Instability of peaked waves in the Camassa-Holm equation

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca

Joint work with Fabio Natali (University of Maringa, Brazil) Robin Ming Chen (University of Pittsburg, USA) Aigerim Madiyeva (McMaster University, Canada)

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

The Whitham equation (1967) models full-dispersion effects:

$$u_t + uu_x + K * u_x = 0,$$
 $\hat{K}(k) = \sqrt{gh \frac{\tanh(kh)}{kh}}.$

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

The Whitham equation (1967) models full-dispersion effects:

$$u_t + uu_x + K * u_x = 0,$$
 $\hat{K}(k) = \sqrt{gh \frac{\tanh(kh)}{kh}}.$

The *Camassa–Holm equation* (1994) models dispersion-modified nonlinear effects:

$$u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx},$$

The *Korteweg–De Vries equation* (1895) governs dynamics of small-amplitude long waves in a fluid:

 $u_t + uu_x + \beta u_{xxx} = 0.$

The Whitham equation (1967) models full-dispersion effects:

$$u_t + uu_x + K * u_x = 0,$$
 $\hat{K}(k) = \sqrt{gh \frac{\tanh(kh)}{kh}}.$

The Camassa-Holm equation (1994) in a weaker form:

$$u_t + uu_x + (1 - \partial_x^2)^{-1}(u^2 + \frac{1}{2}u_x^2) = 0.$$

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2π -periodic or decaying to 0 at infinity.

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2π -periodic or decaying to 0 at infinity.

For the KdV equation, U satisfies

$$\beta \frac{d^2 U}{dz^2} - cU + U^2 = 0.$$

All solutions are smooth.

[ODE textbooks]

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2π -periodic or decaying to 0 at infinity.

For the Whitham equation, U satisfies

K * U = (c - U)U.

Solutions are smooth if c - U(z) > 0 for all *z*.

[M. Ehrnström, H. Kalisch, 2013] [M. Ehrnström, E. Wahlén, 2015]

Traveling wave solutions are solutions of the form

u(x,t) = U(x - ct),

where z = x - ct is the travelling wave coordinate and *c* is the wave speed. For fixed *c*, the wave profile *U* is either 2π -periodic or decaying to 0 at infinity.

For the Camassa-Holm equation, U satisfies

$$(c-U)^2 \left[\frac{d^2U}{dz^2} - U\right] = a.$$

There are smooth, peaked, and cusped solutions: smooth if c - U(z) > 0, peaked and cusped if $c - U(z) \ge 0$ [J. Lenells, 2005]

Dmitry Pelinovsky, McMaster University

Stability of smooth and peaked periodic waves

▷ KdV equation: smooth waves are linearly and orbitally stable

[B. Deconinck et.al. 2009,2010]

Stability of smooth and peaked periodic waves

- KdV equation: smooth waves are linearly and orbitally stable
 [B. Deconinck et.al. 2009,2010]
- Whitham equation: small amplitude smooth waves are stable, but become unstable as they approach the peaked wave.

[J.Carter & H.Kalisch, 2014]

Stability of smooth and peaked periodic waves

- KdV equation: smooth waves are linearly and orbitally stable
 [B. Deconinck et.al. 2009,2010]
- Whitham equation: small amplitude smooth waves are stable, but become unstable as they approach the peaked wave.
 [J.Carter & H.Kalisch, 2014]
- Camassa-Holm, Degasperis–Procesi, Novikov: peaked waves are orbitally and asymptotically stable in energy space.
 [A.Constantin & W.Strauss, 2000], [A.Constantin & L.Molinet, 2001],
 [J.Lenells, 2004], [Z.Lin, Y.Liu, 2006], [X. Liu, Y. Liu, C. Qu, 2014]

Instability of peaked waves in the Camassa-Holm equation

$$u_t + uu_x + (1 - \partial_x^2)^{-1}(u^2 + \frac{1}{2}u_x^2) = 0.$$

- Cauchy problem in Sobolev spaces
- \triangleright Orbital stability of peakons in H^1
- ▷ Linear instability of peakons in $H^1 \cap W^{1,\infty}$
- ▷ Nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$

Definition

We say that the Cauchy problem is locally well-posed in Banach space *X* if for every initial data $u_0 \in X$, there are T > 0 and a unique solution $u \in C((-T, T), X)$ such that $u|_{t=0} = u_0$ and the solution depends continuosly on u_0 in *X*.

Definition

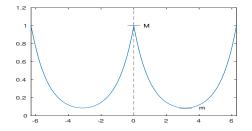
We say that the Cauchy problem is locally well-posed in Banach space *X* if for every initial data $u_0 \in X$, there are T > 0 and a unique solution $u \in C((-T, T), X)$ such that $u|_{t=0} = u_0$ and the solution depends continuosly on u_0 in *X*.

- ▷ If the solution can be continued for every T > 0 so that $u \in C(\mathbb{R}, X)$, the solution exists globally.
- ▷ If there is $T < \infty$ such that $||u(t, \cdot)||_X \to \infty$ as $t \to T^-$, the solution blows up in a finite time.
- ▷ The finite time blow-up is called **wave breaking** if $||u(t, \cdot)||_{L^{\infty}} < \infty$ and $||\partial_x u(t, \cdot)||_{L^{\infty}} \to \infty$ as $t \to T^-$.

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.



Instability of peaked waves

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.

- ▷ Local well-posedness for $u_0 \in H^s$ with s > 3/2. [A. Constantin, J. Escher (1998)] [Y.Li-P.Olver (2000)] [G.Rodriguez (2001)]
 - [R. Danchin (2001)] [A.Himonas, G. Misiolek (2001)] [G. Misiolek (2002)]
- ▷ Global existence for $u_0 \in H^3$ if $m_0 \ge 0$ [A.Constantin (2000)]
- ▷ Wave breaking for $u_0 \in H^3$ if $\exists x_0: (x x_0)m_0(x) \leq 0$. [A.Constantin, J. Escher (1998)] [L. Brandolese (2014)]

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u|_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.

- ▷ No continuous dependence (norm inflation) for u₀ ∈ H^{s≤3/2}.
 [P. Byers (2006)] [A. Himonas, G. Misiolek, G. Ponce (2007)] [A. Himonas, K. Grayshan, C. Holliman (2016)] [Z.Guo, X.Liu, L. Molinet, Z.Yin (2018)]
- ▷ Global existence of weak solutions $u_0 \in H^1$ with $m_0 \ge 0$. [A.Constantin, L. Molinet (2000)]
- ▷ Global existence of weak solutions $u_0 \in H^1$.

[A. Bressan, A.Constantin (2006)] [H. Holden, X. Raynaud (2007)]

Let $\varphi(x) = e^{-|x|}$ be the Greens function satisfying $(1 - \partial_x^2)\varphi = 2\delta$. The Cauchy problem for *the Camassa–Holm equation* can be written in the convolution form:

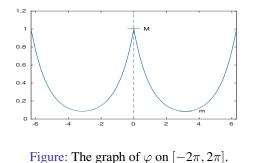
$$\begin{cases} u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0, \\ u_{t=0} = u_0. \end{cases}$$

The quantity $m := (1 - \partial_x^2)u$ is referred as the momentum density.

- ▷ Uniqueness of weak global solutions $u_0 \in H^1$. [A. Bressan, G. Chen, Q. Zhang (2015)]
- ▷ Continuous dependence for u₀ ∈ H¹ ∩ W^{1,∞}.
 [C. De Lellis, T. Kappeler, P. Topalov (2007)]
 [F. Linares, G. Ponce, T. Sideris (2019)]
- ▷ Local solutions may break in a finite time with $u_x(t,x) \to -\infty$ at some $x \in \mathbb{R}$ as $t \to T^-$.

For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$



For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$

There exist two conserved quantities:

$$E(u) = \int_{\mathbb{R}} (u^2 + u_x^2) dx, \quad F(u) = \int_{\mathbb{R}} u(u^2 + u_x^2) dx.$$

such that $||u(t, \cdot)||_{H^1} = ||u_0||_{H^1}$ for almost every $t \in \mathbb{R}$.

Theorem (A. Constantin–L.Molinet (2001))

 φ is a unique (up to translation) minimizer of E(u) in H^1 subject to 3F(u) = 2E(u). Consequently, global solutions with $u_0 \in H^3$ with $m_0 \ge 0$ close to φ in H^1 stay close to $\{\varphi(\cdot - a)\}_{a \in \mathbb{R}}$ in H^1 for all t.

For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$

Theorem (A. Constantin–W. Strauss (2000)) For every small $\varepsilon > 0$, if the initial data satisfies

$$\|u_0-\varphi\|_{H^1}<\left(\frac{\varepsilon}{3}\right)^4,$$

then the solution satisfies

$$\|u(t,\cdot)-\varphi(\cdot-\xi(t))\|_{H^1}$$

where $\xi(t)$ is a point of maximum for $u(t, \cdot)$.

For every $c \in \mathbb{R}$, $u(t, x) = c\varphi(x - ct)$ is a solution to

$$u_t + uu_x + \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right) = 0.$$

- ▷ Asymptotic stability of peakons for $u_0 \in H^1$ with $m_0 \ge 0$. [L. Molinet (2018)]
- Asymptotic stability of trains of peakons and anti-peakons.
 [L. Molinet (2019)]
- Inverse scattering for weak global solutions with multi-peakons. [L.Li (2009)] [J. Eckhardt, A. Kostenko (2014)] [J. Eckhardt (2018)]

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

Assume that u_0 is piecewise C^1 with a single peak.

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right)$$

Assume that u_0 is piecewise C^1 with a single peak.

Theorem (F. Natali–D. Pelinovsky (2020)) For every $\delta > 0$, there exist $t_0 > 0$ and $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^{\infty}}<\delta,$$

such that the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ with $T > t_0$ satisfies

$$||u_x(t_0, \cdot) - \varphi'(\cdot - \xi(t_0))||_{L^{\infty}} > 1,$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in [0, T)$. Moreover, there exists u_0 such that T is finite.

Dmitry Pelinovsky, McMaster University

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

Assume that u_0 is piecewise C^1 with a single peak.

Weak formulation of the unique global conservative solution:

$$\int_0^\infty \int_{\mathbb{R}} \left(u\psi_t + \frac{1}{2}u^2\psi_x - Q[u]\psi \right) dxdt + \int_{\mathbb{R}} u_0(x)\psi(0,x)dx = 0,$$

where $\psi \in C_c^1(\mathbb{R}^+ \times \mathbb{R}).$

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

Assume that u_0 is piecewise C^1 with a single peak.

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{2}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

Assume that u_0 is piecewise C^1 with a single peak.

If $u(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$ for $t \in [0, T)$. Then, $\xi(t) \in C^1(0, T)$ and

$$\frac{d\xi}{dt} = u(t,\xi(t)), \quad t \in (0,T).$$

Decomposition near a single peakon

Consider a decomposition:

$$u(t,x)=\varphi(x-t-a(t))+v(t,x-t-a(t)),\quad t\in[0,T),\quad x\in\mathbb{R},$$

with the peak at $\xi(t) = t + a(t)$ for $v(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$. Then,

$$\begin{aligned} (\varphi-1)\varphi'+Q(\varphi)&=0,\\ \frac{da}{dt}&=v(t,0), \end{aligned}$$

and

$$v_t = (1 - \varphi)v_x + (v|_{x=0} - v)\varphi' + (v|_{x=0} - v)v_x - \varphi' * (\varphi v + \frac{1}{2}\varphi' v_x) - Q[v].$$

Decomposition near a single peakon

Consider a decomposition:

$$u(t,x)=\varphi(x-t-a(t))+v(t,x-t-a(t)),\quad t\in[0,T),\quad x\in\mathbb{R},$$

with the peak at $\xi(t) = t + a(t)$ for $v(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$. Due to

$$[v(0) - v(x)]\varphi'(x) - \varphi' * \varphi v - \frac{1}{2}\varphi' * \varphi' v_x = \varphi(x) \int_0^x v(y) dy,$$

the evolution of v(t, x) simplifies to

$$v_t = (1 - \varphi)v_x + \varphi w + (v|_{x=0} - v)v_x - Q[v],$$

where $w(t, x) = \int_0^x v(t, y)dy.$

Linearized evolution

Truncation of the quadratic terms yields the linearized problem:

$$\begin{cases} v_t = (1 - \varphi)v_x + \varphi w, \quad t > 0, \\ v_{t=0} = v_0(x), \end{cases}$$

where $w(t, x) = \int_0^x v(t, y) dy$.

Solution with the method of characteristic curves:

$$x = X(t,s),$$
 $v(t,X(t,s)) = V(t,s),$ $w(t,X(t,s)) = W(t,s).$

Linearized evolution

Truncation of the quadratic terms yields the linearized problem:

$$\begin{cases} v_t = (1 - \varphi)v_x + \varphi w, \quad t > 0, \\ v_{t=0} = v_0(x), \end{cases}$$

where $w(t, x) = \int_0^x v(t, y) dy$.

The evolution problem splits into

$$\begin{cases} \frac{dX}{dt} = \varphi(X) - 1, \\ X|_{t=0} = s, \end{cases} \qquad \begin{cases} \frac{dW}{dt} = \varphi'(X)W, \\ W|_{t=0} = w_0(s), \end{cases} \qquad \begin{cases} \frac{dV}{dt} = \varphi(X)W, \\ V|_{t=0} = v_0(s). \end{cases}$$

Since φ is Lipschitz, there exists unique characteristic function X(t, s) for each $s \in \mathbb{R}$. The peak location X(t, 0) = 0 is invariant in the time evolution.

Properties of the linearized evolution

Assume $v_0 \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$. For every t > 0, we have:

$$\triangleright \exists C_0 > 0: \|v(t, \cdot)\|_{L^{\infty}} \leq C_0.$$

$$\triangleright \lim_{x \to 0^+} v_x(t,x) = v_0'(0^+)e^t, \lim_{x \to 0^-} v_x(t,x) = v_0'(0^-)e^{-t}.$$

▷
$$\|v(t, \cdot)\|_{H^1}^2 = C_+ e^t + C_0 + C_- e^{-t}$$
 for some C_+, C_0, C_- .

Properties of the linearized evolution

Assume $v_0 \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$. For every t > 0, we have:

$$\triangleright \exists C_0 > 0: \|v(t, \cdot)\|_{L^{\infty}} \leq C_0.$$

$$\triangleright \lim_{x \to 0^+} v_x(t,x) = v_0'(0^+)e^t, \lim_{x \to 0^-} v_x(t,x) = v_0'(0^-)e^{-t}.$$

▷
$$\|v(t, \cdot)\|_{H^1}^2 = C_+ e^t + C_0 + C_- e^{-t}$$
 for some C_+, C_0, C_- .

Growth of $||v(t, \cdot)||_{H^1}^2$ contradicts to H^1 orbital stability of peakons. Both properties are related to the existence of conserved quantities:

$$E(u) = \int_{\mathbb{R}} (u^2 + u_x^2) dx, \quad F(u) = \int_{\mathbb{R}} u(u^2 + u_x^2) dx.$$

Illustration of the linear instability

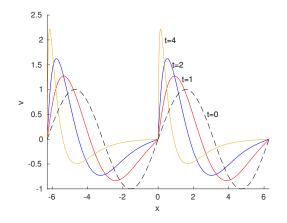


Figure: The plots of v(t, x) versus x on $[-2\pi, 2\pi]$ for different values of t in the case $v_0(x) = \sin(x)$.

Nonlinear evolution

Recall the evolution problem:

$$\begin{cases} v_t = (1 - \varphi)v_x + \varphi w + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$$

where $w(t,x) = \int_0^x v(t,y) dy$ and $Q[v] := \frac{1}{2}\varphi' * (v^2 + \frac{1}{2}v_x^2)$.

Solution with the method of characteristic curves:

x = X(t,s), v(t,X(t,s)) = V(t,s), w(t,X(t,s)) = W(t,s).

Nonlinear evolution

Recall the evolution problem:

$$\begin{cases} v_t = (1 - \varphi)v_x + \varphi w + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$$

where $w(t,x) = \int_0^x v(t,y) dy$ and $Q[v] := \frac{1}{2}\varphi' * (v^2 + \frac{1}{2}v_x^2)$.

The characteristic coordinates X(t, s) satisfies

$$\begin{cases} \frac{dX}{dt} = \varphi(X) - 1 + v(t, X) - v(t, 0), \quad t \in (0, T), \\ X|_{t=0} = s. \end{cases}$$

Since φ is Lipschitz, there exists the unique characteristic function X(t,s) for each $s \in \mathbb{R}$ if $v(t, \cdot)$ remains in $H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$ The peak location X(t, 0) = 0 is invariant in the time evolution.

Dmitry Pelinovsky, McMaster University

Local existence in class $H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$

We introduce on the characteristic curves:

 $v(t, X(t, s)) = V(t, s), \quad w(t, X(t, s)) = W(t, s), \quad v_x(t, X(t, s)) = U(t, s).$

and write the dynamical system:

$$\frac{d}{dt} \begin{bmatrix} X \\ V \\ W \\ U \end{bmatrix} = \begin{bmatrix} \varphi(X) - \varphi(0) + V - V|_{s=0} \\ \varphi(X)W - Q[v](X) \\ \varphi'(X)W + \frac{1}{2}[V^2 - (V|_{s=0})^2] - P[v](X) + P[v]|_{s=0} \\ \varphi'(X)[W - U] + \varphi(X)V - \frac{1}{2}U^2 + V^2 - P[v](X) \end{bmatrix}$$

subject to the initial and boundary condition

$$\begin{bmatrix} X \\ V \\ W \\ U \end{bmatrix} \Big|_{t=0} = \begin{bmatrix} s \\ v_0(s) \\ w_0(s) \\ v'_0(s) \end{bmatrix} \qquad \begin{cases} X(t,0) = 0, \\ V(t,0) = V|_{s=0}, \\ W(t,0) = 0. \end{cases}$$

Local existence in class $H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$

Theorem

For every $v_0 \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$, there exists the maximal existence time T > 0 (finite or infinite) and the unique solution $v \in C^1([0,T), H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$ to the evolution problem that depends continuously on v_0 .

Moreover, if $T < \infty$ *, there* $||v_x(t, \cdot)||_{L^{\infty}} \to \infty$ *as* $t \to T^-$ *.*

Local existence in class $H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$

Theorem

For every $v_0 \in H^1(\mathbb{R}) \cap C^1(\mathbb{R}\setminus\{0\})$, there exists the maximal existence time T > 0 (finite or infinite) and the unique solution $v \in C^1([0,T), H^1(\mathbb{R}) \cap C^1(\mathbb{R}\setminus\{0\})$ to the evolution problem that depends continuously on v_0 .

Moreover, if $T < \infty$ *, there* $||v_x(t, \cdot)||_{L^{\infty}} \to \infty$ *as* $t \to T^-$ *.*

Remark: The result is similar to the local well-posedness theory in $H^1 \cap W^{1,\infty}$ but the method of the proof is very different. [C. De Lellis, T. Kappeler, P. Topalov (2007)] [F. Linares, G. Ponce, T. Sideris (2019)]

Instability theorem

Theorem (F. Natali–D. Pelinovsky (2020)) For every $\delta > 0$, there exist $t_0 > 0$ and $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^{\infty}}<\delta,$$

such that the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ with $T > t_0$ satisfies

$$||u_x(t_0,\cdot) - \varphi'(\cdot - \xi(t_0))||_{L^{\infty}} > 1,$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in [0, T)$.

Instability theorem

Theorem (F. Natali–D. Pelinovsky (2020)) For every $\delta > 0$, there exist $t_0 > 0$ and $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^{\infty}}<\delta,$$

such that the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ with $T > t_0$ satisfies

$$||u_x(t_0,\cdot) - \varphi'(\cdot - \xi(t_0))||_{L^{\infty}} > 1,$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in [0, T)$.

From the right side of the peak, $V_0(t) = V(t, 0)$, $U_0(t) = U(t, 0^+)$:

$$\frac{dU_0}{dt} = U_0 + V_0 + V_0^2 - \frac{1}{2}U_0^2 - P[v](0), \quad P[v] := \frac{1}{2}\varphi * \left(v^2 + \frac{1}{2}v_x^2\right).$$

Dmitry Pelinovsky, McMaster University

From orbital stability in H^1 [A. Constant, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

From orbital stability in H^1 [A. Constant, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

From the equation on the right side of the peak:

$$\frac{dU_0}{dt} = U_0 + V_0 + V_0^2 - \frac{1}{2}U_0^2 - P[v](0) \le U_0 + C\varepsilon$$

From orbital stability in H^1 [A. Constant, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

Assume $\lim_{x\to 0^+} v'_0(x) = -\|v'_0\|_{L^{\infty}} = -2C\varepsilon$. The initial constraint $\|v_0\|_{L^{\infty}} + \|v'_0\|_{L^{\infty}} < \delta$, is satisfied if $\forall \delta > 0$, $\exists \varepsilon > 0$ such that

$$\left(\frac{\varepsilon}{3}\right)^4 + 2C\varepsilon < \delta,$$

From orbital stability in H^1 [A. Constant, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

Assume $\lim_{x\to 0^+} v'_0(x) = -\|v'_0\|_{L^{\infty}} = -2C\varepsilon$. The initial constraint $\|v_0\|_{L^{\infty}} + \|v'_0\|_{L^{\infty}} < \delta$, is satisfied if $\forall \delta > 0$, $\exists \varepsilon > 0$ such that

$$\left(\frac{\varepsilon}{3}\right)^4 + 2C\varepsilon < \delta,$$

From the ODE comparison theory, we obtain

$$U_0(t) \leq -C\varepsilon e^t,$$

hence $|U_0(t_0)| \ge 1$ for $t_0 := -\log(C\varepsilon)$.

Dmitry Pelinovsky, McMaster University

Strong instability theorem

Theorem (F. Natali–D.Pelinovsky (2020)) For every $\delta > 0$, there exist $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^{\infty}}<\delta,$$

such that the maximal existence time of the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ is finite.

Strong instability theorem

Theorem (F. Natali–D.Pelinovsky (2020)) For every $\delta > 0$, there exist $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^{\infty}}<\delta,$$

such that the maximal existence time of the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ is finite.

From the right side of the peak, $V_0(t) = V(t, 0)$, $U_0(t) = U(t, +0)$:

$$\frac{dU_0}{dt} = U_0 + V_0 + V_0^2 - \frac{1}{2}U_0^2 - P[v](0) \le U_0 - \frac{1}{2}U_0^2 + C\varepsilon.$$

Strong instability theorem

Theorem (F. Natali–D.Pelinovsky (2020)) For every $\delta > 0$, there exist $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^\infty}<\delta,$$

such that the maximal existence time of the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ is finite.

By the ODE comparison theory, $U_0(t) \leq \overline{U}(t)$, where the supersolution satisfies

$$\frac{d\overline{U}}{dt} = \overline{U} - \frac{1}{2}\overline{U}^2 + C\varepsilon$$

with $U_0(0) = \overline{U}(0) = -C\varepsilon$.

Concluding remarks

Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for u₀ ∈ H¹ ∩ W^{1,∞} and wave breaking in a finite time: u_x(t,x) → -∞ at some x ∈ ℝ. [F. Linares, G. Ponce, and T. Sideris (2019)]

Concluding remarks

- Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for u₀ ∈ H¹ ∩ W^{1,∞} and wave breaking in a finite time: u_x(t,x) → -∞ at some x ∈ ℝ. [F. Linares, G. Ponce, and T. Sideris (2019)]
- 2. It follows from the method of characteristics that if $v_0 \in C^1(\mathbb{R})$, then $v(t, \cdot) \notin C^1(\mathbb{R})$ for t > 0 due to the single peak at $x = \xi(t)$:

$$u(t,x) = \varphi(x-t-a(t)) + v(t,x-t-a(t)), \quad t \in [0,T), \quad x \in \mathbb{R}.$$

Concluding remarks

- Instability of peakons with respect to peaked perturbations is consistent with local well-posedness for u₀ ∈ H¹ ∩ W^{1,∞} and wave breaking in a finite time: u_x(t,x) → -∞ at some x ∈ ℝ. [F. Linares, G. Ponce, and T. Sideris (2019)]
- 2. It follows from the method of characteristics that if $v_0 \in C^1(\mathbb{R})$, then $v(t, \cdot) \notin C^1(\mathbb{R})$ for t > 0 due to the single peak at $x = \xi(t)$:

$$u(t,x) = \varphi(x-t-a(t)) + v(t,x-t-a(t)), \quad t \in [0,T), \quad x \in \mathbb{R}.$$

3. The H^1 orbital stability results on peakons are misleading as the perturbations near the peakon are growing in $W^{1,\infty}$ norm and may blow up in a finite time.

Other investigations

Much of the theory applies to the instability of perturbations to the peaked periodic waves in the Camassa–Holm equation

 $u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$

[A. Madiyeva and D. Pelinovsky (2020)]

Other investigations

Much of the theory applies to the instability of perturbations to the peaked periodic waves in the Camassa–Holm equation

$$u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$$

[A. Madiyeva and D. Pelinovsky (2020)]

Instability of peakons was also discovered in the Novikov equation

$$u_t + 4u^2 u_x - u_{txx} = 3u u_x u_{xx} + u^2 u_{xxx},$$

where the unique global weak solution exists in $H^1 \cap W^{1,4}$. Nevertheless, the peakons are strongly unstable in $H^1 \cap W^{1,\infty}$. [R.M. Chen and D. Pelinovsky (2020)]

Other investigations

Much of the theory applies to the instability of perturbations to the peaked periodic waves in the Camassa–Holm equation

 $u_t + 3uu_x - u_{txx} = 2u_xu_{xx} + uu_{xxx}.$

[A. Madiyeva and D. Pelinovsky (2020)]

Instability of peakons was also discovered in the Novikov equation

$$u_t + 4u^2 u_x - u_{txx} = 3uu_x u_{xx} + u^2 u_{xxx},$$

where the unique global weak solution exists in $H^1 \cap W^{1,4}$. Nevertheless, the peakons are strongly unstable in $H^1 \cap W^{1,\infty}$. [R.M. Chen and D. Pelinovsky (2020)]

 An interesting difference is that the peakons are linearly unstable in H¹ for Camassa-Holm and linearly stable in H¹ for Novikov. Linear stability theory for peakons in the energy space does not imply anything for the nonlinear stability theory.

Dmitry Pelinovsky, McMaster University

Instability of peaked waves

Summary

▷ Global solutions and breaking in the Camassa–Holm equation

 $u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$

- ▷ Unique global solutions exist in H^1 but continuous dependence only holds in $H^1 \cap W^{1,\infty}$.
- \triangleright *Peakons* are orbitally *stable* in H^1 .
- ▷ *Peakons* are orbitally *unstable* in $H^1 \cap W^{1,\infty}$.

Summary

▷ Global solutions and breaking in the Camassa–Holm equation

 $u_t + 3uu_x - u_{txx} = 2u_x u_{xx} + uu_{xxx}.$

- ▷ Unique global solutions exist in H^1 but continuous dependence only holds in $H^1 \cap W^{1,\infty}$.
- \triangleright *Peakons* are orbitally *stable* in H^1 .
- ▷ *Peakons* are orbitally *unstable* in $H^1 \cap W^{1,\infty}$.

Thank you! Questions ???