Exponentially small splitting for heteroclinic and homoclinic orbits in lattice equations

Dmitry E. Pelinovsky ${ }^{1}$ and Georgi L. Alfimov ${ }^{2}$

${ }^{1}$ Department of Mathematics, McMaster University, Hamilton, Canada
${ }^{2}$ National Research University of Electronic Technology (MIET), Moscow, Russia

Nonlinear Klein-Gordon equation

1D case:

$u_{t t}-u_{x x}+V^{\prime}(u)=0$
where $V(u)$ is nonlinear potential (depends on a physical context)
Kink (domain wall) solutions:
$\lim _{x \rightarrow-\infty} u(x, t)=u_{2}, \quad \lim _{x \rightarrow \infty} u(x, t)=u_{1}$

Nonlinear Klein-Gordon equation

Travelling waves: $u(x, t)=u(x-c t) \equiv u(z)$.
ODE: $\left(1-c^{2}\right) u_{z z}-V^{\prime}(u)=0$

Running kink

Nonlinear Klein-Gordon equation

Example 1: the sine-Gordon equation
$u_{t t}-u_{x x}+\sin u=0$.
Travelling waves: $\left(1-c^{2}\right) u_{z z}=\sin u$.

Nonlinear Klein-Gordon equation

- Only 2π-kink (antikink) solutions exist
- Solutions exist for arbitrary velocity c as long as $c^{2}<1$
$u(z)=4 \arctan \exp \left\{ \pm \frac{z-z_{0}}{\sqrt{1-c^{2}}}\right\}, \quad z=x-c t$.

Nonlinear Klein-Gordon equation

Example 2: the double sine-Gordon equation
$u_{t t}-u_{x x}+\sin u+2 a \sin 2 u=0$.

- Exact 2π-kink solution exist for $1+4 a>0$:
$u(z)=\pi+2 \arctan \left(\frac{1}{\sqrt{1+4 a}} \sinh \left[\frac{\sqrt{1+4 a}}{\sqrt{1-c^{2}}}\left(z-z_{0}\right)\right]\right), \quad z=x-c t$
- Solution exist for arbitrary velocity c as long as $c^{2}<1$

Nonlinear Klein-Gordon equation

Example 3: the ϕ^{4} equation
$u_{t t}-u_{x x}-u+u^{3}=0$.

- Exact kink solution, exists for any $c^{2}<1$,

$$
u(z)=\tanh \left(\frac{z-z_{0}}{\sqrt{2} \sqrt{1-c^{2}}}\right), \quad z=x-c t
$$

Nonlinear Klein-Gordon equation

Example 4: the $\phi^{4}-\phi^{6}$ equation
$u_{t t}-u_{x x}-u\left(1-u^{2}\right)\left(1+\gamma u^{2}\right)=0$.

- Exact kink solution, exists for any $c^{2}<1$ and $\gamma>-1$:,

$$
u(z)=\frac{\sqrt{18+6 \gamma} \tanh \left(\frac{1}{2} \sqrt{2(1+\gamma)}\left(z-z_{0}\right)\right)}{\sqrt{18(1+\gamma)-12 \gamma \tanh ^{2}\left(\frac{1}{2} \sqrt{2(1+\gamma)}\left(z-z_{0}\right)\right)}}, \quad z=\frac{x-c t}{\sqrt{1-c^{2}}}
$$

Nonlocal nonlinear Klein-Gordon equation

Generic form:
$u_{t t}+\mathcal{L} u+V^{\prime}(u)=0$

- $\quad \mathcal{L}$ is Fourier multiplier operator: $\widehat{\mathcal{L} u}(k)=P(k) \hat{u}(k)$
- $P(k)$ is the symbol of the operator \mathcal{L}
- If $P(k)=k^{2}$, we are back to the nonlinear Klein-Gordon equation.

Nonlocal nonlinear Klein-Gordon equation

Generic form:
$u_{t t}+\mathcal{L} u+V^{\prime}(u)=0$

- \mathcal{L} is Fourier multiplier operator: $\widehat{\mathcal{L} u}(k)=P(k) \hat{u}(k)$
- $P(k)$ is the symbol of the operator \mathcal{L}
- If $P(k)=k^{2}$, we are back to the nonlinear Klein-Gordon equation.

Applications of nonlocal Klein-Gordon equations:

- lattice models (solid state physics)
- complex dispersion (nonlinear optics)
- Josephson junctions (superconductivity).

Nonlocal nonlinear Klein-Gordon equation

Symbols:

- $P(k)=\frac{4}{\lambda^{2}} \sin ^{2}\left(\frac{\lambda k}{2}\right)$ (Frenkel-Kontorova model, solid state physics)
- $P(k)=\frac{k^{2}}{1+\lambda^{2} k^{2}}$ (Kac-Baker model, magnatic spin systems)
- $P(k)=\frac{k^{2}}{\sqrt{1+\lambda^{2} k^{2}}}$ (Silin-Gurevich model, Josephson junctions)

Nonlocal nonlinear Klein-Gordon equation

Symbols:

- $P(k)=\frac{4}{\lambda^{2}} \sin ^{2}\left(\frac{\lambda k}{2}\right)$ (Frenkel-Kontorova model, solid state physics)
- $P(k)=\frac{k^{2}}{1+\lambda^{2} k^{2}}$ (Kac-Baker model, magnatic spin systems)
- $P(k)=\frac{k^{2}}{\sqrt{1+\lambda^{2} k^{2}}}$ (Silin-Gurevich model, Josephson junctions)

In all these cases: $P(k) \equiv P_{\lambda}(k)$ depends on λ and

$$
P_{\lambda}(k) \rightarrow k^{2} \quad \text { as } \quad \lambda \rightarrow 0
$$

As $\lambda \rightarrow 0$
$u_{t t}+\mathcal{L}_{\lambda} u+V^{\prime}(u)=0 \Rightarrow u_{t t}-u_{x x}+V^{\prime}(u)=0$

Nonlocal nonlinear Klein-Gordon equation

Main question:
What happens with kink solutions when switching from local case $\lambda=0$ to nonlocal case $\lambda \neq 0$?

The Frenkel-Kontorova model

Example 5: the Frenkel-Kontorova model (1938)
$u_{t t}(x, t)-\frac{1}{\lambda^{2}}(u(x+\lambda, t)-2 u(x, t)+u(x-\lambda, t))+\sin u(x, t)=0$.
describes a chain of particles with nearest-neighbours interactions.

λ - a parameter of interaction between neighbours.

The Frenkel-Kontorova model

The symbol: $P(k)=\frac{4}{\lambda^{2}} \sin ^{2}\left(\frac{\lambda k}{2}\right)$
The well-known (classical) results:

- There exist static 2π-kinks (on-site and inter-site).
- No travelling 2π-kinks.
- There exist infinitely many travelling 4π-kinks.
- A kink-like initial condition launched at some nonzero velocity emits radiation, slows down, and eventually stops.

The Frenkel-Kontorova model

(from M.Peyrard, M.D.Kruskal, Physica D, 14, p. 88 (1984), initial velocity $=0.8$.)

The Frenkel-Kontorova model

Why do traveling kink solutions stop?
Consider linearized Frenkel-Kontorova model at zero equilibrium:

$$
u_{t t}(x, t)-\frac{1}{\lambda^{2}}(u(x+\lambda, t)-2 u(x, t)+u(x-\lambda, t))+u(x, t)=0 .
$$

Dispersion relation for traveling waves after Fourier transform:

$$
1+\frac{4}{\lambda^{2}} \sin ^{2}\left(\frac{\lambda k}{2}\right)=c^{2} k^{2}, \quad k \in \mathbb{R}
$$

For every $c \neq 0$, there exists at least one pair of solutions at $k= \pm k_{0}$.

SG equation with Kac-Baker interactions

Example 6: the sine-Gordon model with Kac-Baker interactions
$u_{t t}-\frac{1}{2 \lambda} \int_{-\infty}^{\infty} \exp \left(-\frac{\left|x-x^{\prime}\right|}{\lambda}\right) u_{x^{\prime} x^{\prime}}\left(x^{\prime}, t\right) d x^{\prime}+\sin u=0$.

SG equation with Kac-Baker interactions

Example 6: the sine-Gordon model with Kac-Baker interactions
$u_{t t}-\frac{1}{2 \lambda} \int_{-\infty}^{\infty} \exp \left(-\frac{\left|x-x^{\prime}\right|}{\lambda}\right) u_{x^{\prime} x^{\prime}}\left(x^{\prime}, t\right) d x^{\prime}+\sin u=0$.
This model is local since $q(x, t)=\frac{1}{2 \lambda} \int_{-\infty}^{+\infty} \exp \left\{-\frac{\left|x-x^{\prime}\right|}{\lambda}\right\} u\left(x^{\prime}, t\right) d x^{\prime}$ satisfies $-\lambda^{2} q_{x x}+q=u$.

The symbol: $P(k)=\frac{k^{2}}{1+\lambda^{2} k^{2}}$

SG equation with Kac-Baker interactions

Travelling waves: $u(z)=u(x-c t)$

$$
\begin{aligned}
& c^{2} u_{z z}+\sin u=q_{z z} \\
& -\lambda^{2} q_{z z}+q=u
\end{aligned}
$$

SG equation with Kac-Baker interactions

Travelling waves: $u(z)=u(x-c t)$

$$
\begin{aligned}
& c^{2} u_{z z}+\sin u=q_{z z} \\
& -\lambda^{2} q_{z z}+q=u
\end{aligned}
$$

Phase space: $\left\{u(\bmod 2 \pi), u^{\prime}, q, q^{\prime}\right\}$

SG equation with Kac-Baker interactions

Travelling waves: $u(z)=u(x-c t)$

$$
\begin{aligned}
& c^{2} u_{z z}+\sin u=q_{z z} \\
& -\lambda^{2} q_{z z}+q=u
\end{aligned}
$$

Phase space: $\left\{u(\bmod 2 \pi), u^{\prime}, q, q^{\prime}\right\}$
Equilibrium points:
$O_{0}\left(u=u^{\prime}=q=q^{\prime}=0\right), O_{\pi}\left(u=q=\pi, u^{\prime}=q^{\prime}=0\right)$

SG equation with Kac-Baker interactions

Travelling waves: $u(z)=u(x-c t)$

$$
\begin{aligned}
& c^{2} u_{z z}+\sin u=q_{z z} \\
& -\lambda^{2} q_{z z}+q=u
\end{aligned}
$$

Phase space: $\quad\left\{u(\bmod 2 \pi), u^{\prime}, q, q^{\prime}\right\}$
Equilibrium points:
$O_{0}\left(u=u^{\prime}=q=q^{\prime}=0\right), O_{\pi}\left(u=q=\pi, u^{\prime}=q^{\prime}=0\right)$
O_{0} is the saddle-center point:

$$
1+\frac{k^{2}}{1+\lambda^{2} k^{2}}=c^{2} k^{2}
$$

For every $c \neq 0$, there exists exactly one pair of solutions at $k= \pm k_{0}$.

SG equation with Kac-Baker interactions

Results:

- There exist static 2π-kinks for $0<\lambda<1$.
- No travelling 2π-kinks.
- There exist infinitely many traveling 4π-kinks for a set of velocities.

SG equation with Kac-Baker interactions

Results:

- There exist static 2π-kinks for $0<\lambda<1$.
- No travelling 2π-kinks.
- There exist infinitely many traveling 4π-kinks for a set of velocities.

Summary: switching from $\lambda=0$ to $\lambda \neq 0$ results in disappearance of traveling 2π-kink solutions in lattice and nonlocal models.

Is this a general conclusion?

Main Claim

Consider the bifurcation problem in the general form

$$
L_{\lambda} u+F(u)=0 .
$$

- L_{λ} - a Fourier multiplier operator with an even symbol $P_{\lambda}(k)$ such that

$$
P_{\lambda}(k) \rightarrow k^{2} \text { as } \lambda \rightarrow 0 .
$$

- $F(u)$ - an odd function such that $F\left(u_{+}\right)=F\left(u_{-}\right)=0$ with $u_{+}=-u_{-}$ and

$$
F^{\prime}\left(u_{+}\right)=F^{\prime}\left(u_{-}\right)>0
$$

- Dispersion equation $P_{\lambda}(k)+F^{\prime}\left(u_{ \pm}\right)=0$ has one pair of roots $k= \pm k_{0}(\lambda)$, such that $k_{0}(\lambda) \rightarrow \infty$ as $\lambda \rightarrow 0$.

Main Claim

Let us consider the limiting equation $u^{\prime \prime}(z)=F(u(z))$ and assume:

- It has an odd kink solution $u_{0}(z)$ for $z \in \mathbb{R}$ such that $u_{0}(z) \rightarrow u_{ \pm}$as $z \rightarrow \pm \infty$.
- When $u_{0}(z)$ is continued for $z \in \mathbb{C}$, the closest to real axis singularities are located in quartets, e.g. in the upper half-plane at $z_{ \pm}= \pm \alpha+i \beta$, $\alpha, \beta>0$.

Main Claim

Let us consider the limiting equation $u^{\prime \prime}(z)=F(u(z))$ and assume:

- It has an odd kink solution $u_{0}(z)$ for $z \in \mathbb{R}$ such that $u_{0}(z) \rightarrow u_{ \pm}$as $z \rightarrow \pm \infty$.
- When $u_{0}(z)$ is continued for $z \in \mathbb{C}$, the closest to real axis singularities are located in quartets, e.g. in the upper half-plane at $z_{ \pm}= \pm \alpha+i \beta$, $\alpha, \beta>0$.

There exists an infinite set of values $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$, such that for each λ_{n}, the nonlinear equation $L_{\lambda_{n}} u+F(u)=0$ admits a kink solution. Moreover, the sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ satisfies the asymptotic law:

$$
k_{0}\left(\lambda_{n}\right) \sim\left(n \pi+\varphi_{0}\right) / \alpha, \quad n \rightarrow \infty,
$$

where φ_{0} is uniquely defined constant.

Behind Main Claim

Perturbation $v(z)=u(z)-u_{0}(z)$ satisfies the expanded equation

$$
\left(L_{\lambda}+F^{\prime}\left(u_{0}\right)\right) v=H_{\lambda}+N(v),
$$

where H_{λ} is the residual (explicitly computed from u_{0}) and $N(v)$ is $\mathcal{O}\left(v^{2}\right)$.

Behind Main Claim

Perturbation $v(z)=u(z)-u_{0}(z)$ satisfies the expanded equation

$$
\left(L_{\lambda}+F^{\prime}\left(u_{0}\right)\right) v=H_{\lambda}+N(v),
$$

where H_{λ} is the residual (explicitly computed from u_{0}) and $N(v)$ is $\mathcal{O}\left(v^{2}\right)$.

- The homogeneous equation $\left(L_{\lambda}+F^{\prime}\left(u_{0}\right)\right) v=0$ has a pair of solutions that behave like $e^{ \pm i k_{0}(\lambda) z}$.

Behind Main Claim

Perturbation $v(z)=u(z)-u_{0}(z)$ satisfies the expanded equation

$$
\left(L_{\lambda}+F^{\prime}\left(u_{0}\right)\right) v=H_{\lambda}+N(v),
$$

where H_{λ} is the residual (explicitly computed from u_{0}) and $N(v)$ is $\mathcal{O}\left(v^{2}\right)$.

- The homogeneous equation $\left(L_{\lambda}+F^{\prime}\left(u_{0}\right)\right) v=0$ has a pair of solutions that behave like $e^{ \pm i k_{0}(\lambda) z}$.
- To satisfy the solvability condition at the leading order, we set

$$
J_{ \pm}(\lambda):=\int_{-\infty}^{\infty} e^{ \pm i k_{0}(\lambda) z} H_{\lambda}(z) d z=0
$$

Behind Main Claim

Perturbation $v(z)=u(z)-u_{0}(z)$ satisfies the expanded equation

$$
\left(L_{\lambda}+F^{\prime}\left(u_{0}\right)\right) v=H_{\lambda}+N(v),
$$

where H_{λ} is the residual (explicitly computed from u_{0}) and $N(v)$ is $\mathcal{O}\left(v^{2}\right)$.

- The homogeneous equation $\left(L_{\lambda}+F^{\prime}\left(u_{0}\right)\right) v=0$ has a pair of solutions that behave like $e^{ \pm i k_{0}(\lambda) z}$.
- To satisfy the solvability condition at the leading order, we set

$$
J_{ \pm}(\lambda):=\int_{-\infty}^{\infty} e^{ \pm i k_{0}(\lambda) z} H_{\lambda}(z) d z=0
$$

- By Darboux principle and asymptotic analysis (Murray, 1984), if $H_{\lambda}(z) \sim C_{0} \lambda^{q} e^{i \pi \kappa / 2}\left(z-z_{ \pm}\right)^{\kappa}$, then

$$
J_{ \pm}(\lambda) \sim \frac{4 \pi \lambda^{q}\left|C_{0}\right| e^{-\beta k_{0}(\lambda)}}{\Gamma(-\kappa)\left|k_{0}(\lambda)\right|^{\kappa+1}} \cos \left(\alpha k_{0}(\lambda)+\pi / 2-\arg \left(C_{0}\right)\right)
$$

Nonlocal double SG model

Example 7: nonlocal double sine-Gordon model
$u_{t t}-\frac{1}{2 \lambda} \int_{-\infty}^{\infty} \exp \left(-\frac{\left|x-x^{\prime}\right|}{\lambda}\right) u_{x^{\prime} x^{\prime}}\left(x^{\prime}\right) d x^{\prime}=\sin (u)+2 a \sin (2 u)$.

- As $\lambda \rightarrow 0$, the 2π-kinks are given by:

$$
u(z)=\pi+2 \arctan \left(\frac{1}{\sqrt{1+4 a}} \sinh \left[\frac{\sqrt{1+4 a}}{\sqrt{1-c^{2}}}\left(z-z_{0}\right)\right]\right)
$$

- Symmetric pairs of singularities exist for $a>0$ at $z_{ \pm}= \pm \alpha+i \beta$:

$$
\alpha=\frac{\sqrt{1-c^{2}}}{2 \sqrt{1+4 a}} \cosh ^{-1}(1+8 a), \quad \beta=\frac{\pi \sqrt{1-c^{2}}}{2 \sqrt{1+4 a}} .
$$

- For fixed $a>0$, there exist a discrete set of curve in the (c, λ) plane, along which the 2π-kinks exist.

Nonlocal double SG model

Three curves on the (c, λ) plane for $a=1 / 8$.

Nonlocal double SG model

The asymptotic law as $n \rightarrow \infty$:

$$
2 \alpha k_{0}\left(\lambda_{n}\right) \sim \pi(1+2 n), \quad \Rightarrow \quad \pi(1+2 n) \lambda_{n}=\delta(a, c)
$$

$1+2 n$	1	3	5	7	9	11
$\delta /\left(\pi \lambda_{n}\right)$	3.7168	4.9763	6.3699	7.8595	9.4541	11.1396

Table: The values of $\delta /\left(\pi \lambda_{n}\right)$ for $a=1 / 8$ and $c=0.1$.

Nonlocal double SG model

Numerical experiment 1 : initial speed is above 0.58

Evolution of kink-like excitation (high energy).

Nonlocal double SG model

Numerical experiment 2 : initial speed is below 0.58

Evolution of kink-like excitation (low energy).

Discrete ϕ^{4} models

Example 8: discrete ϕ^{4} model
$u_{t t}-\lambda^{-2}(u(x+\lambda)-2 u(x)+u(x-\lambda))+u(x)\left(1-u(x)^{2}\right)=0$.

- As $\lambda \rightarrow 0$, the kinks are given by:

$$
u_{0}(z)=\tanh (\eta z), \quad \eta=\frac{1}{2 \sqrt{1-c^{2}}}
$$

- Singularity exists at $z=i \pi \sqrt{1-c^{2}}$.
- No kinks exist for any $c \neq 0$.

Discrete $\phi^{4}-\phi^{6}$ model

Example 9: discrete $\phi^{4}-\phi^{6}$ model
$u_{t t}-\lambda^{-2}(u(x+\lambda)-2 u(x)+u(x-\lambda))+u\left(1-u^{2}\right)\left(1+\gamma u^{2}\right)=0$.

- As $\lambda \rightarrow 0$, the kinks are given by:

$$
u_{0}(z)=\frac{\sqrt{3+\gamma} \tanh (\eta z)}{\sqrt{3(1+\gamma)-2 \gamma \tanh ^{2}(\eta z)}}, \quad \eta=\frac{\sqrt{1+\gamma}}{\sqrt{2\left(1-c^{2}\right)}} .
$$

- Symmetric pairs of singularities exist for $\gamma>0$ at $z_{ \pm}= \pm \alpha+i \beta$:

$$
\alpha=\frac{\sqrt{1-c^{2}}}{2 \sqrt{1+\gamma}} \cosh ^{-1}\left(\frac{3+5 \gamma}{3+\gamma}\right), \quad \beta=\frac{\pi \sqrt{1-c^{2}}}{\sqrt{2(1+a)}} .
$$

- For fixed $\gamma>0$, there exist a discrete set of curve in the (c, λ) plane, along which the kinks exist.

Discrete $\phi^{4}-\phi^{6}$ model

The asymptotic law as $n \rightarrow \infty$:

$$
4 \alpha k_{0}\left(\lambda_{n}\right) \sim \pi(3+4 n), \quad \Rightarrow \quad \pi(3+4 n) \lambda_{n}=\chi(\gamma, c)
$$

$3+4 n$	3	7	11	15
$\chi /\left(\pi \lambda_{n}\right)$	3.5303	7.3547	11.1520	15.0329

Table: The values of $\chi /\left(\pi \lambda_{n}\right)$ for $\gamma=5$ and $c=0.6$.

Conclusion

Summary: in Examples 7 and 9, switching from $\lambda=0$ to $\lambda \neq 0$ results in selecting a countable set of velocities for radiationless kink propagation.

- The first ideas about existence of such countable sets go back to the works of V.G. Gelfreich $(1990,2008)$.
- No analytical proof of the main claim exists for now.
- The same approach can be used for homoclinic orbits (solitons)

Saturable discrete NLS equation

Example 10: saturable DNLS model

$$
i \psi_{t}+\lambda^{-2}(\psi(x+\lambda)-2 \psi(x)+\psi(x-\lambda))+\psi(x)-\frac{\theta \psi(x)}{1+|\psi(x)|^{2}}=0
$$

where θ is parameter.

- As $\lambda \rightarrow 0$, there exists the solitary wave for $\theta>1$:

$$
u^{\prime \prime}(x)+u(x)-\frac{\theta u(x)}{1+u(x)^{2}}=0
$$

but it does not exist in the explicit form.

- Symmetric pairs of singularities exist for $\gamma>0$ at $z_{0}= \pm \alpha+i \beta$ with

$$
u(z)=i+\sqrt{\theta}\left(z-z_{0}\right) \sqrt{\log \left(z_{0}-z\right)}\left[1+\mathcal{O}\left(\frac{\log |\log | z-z_{0}| |}{\log \left|z-z_{0}\right|}\right)\right]
$$

where the value of α can only be computed numerically and $\beta=\frac{\pi}{2 \sqrt{\theta-1}}$.

Saturable discrete NLS equation

Considering now the fourth-order equation

$$
\varepsilon^{2} u^{\prime \prime \prime \prime}(x)+u^{\prime \prime}(x)+u(x)-\frac{\theta u(x)}{1+u(x)^{2}}=0,
$$

we compute the Fourier integral as $k \rightarrow \infty$:

$$
I(k):=\int_{\mathbb{R}} u^{\prime \prime \prime \prime}(x) e^{i k x} d x=\frac{2 \pi \sqrt{\theta}}{k^{2} \sqrt{\log k}} e^{-\beta k} \cos (\alpha k)\left[1+\mathcal{O}\left(\frac{1}{\log k}\right)\right] .
$$

The infinitely many homoclinic orbits exist for

$$
\varepsilon_{m} \sim \frac{2 \alpha}{\pi(2 m-1)} \quad \text { as } \quad m \rightarrow \infty
$$

Saturable discrete NLS equation

Figure: A: the plot of $W(\varepsilon):=u^{\prime \prime \prime}\left(x_{P}\right)$ versus ε for $\theta=5$, where $u^{\prime}\left(x_{P}\right)=0$. Three roots exist at $\varepsilon_{1} \approx 0.32, \varepsilon_{2} \approx 0.22$ and $\varepsilon_{3} \approx 0.17$. B : the profiles of soliton solutions corresponding to $\varepsilon_{1,2,3}$.

Saturable discrete NLS equation

m	$\varepsilon_{m}=\frac{2 \alpha}{\pi(2 m-1)}$	Computed ε_{m}	$\varepsilon_{m}^{-1}-\varepsilon_{m-1}^{-1}$
1	0.42505	0.32128	
2	0.25503	0.22152	1.40163
3	0.18216	0.16684	1.47497
4	0.14168	0.13322	1.51259
\vdots	\vdots	\vdots	\vdots
12	0.05101	0.05029	1.55773
13	0.04723	0.04663	1.55911
14	0.04397	0.04347	1.56117

Table: The values ε corresponding to the soliton solutions at $\theta=5$.

Conclusion

Examples 10 shows that the same mechnism is valid for homoclinic orbits, even in the case when the singularity is complicated and implicit.

Regarding the original motivation of smooth solutions of

$$
\lambda^{-2}(u(x+\lambda)-2 u(x)+u(x-\lambda))+u(x)-\frac{\theta u(x)}{1+u(x)^{2}}=0
$$

we checked that the same mechanism is true for the sequence of so-called transparent points $\left\{\lambda_{m}\right\}$ (no energy difference between on-site and off-site solitons on the lattice). The spacing between $\lambda_{m+1}-\lambda_{m}$ is defined from the singularities in the complex plane. However, no true homoclinic orbit exist in the lattice equations because there are infinitely many resonances in the dispersion relation.

References

- G.L. Alfimov, A.S. Korobeinikov, C.J. Lustri, and D.E. Pelinovsky, Standing lattice solitons in the discrete NLS equation with saturation, Nonlinearity 32 (2019) 3445-3484
- G.L. Alfimov, E.V. Medvedeva, and D.E. Pelinovsky, Wave systems with an infinite number of localized travelling waves, Physical Review Letters 112 (2014) 054103 (5 pages)
- O.F. Oxtoby, D.E. Pelinovsky, and I.V. Barashenkov, Travelling kinks in discrete phi-4 models, Nonlinearity 19 (2006) 217-235

Muchas gracias por vuestra atencion!
Moltes gràcies per la vostra atenció!

