Krein signature in $\mathcal{P} \mathcal{T}$-symmetric systems

Alexander Chernyavsky and Dmitry Pelinovsky Joint work with P.G. Kevrekidis (Amherst, MA)

Department of Mathematics and Statistics McMaster University
Ontario, Canada

Conference on Mathematics of Wave Phenomena, Karlsruhe, Germany July 23-27, 2018

Hamiltonian Systems

- Hamiltonian mechanics

■ W.R. Hamilton (1833)
■ Using constraints for understanding stability
■ J. Boussinesq (1872)

Hamiltonian Systems

- Hamiltonian mechanics

■ W.R. Hamilton (1833)
■ Using constraints for understanding stability
■ J. Boussinesq (1872)
■ Stability in finite-dimensional Hamiltonian systems
■ L.S. Pontryagin (1944); M.G. Krein (1950); I.Gelfand-V.Lidskii (1955)

- Krein signature in finite-dimensional Hamiltonian systems

■ R.S. MacKay (1985)

Hamiltonian Systems

- Hamiltonian mechanics

■ W.R. Hamilton (1833)
■ Using constraints for understanding stability
■ J. Boussinesq (1872)

- Stability in finite-dimensional Hamiltonian systems

■ L.S. Pontryagin (1944); M.G. Krein (1950); I.Gelfand-V.Lidskii (1955)

- Krein signature in finite-dimensional Hamiltonian systems

■ R.S. MacKay (1985)

- Stability in infinite-dimensional Hamiltonian systems

■ M. Grillakis, J. Shatah, W. Strauss (1990);

- T. Kapitula, P.G. Kevrekidis, B. Sanstede (2004);

■ S. Cuccagna, D.P., V. Vougalter (2005);

- M. Haragus, T. Kapitula (2006);

■ M. Chugunova, D.P (2010);

- A. Stefanov, T. Kapitula (2013);
- many others.

Stability of critical points in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

$$
\frac{d u}{d t}=J H^{\prime}(u), \quad u(t) \in X
$$

where X is the phase space, $J: X \mapsto X$ is a skew-adjoint operator with a bounded inverse $J^{-1}=-J$, and $H: X \rightarrow \mathbb{R}$ is the Hamilton function.

- Assume existence of a critical point $u_{0} \in X$ such that $H^{\prime}\left(u_{0}\right)=0$.
- Perform linearization $u(t)=u_{0}+v e^{\lambda t}$, where λ is the spectral parameter and $v \in X$ satisfies the spectral problem

$$
J H^{\prime \prime}\left(u_{0}\right) v=\lambda v
$$

where $H^{\prime \prime}\left(u_{0}\right): X \rightarrow X$ is a self-adjoint Hessian operator.

- If there exists λ with $\operatorname{Re}(\lambda)>0$ and $v \in X$, then u_{0} is called spectrally unstable. Otherwise, u_{0} is spectrally stable.

Main Question

Assume:

- The spectrum of $H^{\prime \prime}\left(u_{0}\right)$ is strictly positive except for finitely many negative and zero eigenvalues of finite multiplicity.
- The spectrum of $J H^{\prime \prime}\left(u_{0}\right)$ is purely imaginary except for finitely many unstable eigenvalues.
- Multiplicity of the zero eigenvalue of $J H^{\prime \prime}\left(u_{0}\right)$ is given by the number of parameters in u_{0} (symmetries).

Question: Is there a relation between unstable eigenvalues of $J H^{\prime \prime}\left(u_{0}\right)$ and eigenvalues of $H^{\prime \prime}\left(u_{0}\right)$ in the spectral problem

$$
J H^{\prime \prime}\left(u_{0}\right) v=\lambda v
$$

Orbital Stability Theorem for Hamiltonian Systems

Consider the spectral stability problem:

$$
J H^{\prime \prime}\left(u_{0}\right) v=\lambda v, \quad v \in X
$$

under the same assumptions on J and $H^{\prime \prime}\left(u_{0}\right)$. Eigenvalues λ appear in pairs relative to the imaginary axis: λ and $-\bar{\lambda}$.

Stability Theorem (Grillakis-Shatah-Strauss, 1990)

Assume zero eigenvalue of $H^{\prime \prime}\left(u_{0}\right)$ of multiplicity N and related N symmetries/conserved quantities. If $H^{\prime \prime}\left(u_{0}\right)$ has no negative eigenvalues under N constraints, then $\mathrm{JH}^{\prime \prime}\left(u_{0}\right)$ has no unstable eigenvalues and an orbit of u_{0} is linearly and nonlinearly stable.

Negative Index Theorem for Hamiltonian Systems

Stability Theorem (Kapitula-Promislow, 2013)

Assume no symmetries/zero eigenvalues of $H^{\prime \prime}\left(u_{0}\right)$. Then,

$$
N_{\mathrm{re}}\left(J H^{\prime \prime}\right)+N_{\mathrm{c}}\left(J H^{\prime \prime}\right)+N_{\mathrm{im}}^{-}\left(J H^{\prime \prime}\right)=N_{\text {neg }}\left(H^{\prime \prime}\right)<\infty,
$$

where

- $N_{\text {re }}$ - number of real unstable eigenvalues;
- N_{c} - number of complex unstable eigenvalues;
- N_{im}^{-}- number of imaginary eigenvalues of negative Krein signature.

Definition (Krein signature)

Suppose that $\lambda \in i \mathbb{R} \backslash\{0\}$ is a simple isolated eigenvalue of $J H^{\prime \prime}$ with the eigenvector v. The quadratic form $\left\langle H^{\prime \prime} v, v\right\rangle_{L^{2}}=\lambda\left\langle J^{-1} v, v\right\rangle_{L^{2}}$ is nonzero and its sign is called the Krein signature of the eigenvalue λ.

Example: degree-2 Hamiltonian system

Consider energy

$$
H=\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)+\frac{1}{2}\left(-\lambda_{1}^{2} x_{1}^{2}-\lambda_{2}^{2} x_{2}^{2}\right)
$$

The quadratic form for H has two positive and two negative eigenvalues.
Both oscillators are unstable:

$$
\left\{\begin{array} { l }
{ \dot { x _ { 1 } } = y _ { 1 } , } \\
{ \dot { x _ { 2 } } = y _ { 2 } , } \\
{ \dot { y _ { 1 } } = \lambda _ { 1 } ^ { 2 } x _ { 1 } , } \\
{ \dot { y _ { 2 } } = \lambda _ { 2 } ^ { 2 } x _ { 2 } , }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
\ddot{x}_{1}-\lambda_{1}^{2} x_{1}=0, \\
\ddot{x}_{2}-\lambda_{2}^{2} x_{2}=0 .
\end{array}\right.\right.
$$

Negative index count:

$$
N_{\mathrm{re}}(J H)=2=N_{\mathrm{neg}}(H)
$$

Example: degree-2 Hamiltonian system

Consider energy

$$
H=\frac{1}{2}\left(y_{1}^{2}-y_{2}^{2}\right)+\frac{1}{2}\left(\omega_{1}^{2} x_{1}^{2}-\omega_{2}^{2} x_{2}^{2}\right)
$$

The quadratic form for H has two positive and two negative eigenvalues.
The two oscillators are nevertheless stable:

$$
\left\{\begin{array} { l }
{ \dot { x _ { 1 } } = y _ { 1 } , } \\
{ \dot { x _ { 2 } } = - y _ { 2 } , } \\
{ \dot { y _ { 1 } } = - \omega _ { 1 } ^ { 2 } x _ { 1 } , } \\
{ \dot { y _ { 2 } } = \omega _ { 2 } ^ { 2 } x _ { 2 } , }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
\ddot{x_{1}}+\omega_{1}^{2} x_{1}=0, \\
\ddot{x_{2}}+\omega_{2}^{2} x_{2}=0 .
\end{array}\right.\right.
$$

Negative index count:

$$
N_{\mathrm{im}}^{-}(J H)=2=N_{\mathrm{neg}}(H)
$$

Example: degree-2 Hamiltonian system

Consider energy

$$
H=\frac{1}{2}\left(y_{1}^{2}-y_{2}^{2}\right)+\omega^{2} x_{1} x_{2}
$$

The quadratic form for H has two positive and two negative eigenvalues.
The two oscillators are unstable with a quadruplet of complex eigenvalues:

$$
\left\{\begin{array} { l }
{ \dot { x _ { 1 } } = y _ { 1 } , } \\
{ \dot { x _ { 2 } } = - y _ { 2 } , } \\
{ \dot { y _ { 1 } } = - \omega ^ { 2 } x _ { 2 } , }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
\ddot{x_{1}}+\omega^{2} x_{2}=0, \\
\ddot{x_{2}}-\omega^{2} x_{1}=0,
\end{array} \quad \Rightarrow \quad x_{1}^{(4)}+\omega^{4} x_{1}=0 .\right.\right.
$$

Negative index count:

$$
N_{\mathrm{c}}(J H)=2=N_{\mathrm{neg}}(H)
$$

Properties of Krein quantity

Definition (Krein quantity)

Suppose that $\lambda \in i \mathbb{R} \backslash\{0\}$ is a simple isolated eigenvalue of $J H^{\prime \prime}$ with the eigenvector v. The quadratic form

$$
K(\lambda):=\left\langle H^{\prime \prime} v, v\right\rangle_{L^{2}}=\lambda\left\langle J^{-1} v, v\right\rangle_{L^{2}}
$$

is called the Krein quantity of the eigenvalue λ.

Lemma (Krein quantity properties)

Suppose that $\lambda \in \mathbb{C} \backslash\{0\}$ is a simple isolated eigenvalue of $J H^{\prime \prime}$. Then:

1. $K\left(\lambda_{0}\right) \in \mathbb{R}$.
2. $K\left(\lambda_{0}\right) \neq 0$ if $\lambda_{0} \in i \mathbb{R}$.
3. $K\left(\lambda_{0}\right)=0$ if $\lambda_{0} \in \mathbb{C} \backslash\{i \mathbb{R}\}$.

Necessary condition for instability bifurcation

Consider a perturbed spectral problem

$$
J\left(H^{\prime \prime}+\varepsilon W\right) v=\lambda v, \quad v \in X, \quad(*)
$$

where $\varepsilon \ll 1$ is a perturbation parameter and W is a symmetric bounded operator in X.

Instability Theorem

Suppose $\lambda_{1}(\varepsilon), \lambda_{2}(\varepsilon)$ are eigenvalues of $(*)$ continuously depending on $\varepsilon \in \mathbb{R}$. If $\lambda_{1}, \lambda_{2} \in i \mathbb{R}$ with $K\left(\lambda_{1}\right) K\left(\lambda_{2}\right)<0$ for $\varepsilon<0$ and λ_{1}, λ_{2} coalesce at $\varepsilon=0$, then, under a certain non-degeneracy condition, $\lambda_{1}(\varepsilon), \lambda_{2}(\varepsilon)$ are complex for $\varepsilon>0$.

Linear $\mathcal{P T}$-symmetric systems

Definition (\mathcal{P} and \mathcal{T} operators)

Parity transformation \mathcal{P} and time reversal transformation \mathcal{T} :

$$
\mathcal{P} u(x, t):=u(-x, t), \quad \mathcal{T} u(x, t):=\overline{u(x,-t)} .
$$

Definition

A linear operator $L: X \rightarrow X$ is $\mathcal{P} \mathcal{T}$-symmetric if it commutes with $\mathcal{P} \mathcal{T}$:

$$
[L, \mathcal{P} \mathcal{T}]=L \mathcal{P} \mathcal{T}-\mathcal{P} \mathcal{T} L=0
$$

Linear $\mathcal{P} \mathcal{T}$-symmetric systems

Definition (\mathcal{P} and \mathcal{T} operators)

Parity transformation \mathcal{P} and time reversal transformation \mathcal{T} :

$$
\mathcal{P} u(x, t):=u(-x, t), \quad \mathcal{T} u(x, t):=\overline{u(x,-t)} .
$$

Definition

A linear operator $L: X \rightarrow X$ is $\mathcal{P} \mathcal{T}$-symmetric if it commutes with $\mathcal{P} \mathcal{T}$:

$$
[L, \mathcal{P} \mathcal{T}]=L \mathcal{P} \mathcal{T}-\mathcal{P} \mathcal{T} L=0
$$

A $\mathcal{P} \mathcal{T}$-symmetric operator L may have only real eigenvalues.
$\square \mathcal{P} \mathcal{T}$ symmetry in quantum mechanics (C.M. Bender, 1998)

- $\mathcal{P} \mathcal{T}$-symmetry in nonlinear optics
(D.N. Christodoulides et al. 2008)

Examples of $\mathcal{P T}$-symmetric operators

Consider a Schrödinger operator on $X=L^{2}(\mathbb{R})$:

$$
L=-\partial_{x}^{2}+V(x), \quad \text { where } \quad \bar{V}(-x)=V(x)
$$

- a harmonic oscillator with a linear damping term

$$
V(x)=x^{2}+2 i \gamma x=(x+i \gamma)^{2}+\gamma^{2}
$$

The spectrum of L is purely discrete and real

$$
\sigma(L)=\left\{\gamma^{2}+1+2 m, \quad m \in \mathbb{N}_{0}\right\}
$$

Examples of $\mathcal{P} \mathcal{T}$-symmetric operators

Consider a Schrödinger operator on $X=L^{2}(\mathbb{R})$:

$$
L=-\partial_{x}^{2}+V(x), \quad \text { where } \quad \bar{V}(-x)=V(x)
$$

- a harmonic oscillator with a linear damping term

$$
V(x)=x^{2}+2 i \gamma x=(x+i \gamma)^{2}+\gamma^{2}
$$

The spectrum of L is purely discrete and real

$$
\sigma(L)=\left\{\gamma^{2}+1+2 m, \quad m \in \mathbb{N}_{0}\right\} .
$$

- an unharmonic oscillator

$$
V(x)=x^{2}(-i x)^{\gamma} .
$$

The spectrum of L is purely discrete and real for $\gamma>0$ (C.M. Bender, S.Boettcher 1998).

Properties of linear $\mathcal{P T}$-symmetric systems

Consider the evolution system

$$
i \frac{d u}{d t}=L u, \quad u(\cdot, t) \in X
$$

where $L \mathcal{P} \mathcal{T}-\mathcal{P} \mathcal{T} L=0$.
If $u(t)$ is a solution of the evolution equation, then

$$
v(t)=\mathcal{P} \mathcal{T} u(t)=\mathcal{P} \bar{u}(-t)
$$

is also a solution of the same system.

Properties of linear $\mathcal{P} \mathcal{T}$-symmetric systems

Consider the evolution system

$$
i \frac{d u}{d t}=L u, \quad u(\cdot, t) \in X
$$

where $L \mathcal{P} \mathcal{T}-\mathcal{P} \mathcal{T} L=0$.
If $u(t)$ is a solution of the evolution equation, then

$$
v(t)=\mathcal{P} \mathcal{T} u(t)=\mathcal{P} \bar{u}(-t)
$$

is also a solution of the same system.

Lemma

If μ is an eigenvalue and U is an eigenfunction, then $\bar{\mu}$ is also an eigenvalue with the eigenfunction $\mathcal{P T} \cup$:

$$
u(t)=U e^{-i \mu t} \quad \Rightarrow \quad v(t)=\mathcal{P} \bar{U} e^{-i \bar{\mu} t}
$$

Linear $\mathcal{P T}$-symmetric systems

Consider a spectral problem for the $\mathcal{P} \mathcal{T}$-symmetric linear operator L :

$$
L v=\mu v, \quad v \in X
$$

where $L \mathcal{P} \mathcal{T}-\mathcal{P} \mathcal{T} L=0$.

Theorem (S.Nixon, J.Yang, 2016)

The spectral problem can be written in the Hamiltonian form

$$
J H v=\lambda v,
$$

where $J=i \mathcal{P}, H=\mathcal{P} L$, and $\lambda=i \mu$.

Proof: $(i \mathcal{P})(\mathcal{P} L) v=i \mu v$, $H^{*}=L^{*} \mathcal{P}=\mathcal{P} L=H$, $J^{*}=-\mathcal{P} i=-J$.

Krein quantity in linear $\mathcal{P} \mathcal{T}$-symmetric systems

The spectral problem with the $\mathcal{P} \mathcal{T}$-symmetric L :

$$
L v=\mu v \quad \Leftrightarrow \quad(i \mathcal{P})(\mathcal{P} L) v=i \mu v
$$

Definition (Krein quantity)

Suppose that $\mu \in \mathbb{R} \backslash\{0\}$ is a simple isolated eigenvalue of L with the eigenvector v. The Krein quantity of the eigenvalue μ is

$$
K(\mu):=\langle\mathcal{P} L v, v\rangle=\mu\langle\mathcal{P} v, v\rangle
$$

Lemma (Krein quantity properties)

Suppose that $\mu \in \mathbb{C} \backslash\{0\}$ is a simple isolated eigenvalue of L. Then:

1. $K\left(\mu_{0}\right) \in \mathbb{R}$.
2. $K\left(\mu_{0}\right) \neq 0$ if $\mu_{0} \in \mathbb{R}$.
3. $K\left(\mu_{0}\right)=0$ if $\mu_{0} \in \mathbb{C} \backslash\{\mathbb{R}\}$.

Stability of the linear $\mathcal{P} \mathcal{T}$-symmetric systems

The spectral problem for the $\mathcal{P} \mathcal{T}$-symmetric linear operator L :

$$
L v=\mu v \quad \Leftrightarrow \quad(i \mathcal{P})(\mathcal{P} L) v=i \mu v
$$

with

$$
L=-\partial_{x}^{2}+x^{2}+2 i \gamma x, \quad L=-\partial_{x}^{2}+x^{2}(-i x)^{\gamma}
$$

For $\gamma=0$: L is positive with $\mu>0$, but $\mathcal{P} L$ has ∞-many eigenvalues of positive Krein signature and ∞-many eigenvalues of negative Krein signature:

$$
K(\mu)=\langle\mathcal{P} L v, v\rangle=\mu\langle\mathcal{P} v, v\rangle
$$

- Orbital Stability Theorem - NO
- Negative Index Theorem - NO
- Instability Bifurcation Theorem - YES

Infinitely many eigenvalues may become unstable.

Example of a discrete Schrödinger equation

Consider the spatially extended $P T$-symmetric potential,

$$
-\left(u_{n+1}+u_{n-1}\right)+\left(n^{2}+2 i \gamma n\right) u_{n}=\mu u_{n}, \quad n \in \mathbb{Z}
$$

By using the discrete Fourier transform, the spectral problem is transformed to the differential equation

$$
\frac{d^{2} \hat{u}}{d k^{2}}+2 \gamma \frac{d \hat{u}}{d k}+[\mu+2 \cos (k)] \hat{u}(k)=0
$$

subject to the 2π-periodicity of $\hat{u}(k)$.
(D.P, P.Kevrekidis, D.Frantzeskakis, 2013)

Example of a discrete Schrödinger equation

If $\hat{v}(k)=\hat{u}(k) e^{\gamma k}$, then $\hat{v}(k)$ satisfies the Mathieu equation:

$$
\frac{d^{2} \hat{v}}{d k^{2}}+\left[\mu-\gamma^{2}+2 \cos (k)\right] \hat{v}=0
$$

subject to the condition $\hat{v}(k+2 \pi)=e^{2 \pi \gamma} \hat{v}(k)$. Hence we look for the Floquet multiplier $\mu_{*}=e^{2 \pi \gamma}$ of the monodromy matrix.

Nonlinear $\mathcal{P} \mathcal{T}$-symmetric systems

Main Question: How to extend the Krein quantity and related results to nonlinear $\mathcal{P} \mathcal{T}$-symmetric systems?

$$
i \partial_{t} \psi=\left[-\partial_{x}^{2}+V(x)+i \gamma W(x)\right] \psi \pm|\psi|^{2} \psi
$$

where $V, W: \mathbb{R} \rightarrow \mathbb{R}: V(x)=V(-x), W(-x)=-W(x)$, e.g.

- Wadati potential: $V(x)=\operatorname{sech}^{2}(x), W(x)=\operatorname{sech}(x) \tanh (x)$;
- Confining potential: $V(x)=x^{2}, W(x)=x e^{-x^{2} / 2}$.

This scalar model is different from dimers (coupled NLS systems), where some progress has been done:
■ N.Alexeeva-I.Barashenkov-Yu.Kivshar (2012,2017);

- M.Stanislavova-A. Stefanov (2017);

■ A. Chernyavsky-D.P. (2016).

Spectral stability problem

Stationary state: $\psi(t, x)=\Phi(x) e^{-i \mu t}, \mu \in \mathbb{R}, \Phi: \mathbb{R} \rightarrow \mathbb{C}$.

$$
\mu \Phi=\left[-\partial_{x}^{2}+V(x)+i \gamma W(x)\right] \Phi \pm|\Phi|^{2} \Phi
$$

Φ satisfies the $\mathcal{P} \mathcal{T}$ symmetry: $\Phi=\mathcal{P} \mathcal{T} \Phi$ or $\Phi(x)=\bar{\Phi}(-x)$.

Spectral stability problem

Stationary state: $\psi(t, x)=\Phi(x) e^{-i \mu t}, \mu \in \mathbb{R}, \Phi: \mathbb{R} \rightarrow \mathbb{C}$.

$$
\mu \Phi=\left[-\partial_{x}^{2}+V(x)+i \gamma W(x)\right] \Phi \pm|\Phi|^{2} \Phi
$$

Φ satisfies the $\mathcal{P} \mathcal{T}$ symmetry: $\Phi=\mathcal{P} \mathcal{T} \Phi$ or $\Phi(x)=\bar{\Phi}(-x)$. Linearization near Φ :

$$
\begin{aligned}
\psi(t, x) & =e^{-i \mu t}\left[\Phi(x)+Y(x) e^{-\lambda t}\right] \\
\bar{\psi}(t, x) & =e^{i \mu t}\left[\bar{\Phi}(x)+Z(x) e^{-\lambda t}\right]
\end{aligned}
$$

where $\lambda \in \mathbb{C}$ is spectral parameter:

$$
\left[\begin{array}{cc}
L_{0}+i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \tag{*}\\
\bar{\Phi}^{2} & L_{0}-i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]\left[\begin{array}{l}
Y \\
Z
\end{array}\right]=-i \lambda \sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

where $L_{0}=-\partial_{x}^{2}+V$ and $\sigma_{3}=\operatorname{diag}(1,-1)$.

Krein quantity

The spectral problem

$$
\underbrace{\left[\begin{array}{cc}
L_{0}+i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \tag{*}\\
\bar{\Phi}^{2} & L_{0}-i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]}_{\mathcal{L}}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]=-i \lambda \sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

and the adjoint spectral problem

$$
\underbrace{\left[\begin{array}{cc}
L_{0}-i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \\
\bar{\Phi}^{2} & L_{0}+i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]}_{\mathcal{L}^{*}}\left[\begin{array}{l}
Y_{a} \\
Z_{a}
\end{array}\right]=i \bar{\lambda} \sigma_{3}\left[\begin{array}{l}
Y_{a} \\
Z_{a}
\end{array}\right], \quad(* *)
$$

where $L_{0}=-\partial_{x}^{2}+V$ and $\sigma_{3}=\operatorname{diag}(1,-1)$.
Main problem: no relations between eigenvectors and adjoint eigenvectors.

Krein quantity

The spectral problem

$$
\underbrace{\left[\begin{array}{cc}
L_{0}+i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \\
\bar{\Phi}^{2} & L_{0}-i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]}_{\mathcal{L}}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]=-i \lambda \sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

and the adjoint spectral problem

$$
\underbrace{\left[\begin{array}{cc}
L_{0}-i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \\
\bar{\Phi}^{2} & L_{0}+i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]}_{\mathcal{L}^{*}}\left[\begin{array}{l}
Y_{a} \\
Z_{a}
\end{array}\right]=i \bar{\lambda} \sigma_{3}\left[\begin{array}{l}
Y_{a} \\
Z_{a}
\end{array}\right], \quad(* *)
$$

where $L_{0}=-\partial_{x}^{2}+V$ and $\sigma_{3}=\operatorname{diag}(1,-1)$.

Lemma

If $\lambda_{0} \in i \mathbb{R}$ is simple, the eigenvectors are $\mathcal{P} \mathcal{T}$-symmetric, e.g.
$Y=\mathcal{P} \mathcal{T} Y$ or $Y(x)=\bar{Y}(-x)$.

Krein quantity

The spectral problem

$$
\left[\begin{array}{cc}
L_{0}+i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \tag{*}\\
\bar{\Phi}^{2} & L_{0}-i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]\left[\begin{array}{l}
Y \\
Z
\end{array}\right]=-i \lambda \sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

where $L_{0}=-\partial_{x}^{2}+V$ and $\sigma_{3}=\operatorname{diag}(1,-1)$.

Definition (Krein signature)

Let $\lambda_{0} \in i \mathbb{R} \backslash\{0\}$ be a simple isolated eigenvalue of the problem $(*)$ with the eigenvector (Y, Z) and the adjoint eigenvector $\left(Y_{a}, Z_{a}\right)$. The Krein signature of λ_{0} is the sign of the Krein quantity

$$
K\left(\lambda_{0}\right):=\left\langle\sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right],\left[\begin{array}{l}
Y_{a} \\
Z_{a}
\end{array}\right]\right\rangle=\int_{\mathbb{R}}\left[Y(x) \overline{Y_{a}(x)}-Z(x) \overline{Z_{a}(x)}\right] d x .
$$

Krein quantity

The spectral problem

$$
\left[\begin{array}{cc}
L_{0}+i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \tag{*}\\
\bar{\Phi}^{2} & L_{0}-i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]\left[\begin{array}{l}
Y \\
Z
\end{array}\right]=-i \lambda \sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

where $L_{0}=-\partial_{x}^{2}+V$ and $\sigma_{3}=\operatorname{diag}(1,-1)$.

Lemma (Krein quantity properties)

Assume that there exists a simple isolated eigenvalue $\lambda_{0} \in \mathbb{C} \backslash\{0\}$ of the spectral problem $(*)$.Then:

1. $K\left(\lambda_{0}\right) \in \mathbb{R}$.
2. $K\left(\lambda_{0}\right) \neq 0$ if $\lambda_{0} \in i \mathbb{R}$.
3. $K\left(\lambda_{0}\right)=0$ if $\lambda_{0} \in \mathbb{C} \backslash\{i \mathbb{R}\}$.

Krein quantity

The spectral problem

$$
\left[\begin{array}{cc}
L_{0}+i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \tag{*}\\
\bar{\Phi}^{2} & L_{0}-i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]\left[\begin{array}{l}
Y \\
Z
\end{array}\right]=-i \lambda \sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

where $L_{0}=-\partial_{x}^{2}+V$ and $\sigma_{3}=\operatorname{diag}(1,-1)$.

Theorem (Necessary conditions for instability bifurcation)

Suppose $\lambda_{1}(\varepsilon), \lambda_{2}(\varepsilon)$ are eigenvalues of $(*)$ continuously depending on $\varepsilon \in \mathbb{R}$. If $\lambda_{1}, \lambda_{2} \in i \mathbb{R}$ with $K\left(\lambda_{1}\right) K\left(\lambda_{2}\right)<0$ for $\varepsilon<0$ and λ_{1}, λ_{2} coalesce into a defective eigenvalue at $\varepsilon=0$, then, under a certain non-degeneracy condition, $\lambda_{1}(\varepsilon), \lambda_{2}(\varepsilon)$ are complex for $\varepsilon>0$.

Behind the proof.

Assume self-adjointness of $L_{0}=-\partial_{x}^{2}+V$ on $L^{2}(\mathbb{R})$ and $W \in L^{\infty}(\mathbb{R})$.

Behind the proof.

Assume self-adjointness of $L_{0}=-\partial_{x}^{2}+V$ on $L^{2}(\mathbb{R})$ and $W \in L^{\infty}(\mathbb{R})$.

Nonlinear problem:

$$
\mu \Phi=\left[-\partial_{x}^{2}+V(x)+i \gamma W(x)\right] \Phi \pm|\Phi|^{2} \Phi
$$

Assume existence of $\Phi \in H^{2}(\mathbb{R})$ with real-analytic dependence on (γ, μ).

Behind the proof.

Assume self-adjointness of $L_{0}=-\partial_{x}^{2}+V$ on $L^{2}(\mathbb{R})$ and $W \in L^{\infty}(\mathbb{R})$.
Nonlinear problem:

$$
\mu \Phi=\left[-\partial_{x}^{2}+V(x)+i \gamma W(x)\right] \Phi \pm|\Phi|^{2} \Phi
$$

Assume existence of $\Phi \in H^{2}(\mathbb{R})$ with real-analytic dependence on (γ, μ).
Spectral problem:

$$
\underbrace{\left[\begin{array}{cc}
L_{0}+i \gamma W-\mu+2|\Phi|^{2} & \Phi^{2} \tag{*}\\
\bar{\Phi}^{2} & L_{0}-i \gamma W-\mu+2|\Phi|^{2}
\end{array}\right]}_{\mathcal{L}} \underbrace{\left[\begin{array}{l}
Y \\
Z
\end{array}\right]}_{V}=-i \lambda \sigma_{3}\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

Assume existence of a double defective eigenvalue λ_{0} for $\left(\gamma_{0}, \mu_{0}\right)$ with eigenvector v_{0} and generalized eigenvector v_{0}^{\prime} :

$$
\mathcal{L}_{0} v_{0}=-i \lambda_{0} \sigma_{3} v_{0}, \quad \mathcal{L}_{0} v_{1}=-i \lambda_{0} \sigma_{3} v_{1}-i \sigma_{3} v_{0}
$$

Behind the proof.

Fix μ. The operator family $\mathcal{L}: H^{2}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is real-analytic in γ at γ_{0} with

$$
\mathcal{L}=\mathcal{L}_{0}+\left(\gamma-\gamma_{0}\right) \mathcal{L}_{1}+\mathcal{O}\left(\left(\gamma-\gamma_{0}\right)^{2}\right)
$$

with $\mathcal{L}_{1}: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$.

Behind the proof.

Fix μ. The operator family $\mathcal{L}: H^{2}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is real-analytic in γ at γ_{0} with

$$
\mathcal{L}=\mathcal{L}_{0}+\left(\gamma-\gamma_{0}\right) \mathcal{L}_{1}+\mathcal{O}\left(\left(\gamma-\gamma_{0}\right)^{2}\right)
$$

with $\mathcal{L}_{1}: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$.
Since λ_{0} is a defective eigenvalue, use the Puiseux expansions:

$$
\begin{aligned}
\lambda & =\lambda_{0}+\left(\gamma-\gamma_{0}\right)^{1 / 2} \lambda_{1}+\left(\gamma-\gamma_{0}\right) \lambda_{2}+\mathcal{O}\left(\left(\gamma-\gamma_{0}\right)^{3 / 2}\right) \\
v & =v_{0}+\left(\gamma-\gamma_{0}\right)^{1 / 2} v_{1}+\left(\gamma-\gamma_{0}\right) v_{2}+\mathcal{O}\left(\left(\gamma-\gamma_{0}\right)^{3 / 2}\right)
\end{aligned}
$$

Behind the proof.

Fix μ. The operator family $\mathcal{L}: H^{2}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is real-analytic in γ at γ_{0} with

$$
\mathcal{L}=\mathcal{L}_{0}+\left(\gamma-\gamma_{0}\right) \mathcal{L}_{1}+\mathcal{O}\left(\left(\gamma-\gamma_{0}\right)^{2}\right)
$$

with $\mathcal{L}_{1}: L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})$.
Since λ_{0} is a defective eigenvalue, use the Puiseux expansions:

$$
\begin{aligned}
\lambda & =\lambda_{0}+\left(\gamma-\gamma_{0}\right)^{1 / 2} \lambda_{1}+\left(\gamma-\gamma_{0}\right) \lambda_{2}+\mathcal{O}\left(\left(\gamma-\gamma_{0}\right)^{3 / 2}\right) \\
v & =v_{0}+\left(\gamma-\gamma_{0}\right)^{1 / 2} v_{1}+\left(\gamma-\gamma_{0}\right) v_{2}+\mathcal{O}\left(\left(\gamma-\gamma_{0}\right)^{3 / 2}\right)
\end{aligned}
$$

Fredholm theory gives

$$
\left(-i \lambda_{1}\right)^{2}=\frac{\left\langle\mathcal{L}_{1} v_{0}, v_{0 a}\right\rangle}{\sigma_{3}\left\langle v_{1}, v_{0 a}\right\rangle}
$$

The inner products are real and the splitting takes place if $\left\langle\mathcal{L}_{1} v_{0}, v_{0 a}\right\rangle \neq 0$. Justification is given by the Lyapunov-Schmidt reduction method.

Numerics: $V(x)=-2 \operatorname{sech}^{2} x+i 2.21 \operatorname{sech} x \tanh x$

Numerical Results: $V(x)=x^{2}+i \gamma x e^{-x^{2}}$

Numerical Results: $V(x)=x^{2}+i \gamma x e^{-x^{2}}$

e)

Summary and Open Problems

Summary:

- Some methods from Hamiltonian systems can be successfully used in the study of linear $\mathcal{P} \mathcal{T}$-symmetric systems.
- Krein quantity and instability bifurcations can be analyzed for nonlinear $\mathcal{P} \mathcal{T}$-symmetric systems.

Summary and Open Problems

Summary:

- Some methods from Hamiltonian systems can be successfully used in the study of linear $\mathcal{P} \mathcal{T}$-symmetric systems.
- Krein quantity and instability bifurcations can be analyzed for nonlinear $\mathcal{P} \mathcal{T}$-symmetric systems.

Open questions:

- Instability bifurcations for zero and semi-simple eigenvalues
- Relation between branches of non- $\mathcal{P} \mathcal{T}$-symmetric states and unstable eigenvalues in the linearization of the $\mathcal{P T}$-symmetric states.

Summary and Open Problems

Summary:

- Some methods from Hamiltonian systems can be successfully used in the study of linear $\mathcal{P} \mathcal{T}$-symmetric systems.
- Krein quantity and instability bifurcations can be analyzed for nonlinear $\mathcal{P} \mathcal{T}$-symmetric systems.

Open questions:

- Instability bifurcations for zero and semi-simple eigenvalues
- Relation between branches of non- $\mathcal{P} \mathcal{T}$-symmetric states and unstable eigenvalues in the linearization of the $\mathcal{P T}$-symmetric states.

Thank you!

