Instability of peaked traveling waves in the Camassa–Holm models

Dmitry E. Pelinovsky

joint work with Anna Geyer (TU Delft), Fabio Natali (Brazil), Stephane Lafortune (USA)

SUNY Buffalo, NY, USA

November 10, 2023

Section 1

Camassa-Holm models

The Camassa-Holm equation

$$u_t - u_{txx} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}$$
 (CH)

models the propagation of unidirectional shallow water waves, where u = u(t, x) represents the horizontal velocity at the free surface.

[Camassa & Holm, 1993] [Johnson, 2000] [Constantin & Lannes, 2009]

It was extended as the Degasperis-Procesi equation

$$u_t - u_{txx} + 4 u u_x = 3 u_x u_{xx} + u u_{xxx}$$

at the same asymptotic accuracy.

[Degasperis & Procesi, 1999] [Constantin & Lannes, 2009]

(DP)

It was further extended as the *b*-Camassa–Holm equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

by using transformations of integrable KdV equation [Dullin, Gottwald, & Holm, 2001] [Degasperis, Holm & Hone, 2002]

 \triangleright CH and DP cases are integrable for b = 2 and b = 3.

▷ BBM equation for slowly varying waves:

$$u_t - u_{txx} + (b+1) u u_x = 0$$

- ▷ Admits both smooth and peaked traveling waves.
- ▷ Purely quadratic in the evolution form:

$$u_t = (1 - \partial_x^2)^{-1} \left[b \, u_x u_{xx} + u \, u_{xxx} - (b+1) u u_x \right].$$

Dmitry Pelinovsky, McMaster University

(b-CH)

Solitary waves in *b*-CH model

Similations of the *b*-family of Camassa-Holm equations

 $u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Peaked solitary waves (*peakons*) are observed for b > 1

Solitary waves in *b*-CH model

Similations of the *b*-family of Camassa-Holm equations

 $u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Rarefactive waves are observed for $b \in (-1, 1)$

Dmitry Pelinovsky, McMaster University

Solitary waves in *b*-CH model

Similations of the *b*-family of Camassa-Holm equations

 $u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Smooth solitary waves (*leftons*) are observed for b < -1

Dmitry Pelinovsky, McMaster University

Instability of peaked traveling waves

For traveling solitary waves satisfying $u(x) \to 0$ as $|x| \to \infty$

- Orbital stability of peakons in energy space
 - b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001] b = 3: [Lin & Liu, 2009]

For traveling solitary waves satisfying $u(x) \to 0$ as $|x| \to \infty$

- Orbital stability of peakons in energy space
 b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]
 b = 3: [Lin & Liu, 2009]
- ▷ Orbital stability of leftons in weighted Sobolev spaces b < -1: [Hone & Lafortune, 2014]

For traveling solitary waves satisfying $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$

- Orbital stability of peakons in energy space
 b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]
 b = 3: [Lin & Liu, 2009]
- ▷ Orbital stability of leftons in weighted Sobolev spaces b < -1: [Hone & Lafortune, 2014]</p>

For solitary waves satisfying $u(x) \to k$ as $|x| \to \infty$ with k > 0:

Orbital stability of smooth solitary waves in energy space b = 2: [Constantin & Strauss, 2002]
 b = 3: [Li & Liu & Wu, 2020]

For traveling solitary waves satisfying $u(x) \to 0$ as $|x| \to \infty$

- Orbital stability of peakons in energy space
 b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]
 b = 3: [Lin & Liu, 2009]
- ▷ Orbital stability of leftons in weighted Sobolev spaces b < -1: [Hone & Lafortune, 2014]

For solitary waves satisfying $u(x) \to k$ as $|x| \to \infty$ with k > 0:

Orbital stability of smooth solitary waves in energy space
 b = 2: [Constantin & Strauss, 2002]
 b = 3: [Li & Liu & Wu, 2020]

Similar studies were developed for travelling periodic waves (smooth or peaked) in the CH equation (b = 2) [Lenells, 2004-2006]

Dmitry Pelinovsky, McMaster University

Instability of peaked traveling waves

\triangleright Linear and nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$

b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]

- ▷ Linear and nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Linear and spectral instability of peakons in L² any b ∈ ℝ: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]

- ▷ Linear and nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Linear and spectral instability of peakons in L^2 any $b \in \mathbb{R}$: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]
- ▷ Spectral and orbital stability of smooth solitary waves in H³
 b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]

- ▷ Linear and nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Linear and spectral instability of peakons in L² any b ∈ ℝ: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]
- ▷ Spectral and orbital stability of smooth solitary waves in H³
 b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]
- ▷ Spectral stability of smooth periodic waves in L²_{per}
 b = 2 [Geyer, Martins, Natali, & P., 2022]
 b = 3 [Geyer & P., 2023]
 b > 1 [Ehrman & Johnson, 2023]

- ▷ Linear and nonlinear instability of peakons in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Linear and spectral instability of peakons in L² any b ∈ ℝ: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]
- ▷ Spectral and orbital stability of smooth solitary waves in H³
 b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]
- ▷ Spectral stability of smooth periodic waves in L²_{per}
 b = 2 [Geyer, Martins, Natali, & P., 2022]
 b = 3 [Geyer & P., 2023]
 b > 1 [Ehrman & Johnson, 2023]

Similar studies were developed for the cubic CH (Novikov) equation [Chen & P., 2021], [Lafortune, 2023]

Section 2

Properties of the *b*-Camassa–Holm equation

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1} \delta = e^{-|x|}$ is the Green function.

Dmitry Pelinovsky, McMaster University

Instability of peaked traveling waves

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

We say that the dynamics leads to the wave breaking if

 $\|u(t,\cdot)\|_{L^{\infty}} < \infty, \quad \|u_x(t,\cdot)\|_{L^{\infty}} \to \infty \quad \text{as } t \to T < \infty$

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

Solutions of the Burgers equation $v_t + vv_x = 0$ with v(0, x) = f(x)admit wave breaking if $f \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$: $v(t,x) = f(x - tv(t,x)) \implies v_x = \frac{f'(x - tv)}{1 + tf'(x - tv)}.$

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

The CH equation $(b = 2) \dots$

- ▷ is locally well-posed in H^s , s > 3/2 [Escher & Yin, 2008; Zhou, 2010]
- ▷ has no continuous dependence in H^s, s ≤ 3/2
 [Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]

▷ is locally well-posed in $H^1 \cap W^{1,\infty}$.

[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]

Hamiltonian structure of the *b*-CH equations

For b = 2, the Camassa–Holm equation

 $u_t - u_{txx} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}$

has the first three conserved quantities

$$M(u) = \int u dx, \ E(u) = \frac{1}{2} \int (u^2 + u_x^2) dx, \ F(u) = \frac{1}{2} \int (u^3 + u u_x^2) dx.$$

(CH) can be written in Hamiltonian form in three ways:

$$\begin{split} u_t &= JF'(u), \qquad \qquad J = -(1 - \partial_x^2)^{-1}\partial_x, \\ m_t &= J_m E'(m), \qquad \qquad J_m = -(m\partial_x + \partial_x m), \\ m_t &= J_m M'(m), \qquad J_m = -(2m\partial_x + m_x)(1 - \partial_x^2)^{-1}\partial_x^{-1}(2\partial_x m - m_x). \end{split}$$

where $m = u - u_{xx}$.

Hamiltonian structure of the *b*-CH equations

For b = 3, the Degasperis–Procesi equation

 $u_t - u_{txx} + 4 u u_x = 3 u_x u_{xx} + u u_{xxx}$

has the first three conserved quantities

$$M(u) = \int u dx, \ E(u) = \frac{1}{2} \int u(1 - \partial_x^2)(4 - \partial_x^2)^{-1} u dx, \ F(u) = \frac{1}{6} \int u^3 dx.$$

(DH) can be written in Hamiltonian form in two ways:

$$u_t = JF'(u), \qquad J = -(1 - \partial_x^2)^{-1}(4 - \partial_x^2)\partial_x, m_t = J_m M'(m), \qquad J_m = -\frac{1}{2}(3m\partial_x + m_x)(1 - \partial_x^2)^{-1}\partial_x^{-1}(3\partial_x m - m_x).$$

where $m = u - u_{xx}$.

Hamiltonian structure of the *b*-CH equations

For general $b \neq 1$, the *b*-Camassa–Holm equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be written in Hamiltonian form:

$$m_t = J_m M'(m), \quad J_m := -\frac{1}{b-1} (bm\partial_x + m_x)(1 - \partial_x^2)^{-1} \partial_x^{-1} (b\partial_x m - m_x).$$

where $m = u - u_{xx}$.

Section 3

Instability of peakons for b = 2

▷ Construct a linear combination of conserved quantities $\Lambda(u)$ such that the traveling wave ϕ is a critical point of Λ : $\Lambda'(\phi) = 0$

TW-ea

- ▷ Construct a linear combination of conserved quantities $\Lambda(u)$ such that the traveling wave ϕ is a critical point of Λ : $\underbrace{\Lambda'(\phi) = 0}_{\text{TW-eq}}$
- ▷ Compute the spectrum of the linearized operator $\mathcal{L} = \Lambda''(\phi)$ and control the number of negative eigenvalues in $L^2(\mathbb{R})$.

- ▷ Construct a linear combination of conserved quantities $\Lambda(u)$ such that the traveling wave ϕ is a critical point of Λ : $\underbrace{\Lambda'(\phi) = 0}_{\text{TW-eq}}$
- ▷ Compute the spectrum of the linearized operator $\mathcal{L} = \Lambda''(\phi)$ and control the number of negative eigenvalues in $L^2(\mathbb{R})$.
- ▷ If \mathcal{L} has only one negative simple eigenvalue and a simple zero eigenvalue, then prove that the traveling wave ϕ is a constrained minimizer of energy, i.e. $\mathcal{L}|_{X_0} \ge 0$, where $X_0 \subset L^2$ is due to constraints

- ▷ Construct a linear combination of conserved quantities $\Lambda(u)$ such that the traveling wave ϕ is a critical point of Λ : $\underbrace{\Lambda'(\phi) = 0}_{\text{TW-eq}}$
- ▷ Compute the spectrum of the linearized operator $\mathcal{L} = \Lambda''(\phi)$ and control the number of negative eigenvalues in $L^2(\mathbb{R})$.
- ▷ If \mathcal{L} has only one negative simple eigenvalue and a simple zero eigenvalue, then prove that the traveling wave ϕ is a constrained minimizer of energy, i.e. $\mathcal{L}|_{X_0} \ge 0$, where $X_0 \subset L^2$ is due to constraints
- \triangleright The traveling wave ϕ is orbitally stable in energy space if local well-posedness has been proven in the energy space.

Existence of peakons

Peakons exist in the weak form in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for every $b \in \mathbb{R}$:

$$u(t,x) = ce^{-|x-ct|} = c\varphi(x-ct).$$

We can set c = 1 due to the scaling transformation.

Existence of peakons

Peakons exist in the weak form in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for every $b \in \mathbb{R}$:

$$u(t,x) = ce^{-|x-ct|} = c\varphi(x-ct).$$

We can set c = 1 due to the scaling transformation.

Existence of peakons

Peakons exist in the weak form in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for every $b \in \mathbb{R}$:

$$u(t,x) = ce^{-|x-ct|} = c\varphi(x-ct).$$

We can set c = 1 due to the scaling transformation.

By using the traveling wave reduction $u(t, x) = \varphi(x - t)$ in

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0$$

and integration once yields the integral equation

$$\begin{split} -\varphi + \frac{1}{2}\varphi^2 + \frac{1}{4}\varphi * \left(b\varphi^2 + (3-b)(\varphi')^2\right) &= 0,\\ \Rightarrow -\varphi + \frac{1}{2}\varphi^2 + \frac{3}{4}\varphi * \varphi^2 &= 0, \end{split}$$

which is satisfied by $\varphi(x) = e^{-|x|}$.

Orbital stability of peakons in $H^1(\mathbb{R})$ for b = 2Theorem (Constantin–Molinet (2001))

 φ is a unique (up to translation) minimizer of F(u) in $H^1(\mathbb{R})$ subject to fixed E(u), where F(u) and E(u) are two conserved energies:

$$E(u) = \frac{1}{2} \int (u^2 + u_x^2) dx, \qquad F(u) = \frac{1}{2} \int (u^3 + u u_x^2) dx.$$

Theorem (Constantin–Strauss (2000))

For every small $\varepsilon > 0$, if the initial data satisfies

$$\|u_0-\varphi\|_{H^1}<\left(\frac{\varepsilon}{3}\right)^4,$$

then the solution satisfies

$$\|u(t,\cdot)-\varphi(\cdot-\xi(t))\|_{H^1}<\varepsilon,\quad t\in(0,T),$$

where $\xi(t)$ is a point of maximum for $u(t, \cdot)$.

Dmitry Pelinovsky, McMaster University

Instability of peakons in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for b = 2

Consider solutions of the Cauchy problem:

 $\begin{cases} u_t + uu_x + Q[u] = 0, \\ u|_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$
Instability of peakons in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for b = 2

Consider solutions of the Cauchy problem:

 $\begin{cases} u_t + uu_x + Q[u] = 0, \\ u|_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$

Theorem (Natali–P. (2020))

For every $\delta > 0$, there exist $t_0 > 0$ and $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$\|u_0-\varphi\|_{H^1}+\|u_0'-\varphi'\|_{L^\infty}<\delta,$$

s.t. the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ *with* $T > t_0$ *satisfies*

$$||u_x(t_0, \cdot) - \varphi'(\cdot - \xi(t_0))||_{L^{\infty}} > 1,$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in [0, T)$.

Instability of peakons in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for b = 2

Consider solutions of the Cauchy problem:

 $\begin{cases} u_t + uu_x + Q[u] = 0, \\ u|_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$

Q[u] behaves better than uu_x :

- ▷ If $u \in H^1(\mathbb{R})$, then $Q[u] \in H^1(\mathbb{R})$ and hence continuous.
- ▷ If $u \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, then Q[u] is Lipschitz continuous.
- ▷ If $u \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, method of characteristics can be used to analyze dynamics of the perturbed Burgers equation.

Instability of peakons in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for b = 2.

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

One important property for continuous solutions with peaked corners:

If $u(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$ for $t \in [0, T)$, then $\xi(t) \in C^1(0, T)$ and $d\xi$

$$\frac{d\xi}{dt} = u(t,\xi(t)), \quad t \in (0,T).$$

For the peaked traveling wave u(t, x) = u(x - ct), this gives $c = u(0) := \max_{x \in \mathbb{R}} u(x)$.

Instability of peakons in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ for b = 2

Consider solutions of the Cauchy problem:

 $\begin{cases} u_t + uu_x + Q[u] = 0, \\ u|_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$

Here is a peaked solitary wave with a single peak:

Dmitry Pelinovsky, McMaster University

Instability of peaked traveling waves

Decomposition near a single peakon

Consider a decomposition:

 $u(t,x)=\varphi(x-t-a(t))+v(t,x-t-a(t)),\quad t\in[0,T),\quad x\in\mathbb{R},$

with the peak at $\xi(t) = t + a(t)$ for $v(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$. Then, a'(t) = v(t, 0) and

$$v_t = (1 - \varphi)v_x + (v|_{x=0} - v)\varphi' + (v|_{x=0} - v)v_x - \varphi' * (\varphi v + \frac{1}{2}\varphi' v_x) - Q[v].$$

Decomposition near a single peakon

Consider a decomposition:

 $u(t,x) = \varphi(x-t-a(t)) + v(t,x-t-a(t)), \quad t \in [0,T), \quad x \in \mathbb{R},$

with the peak at $\xi(t) = t + a(t)$ for $v(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$.

Due to

$$[v(0) - v(x)]\varphi'(x) - \varphi' * \varphi v - \frac{1}{2}\varphi' * \varphi' v_x = \varphi(x) \int_0^x v(y) dy,$$

the evolution of v(t, x) simplifies to

$$v_t = (1 - \varphi)v_x + \varphi \int_0^x v(t, y) dy + (v|_{x=0} - v)v_x - Q[v].$$

Nonlinear evolution

For the evolution problem:

 $\begin{cases} v_t = (1 - \varphi)v_x + \varphi \int_0^x v(t, y) dy + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$

we can look for solutions with the method of characteristic curves:

x = X(t,s), v(t,X(t,s)) = V(t,s).

Nonlinear evolution

For the evolution problem:

 $\begin{cases} v_t = (1 - \varphi)v_x + \varphi \int_0^x v(t, y) dy + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$

we can look for solutions with the method of characteristic curves:

$$x = X(t,s),$$
 $v(t,X(t,s)) = V(t,s).$

The characteristic coordinates X(t, s) satisfies

$$\begin{cases} \frac{dX}{dt} = \varphi(X) - 1 + v(t, X) - v(t, 0), \quad t \in (0, T), \\ X|_{t=0} = s. \end{cases}$$

Since φ and $v(t, \cdot)$ are Lipschitz for the solution in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, there exists the unique characteristic function X(t, s) for each $s \in \mathbb{R}$. The peak location X(t, 0) = 0 is invariant in time.

Nonlinear evolution

For the evolution problem:

 $\begin{cases} v_t = (1 - \varphi)v_x + \varphi \int_0^x v(t, y) dy + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$

we can look for solutions with the method of characteristic curves:

$$x = X(t,s), \qquad v(t,X(t,s)) = V(t,s).$$

From the right side of the peak, $V_0(t) = v(t, 0)$, $W_0(t) = v_x(t, 0^+)$:

$$\frac{dW_0}{dt} = W_0 + V_0 + V_0^2 - \frac{1}{2}W_0^2 - P[v](0), \quad P[v] := \varphi * \left(v^2 + \frac{1}{2}v_x^2\right).$$

We will show that $W_0(t)$ grows and may diverge in a finite time.

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

To show instability, we use eq. on the right side of the peak:

$$\frac{dW_0}{dt} = W_0 + V_0 + V_0^2 - \frac{1}{2}W_0^2 - P[v](0)$$

and since P[v] > 0, we have

$$\frac{dW_0}{dt} \le W_0 + C\varepsilon \quad \Rightarrow \quad W_0(t) \le \left[W_0(0) + C\varepsilon\right]e^t$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

If $W_0(0) = -2C\varepsilon$, then

 $W_0(t) \leq -C\varepsilon e^t$,

hence $|W_0(t_0)| \ge 1$ for $t_0 := -\log(C\varepsilon)$.

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

If $W_0(0) = -2C\varepsilon$, then

 $W_0(t) \leq -C\varepsilon e^t$,

hence $|W_0(t_0)| \ge 1$ for $t_0 := -\log(C\varepsilon)$.

The initial constraint $\|v_0\|_{L^{\infty}} + \|v'_0\|_{L^{\infty}} < \delta$, is satisfied if $\forall \delta > 0$, $\exists \varepsilon > 0$ such that

$$\left(\frac{\varepsilon}{3}\right)^4 + 2C\varepsilon < \delta.$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le \|v(t,\cdot)\|_{L^{\infty}} \le \frac{1}{\sqrt{2}} \|v(t,\cdot)\|_{H^1} < \varepsilon.$$

To show the finite-time wave breaking, we estimate

$$\frac{dW_0}{dt} = W_0 + V_0 + V_0^2 - \frac{1}{2}W_0^2 - P[\nu](0) \le W_0 - \frac{1}{2}W_0^2 + C\varepsilon.$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

By the ODE comparison theory, $W_0(t) \leq \overline{W}(t)$, where the supersolution satisfies

$$\frac{d\overline{W}}{dt} = \overline{W} - \frac{1}{2}\overline{W}^2 + C\varepsilon$$

with $W_0(0) = \overline{W}(0) = -C\varepsilon$ and $\overline{W}(t) \to -\infty$ as $t \to \overline{T}$.

Illustration of the peakon instability (periodic case)

Figure: The plots of perturbation v(t, x) to the peaked wave versus x on $[-2\pi, 2\pi]$ for different values of t in the case $v_0(x) = \sin(x)$.

Section 4

Spectral instability of peakons for every $b \in \mathbb{R}$

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

Question: Can we predict instability of peakons from analysis of the associated linearized operator in $L^2(\mathbb{R})$?

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

The linearized operator is

$$L = (1 - \varphi)\partial_x - (b - 2)\varphi' + K,$$

where $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator. Since $\varphi \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, the natural domain of *L* in $L^2(\mathbb{R})$ is

$$\operatorname{Dom}(L) = \left\{ v \in L^2(\mathbb{R}) : \quad (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}.$$

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

The linearized operator is

$$L = (1 - \varphi)\partial_x - (b - 2)\varphi' + K,$$

where $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator. Since $\varphi \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, the natural domain of *L* in $L^2(\mathbb{R})$ is

$$\operatorname{Dom}(L) = \left\{ v \in L^2(\mathbb{R}) : \quad (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}.$$

 $H^1(\mathbb{R})$ is continuously embedded into Dom(L). However, it is not equivalent to Dom(L) because $\varphi' \in \text{Dom}(L)$ but $\varphi' \notin H^1(\mathbb{R})$.

Truncation of the quadratic terms yields the linearized problem for perturbations in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

The linearized operator is

$$L = (1 - \varphi)\partial_x - (b - 2)\varphi' + K,$$

where $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator. Since $\varphi \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, the natural domain of *L* in $L^2(\mathbb{R})$ is

$$\operatorname{Dom}(L) = \left\{ v \in L^2(\mathbb{R}) : \quad (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}.$$

Question: How can we redefine L from $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ to $\text{Dom}(L) \subset L^2(\mathbb{R})$ to study spectral stability of peakons?

Dmitry Pelinovsky, McMaster University

Answering of these questions

It can be checked directly that

$$L\varphi = (2-b)\varphi'$$
 and $L\varphi' = 0$.

Answering of these questions

It can be checked directly that

 $L\varphi = (2-b)\varphi'$ and $L\varphi' = 0$.

Starting with $v \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, we write

 $v = v|_{x=0}\varphi + \tilde{v}$ such that $\tilde{v}(t,0) = 0$.

Then,

$$v_t = Lv + (b-2)v|_{x=0}\varphi' \quad \Rightarrow \quad \tilde{v}_t = L\tilde{v} - \frac{3}{2}(b-2)\langle\varphi\varphi', \tilde{v}\rangle\varphi$$

Linear evolution is now well-defined for $\tilde{v} \in \text{Dom}(L) \subset L^2(\mathbb{R})$ for which $\tilde{v}(t, 0)$ may not exist.

Answering of these questions

It can be checked directly that

 $L\varphi = (2-b)\varphi'$ and $L\varphi' = 0$.

Moreover, we can use the secondary decomposition

 $\tilde{v}(t,x) = \alpha(t)\varphi(x) + \beta(t)\varphi'(x) + w(t,x)$

and obtain the homogeneous equation $w_t = Lw$ and

$$\frac{d\alpha}{dt} = (2-b)\beta + \frac{3}{2}(2-b)\langle\phi\phi',w\rangle, \quad \frac{d\beta}{dt} = (2-b)\alpha.$$

For $b \neq 2$, we have instability of peakons in Dom(L) with w = 0. For b = 2, we have to analyze the spectrum of L in $L^2(\mathbb{R})$.

Let *A* be a linear operator on a Banach space *X* with $Dom(A) \subset X$. The complex plane \mathbb{C} is decomposed into the resolvent set $\rho(A)$ and the spectrum $\sigma(A) = \mathbb{C} \setminus \rho(A)$, the latter consists of the following three disjoint sets:

1. the point spectrum

$$\sigma_{p}(A) = \{\lambda : \operatorname{Ker}(A - \lambda I) \neq \{0\}\},\$$

2. the residual spectrum

$$\sigma_{\mathbf{r}}(A) = \{\lambda : \operatorname{Ker}(A - \lambda I) = \{0\}, \operatorname{Ran}(A - \lambda I) \neq X\},\$$

3. the continuous spectrum

$$\sigma_{c}(A) = \{\lambda : \operatorname{Ker}(A - \lambda I) = \{0\}, \operatorname{Ran}(A - \lambda I) = X, \\ (A - \lambda I)^{-1} : X \to X \text{ is unbounded}\}.$$

Theorem (Lafortune-P (2022))

The spectrum of L with $Dom(L) \subset L^2(\mathbb{R})$

$$\sigma(L) = \left\{ \lambda \in \mathbb{C} : |\operatorname{Re}(\lambda)| \le \left| \frac{5}{2} - b \right| \right\}.$$

Moreover,

- $| \sigma_p(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < \frac{5}{2} b \text{ if } b < \frac{5}{2}$
- $\triangleright \ \sigma_r(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < b \frac{5}{2} \text{ if } b > \frac{5}{2}$
- $\triangleright \ \sigma_c(L) \text{ is located for } \operatorname{Re}(\lambda) = 0 \text{ and } \operatorname{Re}(\lambda) = \pm \left| \frac{5}{2} b \right|$
- $\triangleright \lambda = 0$ is the embedded eigenvalue for every *b*.

 \Rightarrow the peakon is linearly unstable for perturbations in Dom(L) for every $b \neq \frac{5}{2}$.

Theorem (Lafortune–P (2022))

The spectrum of L with $Dom(L) \subset L^2(\mathbb{R})$

$$\sigma(L) = \left\{ \lambda \in \mathbb{C} : |\operatorname{Re}(\lambda)| \le \left| \frac{5}{2} - b \right| \right\}.$$

Moreover,

- $| \sigma_p(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < \frac{5}{2} b \text{ if } b < \frac{5}{2}$
- $\triangleright \ \sigma_r(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < b \frac{5}{2} \text{ if } b > \frac{5}{2}$
- $\triangleright \sigma_c(L)$ is located for $\operatorname{Re}(\lambda) = 0$ and $\operatorname{Re}(\lambda) = \pm \left|\frac{5}{2} b\right|$
- $\triangleright \lambda = 0$ is the embedded eigenvalue for every b.

CH and DP have different types of peakon instability b = 2: $||v(t, \cdot)||_{L^2(-\infty, 0)}$ grows due to point spectrum

b = 3: $||v(t, \cdot)||_{L^2(0,\infty)}$ grows due to residual spectrum

Dmitry Pelinovsky, McMaster University

Instability of peaked traveling waves

Theorem (Lafortune–P (2022))

The spectrum of L with $Dom(L) \subset L^2(\mathbb{R})$

$$\sigma(L) = \left\{ \lambda \in \mathbb{C} : |\operatorname{Re}(\lambda)| \le \left| \frac{5}{2} - b \right| \right\}.$$

Moreover,

- $|\sigma_p(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < \frac{5}{2} b \text{ if } b < \frac{5}{2}$
- $\triangleright \ \sigma_r(L) \text{ is located for } 0 < |\text{Re}(\lambda)| < b \frac{5}{2} \text{ if } b > \frac{5}{2}$
- $\triangleright \ \sigma_c(L) \text{ is located for } \operatorname{Re}(\lambda) = 0 \text{ and } \operatorname{Re}(\lambda) = \pm \left| \frac{5}{2} b \right|$
- $\triangleright \lambda = 0$ is the embedded eigenvalue for every b.

Instability in the vertical strip holds for peaked waves in the reduced Ostrovsky equation $u_t + uu_x = \partial_x^{-1} u$ [Geyer & P. (2020)] and for Euler flows [Shvidkoy & Latushkin (2003)]

Theorem (Lafortune–P (2022))

The spectrum of L with $Dom(L) \subset L^2(\mathbb{R})$

$$\sigma(L) = \left\{ \lambda \in \mathbb{C} : |\operatorname{Re}(\lambda)| \le \left| \frac{5}{2} - b \right| \right\}.$$

Moreover,

- $ightarrow \sigma_p(L)$ is located for $0 < |\operatorname{Re}(\lambda)| < \frac{5}{2} b$ if $b < \frac{5}{2}$
- $\triangleright \ \sigma_r(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < b \frac{5}{2} \text{ if } b > \frac{5}{2}$
- $\triangleright \sigma_c(L)$ is located for $\operatorname{Re}(\lambda) = 0$ and $\operatorname{Re}(\lambda) = \pm \left|\frac{5}{2} b\right|$
- $\triangleright \lambda = 0$ is the embedded eigenvalue for every b.

For fixed *b*, the width of the instability strip changes if *L* is considered in $\text{Dom}(L) \subset H^s(\mathbb{R})$ with $s \neq 0$. [Lafortune (2023)].

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\text{Dom}(L) = \text{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\text{Dom}(L) = \text{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Theorem (Geyer & P (2020))

Let $L : Dom(L) \subset X \to X$ and $L_0 : Dom(L_0) \subset X \to X$ be linear operators on Hilbert space X with the same domain such that $L - L_0 = K$ is a compact operator in X. Assume that the intersections $\sigma_p(L) \cap \rho(L_0)$ and $\sigma_p(L_0) \cap \rho(L)$ are empty. Then, $\sigma(L) = \sigma(L_0)$.

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\operatorname{Dom}(L) = \operatorname{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Theorem (Bühler & Salamon (2018))

Let $L : \text{Dom}(L) \subset X \to X$ be a linear operator on Hilbert space Xand $L^* : \text{Dom}(L^*) \subset X \to X$ be the adjoint operator. Assume that $\sigma_p(L)$ is empty. Then, $\sigma_r(L) = \sigma_p(L^*)$.

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\operatorname{Dom}(L) = \operatorname{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Truncated equation $L_0 v = \lambda v$ is the first-order equation

$$(1-\varphi)\frac{dv}{dx} + (2-b)\varphi'v = \lambda v$$

with the exact solution

$$v(x) = \begin{cases} v_+ e^{\lambda x} (1 - e^{-x})^{2+\lambda-b}, & x > 0, \\ v_- e^{\lambda x} (1 - e^x)^{2-\lambda-b}, & x < 0, \end{cases}$$

If $\operatorname{Re}(\lambda) > 0$, then $v_+ = 0$ and $\operatorname{Re}(\lambda) < \frac{5}{2} - b$.

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\operatorname{Dom}(L) = \operatorname{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Truncated equation $L_0^* v = \lambda v$ is the first-order equation

$$-(1-\varphi)\frac{dv}{dx} + (3-b)\varphi'v = \lambda v$$

with the exact solution

$$v(x) = \begin{cases} v_+ e^{-\lambda x} (1 - e^{-x})^{b - 3 - \lambda}, & x > 0, \\ v_- e^{-\lambda x} (1 - e^x)^{b - 3 + \lambda}, & x < 0, \end{cases}$$

If $\operatorname{Re}(\lambda) > 0$, then $\nu_{-} = 0$ and $\operatorname{Re}(\lambda) < b - \frac{5}{2}$.

Summary

We have considered the *b*-Camassa–Holm equation

 $u_t - u_{txx} + (b+1)uu_x = bu_x u_{xx} + uu_{xxx}$

which models unidirectional small-amplitude shallow water waves.

- \triangleright Peaked traveling waves are unstable in $H^1 \cap W^{1,\infty}$
 - ▷ LWP only holds in $H^1 \cap W^{1,\infty}$.
 - ▷ Perturbations are bounded in H^1 (at least for b = 2).
 - ▷ Perturbations grow in $W^{1,\infty}$ norm.
 - \triangleright Spectral instability holds for every *b*.
Summary

We have considered the *b*-Camassa–Holm equation

 $u_t - u_{txx} + (b+1)uu_x = bu_x u_{xx} + uu_{xxx}$

which models unidirectional small-amplitude shallow water waves.

- \triangleright Peaked traveling waves are unstable in $H^1 \cap W^{1,\infty}$
 - ▷ LWP only holds in $H^1 \cap W^{1,\infty}$.
 - ▷ Perturbations are bounded in H^1 (at least for b = 2).
 - ▷ Perturbations grow in $W^{1,\infty}$ norm.
 - \triangleright Spectral instability holds for every *b*.

MANY THANKS FOR YOUR ATTENTION!