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Section 1

Camassa-Holm models
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The Camassa-Holm equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx (CH)

models the propagation of unidirectional shallow water waves, where
u = u(t, x) represents the horizontal velocity at the free surface.
[Camassa & Holm, 1993] [Johnson, 2000] [Constantin & Lannes, 2009]
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It was extended as the Degasperis–Procesi equation

ut − utxx + 4 u ux = 3 uxuxx + u uxxx (DP)

at the same asymptotic accuracy.
[Degasperis & Procesi, 1999] [Constantin & Lannes, 2009]
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It was further extended as the b-Camassa–Holm equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx (b-CH)

by using transformations of integrable KdV equation
[Dullin, Gottwald, & Holm, 2001] [Degasperis, Holm & Hone, 2002]

. CH and DP cases are integrable for b = 2 and b = 3.

. BBM equation for slowly varying waves:

ut − utxx + (b + 1) u ux = 0

. Admits both smooth and peaked traveling waves.

. Purely quadratic in the evolution form:

ut = (1− ∂2
x )−1 [b uxuxx + u uxxx − (b + 1)uux] .

Dmitry Pelinovsky, McMaster University Instability of peaked traveling waves 3 / 24



Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Peaked solitary waves (peakons) are observed for b > 1
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Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Smooth solitary waves (leftons) are observed for b < −1
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Stability of solitary waves: state of the art

For traveling solitary waves satisfying u(x)→ 0 as |x| → ∞

. Orbital stability of peakons in energy space
b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]

b = 3: [Lin & Liu, 2009]

. Orbital stability of leftons in weighted Sobolev spaces
b < −1: [Hone & Lafortune, 2014]

For solitary waves satisfying u(x)→ k as |x| → ∞ with k > 0:

. Orbital stability of smooth solitary waves in energy space
b = 2: [Constantin & Strauss, 2002]

b = 3: [Li & Liu & Wu, 2020]

Similar studies were developed for travelling periodic waves
(smooth or peaked) in the CH equation (b = 2) [Lenells, 2004-2006]
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Stability of solitary waves: new results

. Linear and nonlinear instability of peakons in H1 ∩W1,∞

b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]

. Linear and spectral instability of peakons in L2

any b ∈ R: [Lafortune & P., 2022a]

[Charalampidis, Parker, Kevrekidis, Lafortune, 2023]

. Spectral and orbital stability of smooth solitary waves in H3

b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]

. Spectral stability of smooth periodic waves in L2
per

b = 2 [Geyer, Martins, Natali, & P., 2022]

b = 3 [Geyer & P., 2023]

b > 1 [Ehrman & Johnson, 2023]

Similar studies were developed for the cubic CH (Novikov) equation
[Chen & P., 2021], [Lafortune, 2023]
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Section 2

Properties of the b-Camassa–Holm equation
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

We say that the dynamics leads to the wave breaking if

‖u(t, ·)‖L∞ <∞, ‖ux(t, ·)‖L∞ →∞ as t→ T <∞
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

Solutions of the Burgers equation vt + vvx = 0 with v(0, x) = f (x)
admit wave breaking if f ∈ H1(R) ∩W1,∞(R):

v(t, x) = f (x− tv(t, x)) ⇒ vx =
f ′(x− tv)

1 + tf ′(x− tv)
.
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

The CH equation (b = 2) ...

. is locally well-posed in Hs, s > 3/2 [Escher & Yin, 2008; Zhou, 2010]

. has no continuous dependence in Hs, s ≤ 3/2
[Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]

. is locally well-posed in H1 ∩W1,∞.
[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]
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Hamiltonian structure of the b-CH equations

For b = 2, the Camassa–Holm equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx

has the first three conserved quantities

M(u) =

∫
udx, E(u) =

1
2

∫
(u2+u2

x)dx, F(u) =
1
2

∫
(u3+uu2

x) dx.

(CH) can be written in Hamiltonian form in three ways:

ut = JF′(u), J = −(1− ∂2
x )−1∂x,

mt = JmE′(m), Jm = − (m∂x + ∂xm) ,

mt = JmM′(m), Jm = −(2m∂x + mx)(1− ∂2
x )−1∂−1

x (2∂xm− mx).

where m = u− uxx.
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Hamiltonian structure of the b-CH equations

For b = 3, the Degasperis–Procesi equation

ut − utxx + 4 u ux = 3 uxuxx + u uxxx

has the first three conserved quantities

M(u) =

∫
udx, E(u) =

1
2

∫
u(1−∂2

x )(4−∂2
x )−1udx, F(u) =

1
6

∫
u3dx.

(DH) can be written in Hamiltonian form in two ways:

ut = JF′(u), J = −(1− ∂2
x )−1(4− ∂2

x )∂x,

mt = JmM′(m), Jm = −1
2

(3m∂x + mx)(1− ∂2
x )−1∂−1

x (3∂xm− mx).

where m = u− uxx.
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Hamiltonian structure of the b-CH equations

For general b 6= 1, the b-Camassa–Holm equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be written in Hamiltonian form:

mt = JmM′(m), Jm := − 1
b− 1

(bm∂x+mx)(1−∂2
x )−1∂−1

x (b∂xm−mx).

where m = u− uxx.
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Section 3

Instability of peakons for b = 2
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Standard approach to orbital stability of traveling waves

. Construct a linear combination of conserved quantities Λ(u)
such that the traveling wave φ is a critical point of Λ: Λ′(φ) = 0︸ ︷︷ ︸

TW-eq

. Compute the spectrum of the linearized operator L = Λ′′(φ) and
control the number of negative eigenvalues in L2(R).

. If L has only one negative simple eigenvalue and a simple zero
eigenvalue, then prove that the traveling wave φ is a constrained
minimizer of energy, i.e. L|X0 ≥ 0, where X0 ⊂ L2 is due to
constraints

. The traveling wave φ is orbitally stable in energy space if local
well-posedness has been proven in the energy space.
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Existence of peakons

Peakons exist in the weak form in H1(R)∩W1,∞(R) for every b ∈ R:

u(t, x) = ce−|x−ct| = cϕ(x− ct).

We can set c = 1 due to the scaling transformation.

Dmitry Pelinovsky, McMaster University Instability of peaked traveling waves 12 / 24



Existence of peakons

Peakons exist in the weak form in H1(R)∩W1,∞(R) for every b ∈ R:

u(t, x) = ce−|x−ct| = cϕ(x− ct).

We can set c = 1 due to the scaling transformation.

-5 0 5
0

0.2

0.4

0.6

0.8

1

c = u(0)

Dmitry Pelinovsky, McMaster University Instability of peaked traveling waves 12 / 24



Existence of peakons

Peakons exist in the weak form in H1(R)∩W1,∞(R) for every b ∈ R:

u(t, x) = ce−|x−ct| = cϕ(x− ct).

We can set c = 1 due to the scaling transformation.

By using the traveling wave reduction u(t, x) = ϕ(x− t) in

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0

and integration once yields the integral equation

−ϕ+
1
2
ϕ2 +

1
4
ϕ ∗

(
bϕ2 + (3− b)(ϕ′)2) = 0,

⇒ −ϕ+
1
2
ϕ2 +

3
4
ϕ ∗ ϕ2 = 0,

which is satisfied by ϕ(x) = e−|x|.
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Orbital stability of peakons in H1(R) for b = 2
Theorem (Constantin–Molinet (2001))

ϕ is a unique (up to translation) minimizer of F(u) in H1(R) subject
to fixed E(u), where F(u) and E(u) are two conserved energies:

E(u) =
1
2

∫
(u2 + u2

x)dx, F(u) =
1
2

∫
(u3 + uu2

x) dx.

Theorem (Constantin–Strauss (2000))

For every small ε > 0, if the initial data satisfies

‖u0 − ϕ‖H1 <
(ε

3

)4
,

then the solution satisfies

‖u(t, ·)− ϕ(· − ξ(t))‖H1 < ε, t ∈ (0,T),

where ξ(t) is a point of maximum for u(t, ·).
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Instability of peakons in H1(R) ∩W1,∞(R) for b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.
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Instability of peakons in H1(R) ∩W1,∞(R) for b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Theorem (Natali–P. (2020))

For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

s.t. the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0 satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).
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Instability of peakons in H1(R) ∩W1,∞(R) for b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Q[u] behaves better than uux:

. If u ∈ H1(R), then Q[u] ∈ H1(R) and hence continuous.

. If u ∈ H1(R) ∩W1,∞(R), then Q[u] is Lipschitz continuous.

. If u ∈ H1(R) ∩W1,∞(R), method of characteristics can be used
to analyze dynamics of the perturbed Burgers equation.
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Instability of peakons in H1(R) ∩W1,∞(R) for b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

One important property for continuous solutions with peaked corners:

If u(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}) for t ∈ [0,T), then ξ(t) ∈ C1(0,T)
and

dξ
dt

= u(t, ξ(t)), t ∈ (0,T).

For the peaked traveling wave u(t, x) = u(x− ct),
this gives c = u(0) := max

x∈R
u(x).
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Instability of peakons in H1(R) ∩W1,∞(R) for b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Here is a peaked solitary wave with a single peak:
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = t + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Then, a′(t) = v(t, 0) and

vt = (1−ϕ)vx+(v|x=0−v)ϕ′+(v|x=0−v)vx−ϕ′∗(ϕv+
1
2
ϕ′vx)−Q[v].
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Consider a decomposition:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = t + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Due to

[v(0)− v(x)]ϕ′(x)− ϕ′ ∗ ϕv− 1
2
ϕ′ ∗ ϕ′vx = ϕ(x)

∫ x

0
v(y)dy,

the evolution of v(t, x) simplifies to

vt = (1− ϕ)vx + ϕ

∫ x

0
v(t, y)dy + (v|x=0 − v)vx − Q[v].
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Nonlinear evolution

For the evolution problem:{
vt = (1− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

Dmitry Pelinovsky, McMaster University Instability of peaked traveling waves 16 / 24



Nonlinear evolution

For the evolution problem:{
vt = (1− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

The characteristic coordinates X(t, s) satisfies{ dX
dt = ϕ(X)− 1 + v(t,X)− v(t, 0), t ∈ (0,T),
X|t=0 = s.

Since ϕ and v(t, ·) are Lipschitz for the solution in H1(R)∩W1,∞(R),
there exists the unique characteristic function X(t, s) for each s ∈ R.
The peak location X(t, 0) = 0 is invariant in time.
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Nonlinear evolution

For the evolution problem:{
vt = (1− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

From the right side of the peak, V0(t) = v(t, 0), W0(t) = vx(t, 0+):

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0), P[v] := ϕ ∗

(
v2 +

1
2

v2
x

)
.

We will show that W0(t) grows and may diverge in a finite time.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

To show instability, we use eq. on the right side of the peak:

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0)

and since P[v] > 0, we have

dW0

dt
≤ W0 + Cε ⇒ W0(t) ≤ [W0(0) + Cε] et

Dmitry Pelinovsky, McMaster University Instability of peaked traveling waves 17 / 24



Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).

The initial constraint ‖v0‖L∞ + ‖v′0‖L∞ < δ, is satisfied
if ∀δ > 0, ∃ε > 0 such that(ε

3

)4
+ 2Cε < δ.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

To show the finite-time wave breaking, we estimate

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0) ≤ W0 −

1
2

W2
0 + Cε.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

By the ODE comparison theory, W0(t) ≤ W(t), where the
supersolution satisfies

dW
dt

= W − 1
2

W2
+ Cε

with W0(0) = W(0) = −Cε and W(t)→ −∞ as t→ T .
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Illustration of the peakon instability (periodic case)
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Figure: The plots of perturbation v(t, x) to the peaked wave versus x on
[−2π, 2π] for different values of t in the case v0(x) = sin(x).
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Section 4

Spectral instability of peakons for every b ∈ R
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Linearized equation for every b ∈ R

Truncation of the quadratic terms yields the linearized problem for
perturbations in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),
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Linearized equation for every b ∈ R

Truncation of the quadratic terms yields the linearized problem for
perturbations in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

Question: Can we predict instability of peakons from analysis of
the associated linearized operator in L2(R)?
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Linearized equation for every b ∈ R

Truncation of the quadratic terms yields the linearized problem for
perturbations in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

The linearized operator is

L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.
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Linearized equation for every b ∈ R

Truncation of the quadratic terms yields the linearized problem for
perturbations in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

The linearized operator is

L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.

H1(R) is continuously embedded into Dom(L). However, it is not
equivalent to Dom(L) because ϕ′ ∈ Dom(L) but ϕ′ /∈ H1(R).
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Linearized equation for every b ∈ R

Truncation of the quadratic terms yields the linearized problem for
perturbations in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

The linearized operator is

L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.

Question: How can we redefine L from H1(R) ∩ W1,∞(R) to
Dom(L) ⊂ L2(R) to study spectral stability of peakons?
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Answering of these questions

It can be checked directly that

Lϕ = (2− b)ϕ′ and Lϕ′ = 0.
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Answering of these questions

It can be checked directly that

Lϕ = (2− b)ϕ′ and Lϕ′ = 0.

Starting with v ∈ H1(R) ∩W1,∞(R), we write

v = v|x=0ϕ+ ṽ such that ṽ(t, 0) = 0.

Then,

vt = Lv + (b− 2)v|x=0ϕ
′ ⇒ ṽt = Lṽ− 3

2
(b− 2)〈ϕϕ′, ṽ〉ϕ

Linear evolution is now well-defined for ṽ ∈ Dom(L) ⊂ L2(R) for
which ṽ(t, 0) may not exist.
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Answering of these questions

It can be checked directly that

Lϕ = (2− b)ϕ′ and Lϕ′ = 0.

Moreover, we can use the secondary decomposition

ṽ(t, x) = α(t)ϕ(x) + β(t)ϕ′(x) + w(t, x)

and obtain the homogeneous equation wt = Lw and

dα
dt

= (2− b)β +
3
2

(2− b)〈φφ′,w〉, dβ
dt

= (2− b)α.

For b 6= 2, we have instability of peakons in Dom(L) with w = 0. For
b = 2, we have to analyze the spectrum of L in L2(R).
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Spectrum of a linear operator

Let A be a linear operator on a Banach space X with Dom(A) ⊂ X.
The complex plane C is decomposed into the resolvent set ρ(A) and
the spectrum σ(A) = C \ ρ(A), the latter consists of the following
three disjoint sets:

1. the point spectrum

σp(A) = {λ : Ker(A− λI) 6= {0}},

2. the residual spectrum

σr(A) = {λ : Ker(A− λI) = {0}, Ran(A− λI) 6= X},

3. the continuous spectrum

σc(A) = {λ : Ker(A− λI) = {0}, Ran(A− λI) = X,

(A− λI)−1 : X → X is unbounded}.
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Spectrum of a linear operator

Theorem (Lafortune–P (2022))

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

⇒ the peakon is linearly unstable for perturbations in Dom(L) for
every b 6= 5

2 .
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Spectrum of a linear operator

Theorem (Lafortune–P (2022))

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

CH and DP have different types of peakon instability

b = 2: ‖v(t, ·)‖L2(−∞,0) grows due to point spectrum

b = 3: ‖v(t, ·)‖L2(0,∞) grows due to residual spectrum
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Spectrum of a linear operator

Theorem (Lafortune–P (2022))

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

Instability in the vertical strip holds for peaked waves in the reduced
Ostrovsky equation ut + uux = ∂−1

x u [Geyer & P. (2020)] and for Euler
flows [Shvidkoy & Latushkin (2003)]

Dmitry Pelinovsky, McMaster University Instability of peaked traveling waves 22 / 24



Spectrum of a linear operator

Theorem (Lafortune–P (2022))

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

For fixed b, the width of the instability strip changes if L is considered
in Dom(L) ⊂ Hs(R) with s 6= 0. [Lafortune (2023)].
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Theorem (Geyer & P (2020))

Let L : Dom(L) ⊂ X → X and L0 : Dom(L0) ⊂ X → X be linear
operators on Hilbert space X with the same domain such that
L− L0 = K is a compact operator in X. Assume that the intersections
σp(L) ∩ ρ(L0) and σp(L0) ∩ ρ(L) are empty. Then, σ(L) = σ(L0).
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Theorem (Bühler & Salamon (2018))

Let L : Dom(L) ⊂ X → X be a linear operator on Hilbert space X
and L∗ : Dom(L∗) ⊂ X → X be the adjoint operator. Assume that
σp(L) is empty. Then, σr(L) = σp(L∗).
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Truncated equation L0v = λv is the first-order equation

(1− ϕ)
dv
dx

+ (2− b)ϕ′v = λv

with the exact solution

v(x) =

{
v+eλx(1− e−x)2+λ−b, x > 0,
v−eλx(1− ex)2−λ−b, x < 0,

If Re(λ) > 0, then v+ = 0 and Re(λ) < 5
2 − b.
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How do we obtain this result?

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Truncated equation L∗0v = λv is the first-order equation

−(1− ϕ)
dv
dx

+ (3− b)ϕ′v = λv

with the exact solution

v(x) =

{
v+e−λx(1− e−x)b−3−λ, x > 0,
v−e−λx(1− ex)b−3+λ, x < 0,

If Re(λ) > 0, then v− = 0 and Re(λ) < b− 5
2 .
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Summary

We have considered the b-Camassa–Holm equation

ut − utxx + (b + 1)uux = buxuxx + uuxxx

which models unidirectional small-amplitude shallow water waves.

. Peaked traveling waves are unstable in H1 ∩W1,∞

. LWP only holds in H1 ∩W1,∞.

. Perturbations are bounded in H1 (at least for b = 2).

. Perturbations grow in W1,∞ norm.

. Spectral instability holds for every b.
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MANY THANKS FOR YOUR ATTENTION!
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