution satisfies

1
SIvollize™ < [v(@)lliz < [Ivollze™®, 1> 0.
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v + éaz [(ZZ — Wz)v} :3;1\/, t>0,
V]i=0 = vo.
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20 [(Z2 = 7] =0y, >0,

(1inO)
V]i=0 = vo.

Generalized Meth. of Char. Treat 0 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in Lger
> Bounded Perturbation Theorem:

A:=Ag+ 0;1 is the generator of C°-semigroup on Lger
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20 [(Z2 = 7] =0y, >0,

(1inO)
V]i=0 = vo.

Generalized Meth. of Char. Treat 0 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in Lger

> Bounded Perturbation Theorem:
A:=Ag+ 8;' is the generator of C°-semigroup on Lger

Lemma
For every vy € dom(0.L) 3! global solution v € C(R,dom(0;L)). If
vo is odd and satisfies some constraints, then the solution satisfies

Clivoll2e™ < v(D)llz2 < [Ivoll 2™, > 0.
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20 [(Z2 = 7] =0y, >0,

(1inO)
V]i=0 = vo.

Generalized Meth. of Char. Treat 0 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in Lger

> Bounded Perturbation Theorem:
A:=Ag+ 8;1 is the generator of C°-semigroup on Lger

Lemma
For every vy € dom(0.L) 3! global solution v € C(R,dom(0;L)). If
vo is odd and satisfies some constraints, then the solution satisfies

Clivoll2e™ < v(D)llz2 < [Ivoll 2™, > 0.

The peaked periodic wave is linearly unstable.
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Spectral instability of the peaked periodic wave

imoy
| Rery)
| ‘

o(9.L) = {)\ eC: _6 <Re()) < %}

Theorem (Geyer & P., 2020)

where O.Lv := 0. [(cx — Uy )v] + 07 'v with with

dom(9.L) = {veL per : O (ex — U] € Lger}.
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Nonlinear instability ???

Consider Cauchy problem for the reduced Ostrovsky equation
{ (ty + uny)y = u,

ui—o = up.

Does linear instability imply nonlinear instability?
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Nonlinear instability ???

Consider Cauchy problem for the reduced Ostrovsky equation

{ (ty + uny)y = u,

ui—o = up.

Does linear instability imply nonlinear instability?
> Lack of well-posedness results for up € Hy,, with s < 3/2.

> Lack of information on dynamics of peaked perturbations to the
peaked periodic wave.
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Plan of part II

1. Instability of peaked waves in the reduced Ostrovsky equation
(ty + uuy)y = u
> Cauchy problem in Sobolev spaces
> Existence of peaked periodic waves
> Linear instability of the peaked wave
2. Instability of peaked waves in the Camassa—Holm equation
U + 3uty — Uy = 2Uylyy + Ullyyy.
> Cauchy problem in Sobolev spaces
> Orbital stability of peakons in H'

> Nonlinear instability of peakons in H' N W
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Cauchy problem in Sobolev spaces

Let (x) = e~ be the Greens function satisfying (1 — 92)¢ = 26.
The Cauchy problem for the Camassa—Holm equation can be written
in the convolution form:

{ u, + uu, + %(p’ * (u2 + %u%) =0,
uli—o = up.

The quantity m := (1 — 9?)u is referred as the momentum density.
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Cauchy problem in Sobolev spaces

Let (x) = e~ be the Greens function satisfying (1 — 92)¢ = 26.
The Cauchy problem for the Camassa—Holm equation can be written
in the convolution form:

{ u; + uu, + %(p’ * (u2 + %u%) =0,
uli—o = up.

The quantity m := (1 — 9?)u is referred as the momentum density.

> Local well-posedness for up € H* with s > 3/2.
[Y.Li-P.Olver (2000)] [Rodriguez (2001)]

> Local and global well-posedness for ug € H> if my > 0
[A.Constantin (2000)]

> Wave breaking for ug € H> if 3xp: (x — x0)mp(x) < 0.
[A.Constantin, J. Escher (1998)]
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Cauchy problem in Sobolev spaces

Let (x) = e~ be the Greens function satisfying (1 — 92)¢ = 26.
The Cauchy problem for the Camassa—Holm equation can be written
in the convolution form:

{ u; + uu, + %(p’ * (u2 + %u%) =0,
uli—o = up.

The quantity m := (1 — 9?)u is referred as the momentum density.

> Ill-posedness and norm inflation for uy € H* with s < 3/2.
[P. Byers (2006)] [Z.Guo et al. (2018)]

> Global existence of weak solutions uy € H' with mg > 0.
[A.Constantin, L. Molinet (2000)]

> Global existence of weak solutions uy € H'.
[A. Bressan, A.Constantin (2006)] [H. Holden, X. Raynaud (2007)]
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Cauchy problem in Sobolev spaces

Let (x) = e~ be the Greens function satisfying (1 — 92)¢ = 26.
The Cauchy problem for the Camassa—Holm equation can be written
in the convolution form:

{ u, + uu, + %(p’ * (u2 + %u%) =0,
uli—o = up.

The quantity m := (1 — 9?)u is referred as the momentum density.

> Uniqueness of weak global solutions uy € H'.
[A. Bressan, G. Chen, Q. Zhang (2015)

> Continuous dependence for uy € H' N W' but no global
existence in H' N W1,
[E. Linares, G. Ponce, and T. Sideris (2019)]

> Local solutions may break in a finite time with u, (¢, x) — —oo at
somex € Rast /T.
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Existence and stability of peakons

For every ¢ € R, u(t,x) = cp(x — ct) is a solution to

1 1
u; + uuy + 5(’0/ * <u2 + 2u)2c> =0.
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Existence and stability of peakons

For every ¢ € R, u(t,x) = cp(x — ct) is a solution to

1 1
u; + uu, + Egpl * <u2 + 2u§> =0.

There exist two conserved quantities:
E(u) = /(u2 +ud)dx, F(u) = / u(u? + u?)dx.
R R
such that ||u(z, -)||gn = ||uo||z for almost every 7 € R.

Theorem (A. Constantin—L.Molinet (2001))

@ is a unique (up to translation) minimizer of E(u) in H' subject to
3F(u) = 2E(u). Consequently, global solutions with uy € H> with
mg > 0 close to @ in H' stay close to {p(- — a) }uer in H' for all t.
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Existence and stability of peakons

For every ¢ € R, u(t,x) = cp(x — ct) is a solution to

1 1
u; + uu, + Eap’ * <u2 + 2u§> =0.

Theorem (A. Constantin—W. Strauss (2000))

For every small € > 0, if the initial data satisfies

e\ 4
o =l < (5)
then the solution satisfies
||”(t7 ')_90('_§(t))|’H1 <g I€ (O’T)a

where £(t) is a point of maximum for u(t, -) and the maximal existence
time T > 0 may be finite.
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Existence and stability of peakons

For every ¢ € R, u(t,x) = cp(x — ct) is a solution to

1 1
u; + uu, + Ecp’ * <u2 + 2u)2€> =0.

> Asymptotic stability of peakons for ug € H' with my > 0.
[L. Molinet (2018)]

> Asymptotic stability of trains of peakons and anti-peakons.
[L. Molinet (2019)]

> Inverse scattering for weak global solutions with multi-peakons.
[L.Li (2009)] [J. Eckhardt, A. Kostenko (2014)] [J. Eckhardt (2018)]
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Instability of peakons

Consider solutions of the Cauchy problem:

uy + uuy + Qlu] =0,
ul—o = up € H'N Wl,oo’

where Q[u] := 1¢' + (u? + Su?). Moreover, assume that ug is
piecewise C! with a single peak.
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Instability of peakons

Consider solutions of the Cauchy problem:

uy + uuy + Qlu] =0,
ul—o = up € H'N Wl,co’

where Q[u] := 1¢' + (u? + Su?). Moreover, assume that ug is
piecewise C! with a single peak.

Theorem (F. Natali-D.P. (2019))

For every § > 0, there exist ty > 0 and ug € H' N WH satisfying
luo = llen + lluo — ¢'llzee <6,

such that the global conservative solution satisfies
llux(to, -) — @' (- — &(t0)) || > 1,

where £(t) is a point of peak of u(t, -) for t € [0, fy].
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Instability of peakons

Consider solutions of the Cauchy problem:

uy + uuy + Qlu] =0,
ul—o = up € H'N Wl,oo’

where Q[u] := 1¢' + (u? + Su?). Moreover, assume that ug is
piecewise C! with a single peak.

Weak formulation of the unique global conservative solution:

/OOO/]R <u1/1; + %],[21/},\1 - Q[uw) dxdt + /RMO(XW(O,x)dx ~0,

where 1) € CL(RT x R).
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Instability of peakons

Consider solutions of the Cauchy problem:

uy + uuy + Qlu] =0,
ul—o = up € H'N Wl,oo’

where Q[u] := 1¢' + (u? + Su?). Moreover, assume that ug is

piecewise C! with a single peak.

> If u € H'(R), then Q[u] € C(R).

> Ifu € H'(R) N C!(—00,0) N C!(0, 00), then
Qlu] € C(R) N C'(—o0,0) N C'(0, 00).
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Instability of peakons

Consider solutions of the Cauchy problem:

uy + uuy + Qlu] =0,
ul—o = up € H'N Wl,oo’

where Q[u] := 1¢' + (u? + Su?). Moreover, assume that ug is
piecewise C! with a single peak.

Ifu(t,- + £(t)) € H'(R) N C'(—00,0) N C'(0, 00) for t € (0, T) with
(1) € CY(0,T), then

g
2 u(t,&(r)), te€(0,T).
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Decomposition near a single peakon

Consider a decomposition:
u(t,x) = p(x —t—a(t)) +v(t,x —t—a(t)), teR" xeR,

where @' (1) = v(z,0). Then v(z, x) satisfies the Cauchy problem:

{ vi= 1=+ ew+ (V[x=o —v)vx — Qlv], 1€ (0,7),
V]i=0 = Vo,

where w(z, x) fo
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Decomposition near a single peakon
Consider a decomposition:
u(t,x) = p(x —t—a(t)) +v(t,x —t—a(t)), teR" xeR,
where @' (1) = v(z,0). Then v(z, x) satisfies the Cauchy problem:

{ vi= 1=+ ew+ (V[x=o —v)vx — Qlv], 1€ (0,7),
V|=0 = vo,

where w(z, x) fo

The characteristic coordinates X (¢, s) satisfies the IVP:

{ X — o(X) — 14+ v(t,X) —v(1,0), 1€ (0,T),
X‘tfo—sv

which has a unique solution since ¢ and v is Lipschitz continuous.
= X(#,0) = 0 is invariant in 7.
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Evolution near a single peakon

On characteristic curves, V(t,s) := v(t, X (¢, s)) satisfies:

{ Y — H(X)w(1,X) — OM(X),
V=0 = vo(s).

whereas V'(t,s) := v,(t, X(t, s)) satisfies

dt

{ 4 == OV + o(X)V + ¢/ (X)w(1,X) = 5(V')> + VZ = P)(X),
V/|t=0 =V (s).

V()P?) dy.

D=

where P[v](x) := % fR o(x—y) ([V()’)]z +
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Evolution near a single peakon

On characteristic curves, V(t,s) := v(t, X (¢, s)) satisfies:

{ Y — H(X)w(1,X) — OM(X),
V=0 = vo(s).

whereas V'(t,s) := v,(t, X(t, s)) satisfies

dt

{ 4 == OV + o(X)V + ¢/ (X)w(1,X) = 5(V')> + VZ = P)(X),
V/|t=0 =V (s).

V()P?) dy.

D=

where P[v](x) := % fR o(x—y) ([V()’)]z +

From one side of the peak, Vo(r) = V(t,0), V() = V'(¢,40):

(Vo + Vi) = (Vo + V) + V3 = 3 (V) — 0b(0) — PI(0).
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Evolution near a single peakon

On characteristic curves, V(t,s) := v(t, X (¢, s)) satisfies:

{ Y — H(X)w(1,X) — OM(X),
V=0 = vo(s).

whereas V'(t,s) := v,(t, X(t, s)) satisfies

{ ddvt| = —w’(gng’ +eX)V + ¢ (X)w(t,X) — 1(V')2 + V2 — PP](X),
V=0 = vj(s).

V()P?) dy.

D=

where P[v](x) := % fR o(x—y) ([V()’)]z +

Integrating with the integrating factors,

L [ (Vo+ Vi) = e |VG — (%)~ 01I0) - PI(O)| < V3,
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Evolution near a single peakon

On characteristic curves, V(t,s) := v(t, X (¢, s)) satisfies:

{ Y — H(X)w(1,X) — OM(X),
V=0 = vo(s).

whereas V'(t,s) := v,(t, X(t, s)) satisfies

dt

{ 4 == OV + o(X)V + ¢/ (X)w(1,X) = 5(V')> + VZ = P)(X),
V/|t=0 =V (s).

V()P?) dy.

D=

where P[v](x) := % fR o(x—y) ([V()’)]z +

This yields the bound

Vo(t) + V(1) < € [VO(O) + V4(0) + /Ot e_TVg(T)dT] , t€][0,7).
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Proof of instability

> From orbital Stabﬂity in H 1 [A. Constant, W. Strauss (2000)]
If |vo|lgn < (¢/3)%, then

Vo(@)| < |Iv(t, )|lzee < —=|v(t, )| < e

R
V2
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Proof of instability

> From orbital Stabﬂity in H 1 [A. Constant, W. Strauss (2000)]
If |vo|lgn < (¢/3)%, then

1
Vool < [Iv(t Ml < Sl )l <&

> Let lim,_o+ vj(x) = —|[vyllzee = —2&% If vo € H' N W
satisfies [|vol|z + ||Vj|lzee < J, then V& > 0, 3e > 0 such that

4
(%) + 2% < 6,
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Proof of instability

> From orbital Stability in H 1 [A. Constant, W. Strauss (2000)]
If |vo|lgn < (¢/3)%, then

1
Vool < [Iv(t Ml < Sl )l <&

> Let limy_,q+ vj(x) = —||v) Lo = =262 If v € H' N We®
satisfies [|vol|z + ||Vj|lzee < J, then V& > 0, 3e > 0 such that

4
(%) + 2% < 6,

> From the bound above, we have
Vo(t) + Vi(t) < —%¢,

hence |Vo(10) + V{(to)| > 2 for 1y := log(2) — 2log(e)
= [Vi(t0)] > 1.

Dmitry Pelinovsky, McMaster University Instability of peaked waves

23/26



Remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for ug € H' N W' and
wave breaking in a finite time: u,(z,x) — —oo at some x € R.
[F. Linares, G. Ponce, and T. Sideris (2019)]
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consistent with local well-posedness for ug € H' N W' and
wave breaking in a finite time: u,(z,x) — —oo at some x € R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. By means of characteristics, it follows that if vg € C ! (R), then
v(t,+) ¢ C'(R) for t > 0 because of the single peak at x = £(z).

Dmitry Pelinovsky, McMaster University Instability of peaked waves 24726



Remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for ug € H' N W' and
wave breaking in a finite time: u,(z,x) — —oo at some x € R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. By means of characteristics, it follows that if vg € C ! (R), then
v(t,+) ¢ C'(R) for t > 0 because of the single peak at x = £(z).

3. Since vy(0) + v;,(0) < O for instability, the unstable solution
actually breaks in a finite time [L. Brandolese (2014)].
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Remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for ug € H' N W' and
wave breaking in a finite time: u,(z,x) — —oo at some x € R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. By means of characteristics, it follows that if vg € C ! (R), then
v(t,+) ¢ C'(R) for t > 0 because of the single peak at x = £(z).

3. Since vy(0) + v;,(0) < O for instability, the unstable solution
actually breaks in a finite time [L. Brandolese (2014)].

4. The same instability can be detected in the linearized equation

d

dt
from which Vo (1) + V(1) = €' [Vo(0) + V{(0)].

(V() + V(/)) =Vyo+ V(’),

Dmitry Pelinovsky, McMaster University Instability of peaked waves 24/26



Linearized instability

Consider the linearized equation at the single peakon:

{ vi = (1 = @)vx +ow,
v‘t:() =,

where w(t,x) = [ v(t,y)dy.

Theorem (F. Natali-D.P. (2019))

For every vo € H', there exists a unique global solution v € C(R, H")
satisfying

V(M0 = ollz 0,00

+20¢ = 1) [ o6) (Do) + 316001 ) s

Linear instability in H' contradicts orbital stability of peakons in H'!
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Summary
1. Global solutions and wave breaking in the Ostrovsky equation

(t + uuy)y = u.

> Peaked wave is spectrally and linearly unstable.
2. Global solutions and breaking in the Camassa—Holm equation

Uy + 3utye — Upee = 2Uylyy + Ul

> Peakons are orbitally stable in H'.
> Peakons are orbitally unstable in H' N W',
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Summary

1. Global solutions and wave breaking in the Ostrovsky equation

(t + uuy)y = u.

> Peaked wave is spectrally and linearly unstable.
2. Global solutions and breaking in the Camassa—Holm equation

Uy + 3utye — Upee = 2Uylyy + Ul

> Peakons are orbitally stable in H'.
> Peakons are orbitally unstable in H' N W',

Thank you! Questions ???
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