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Nonlinear Klein–Gordon equation

1D case:

utt − uxx + V ′(u) = 0
where V (u) is nonlinear potential (depends on a physical context)

Kink (domain wall) solutions:

lim
x→−∞

u(x , t) = u2, lim
x→∞

u(x , t) = u1
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Nonlinear Klein–Gordon equation

Travelling waves: u(x , t) = u(x − ct) ≡ u(z).

ODE: (1− c2)uzz − V ′(u) = 0
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Nonlinear Klein–Gordon equation

Example 1: the sine-Gordon equation

utt − uxx + sin u = 0.

Travelling waves: (1− c2)uzz = sin u.
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Nonlinear Klein–Gordon equation

• Only 2π-kink (antikink) solutions exist

• Solutions exist for arbitrary velocity c as long as c2 < 1

u(z) = 4 arctan exp

{
± z − z0√

1− c2

}
, z = x − ct.
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Nonlinear Klein–Gordon equation

Example 2: the double sine-Gordon equation

utt − uxx + sin u + 2a sin 2u = 0.

• Exact 2π-kink solution exist for 1 + 4a > 0:

u(z) = π + 2 arctan

(
1√

1 + 4a
sinh

[√
1 + 4a√
1− c2

(z − z0)

])
, z = x − ct

• Solution exist for arbitrary velocity c as long as c2 < 1
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Nonlinear Klein–Gordon equation

Example 3: the φ4 equation

utt − uxx − u + u3 = 0.

• Exact kink solution, exists for any c2 < 1,

u(z) = tanh

(
z − z0√

2
√

1− c2

)
, z = x − ct
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Nonlinear Klein–Gordon equation

Example 4: the φ4 − φ6 equation

utt − uxx − u(1− u2)(1 + γu2) = 0.

• Exact kink solution, exists for any c2 < 1 and γ > −1:,

u(z) =

√
18 + 6γ tanh ( 1

2

√
2(1 + γ) (z − z0))√

18(1 + γ)− 12γ tanh2 ( 1
2

√
2(1 + γ) (z − z0))

, z =
x − ct√
1− c2
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Nonlocal nonlinear Klein–Gordon equation

Generic form:

utt + Lu + V ′(u) = 0

• L is Fourier multiplier operator: L̂u(k) = P(k)û(k)

• P(k) is the symbol of the operator L

• If P(k) = k2, we are back to the nonlinear Klein–Gordon equation.

Applications of nonlocal Klein–Gordon equations:

• lattice models (solid state physics)

• complex dispersion (nonlinear optics)

• Josephson junctions (superconductivity).
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Nonlocal nonlinear Klein–Gordon equation

Symbols:

• P(k) =
4

λ2
sin2

(
λk

2

)
(Frenkel-Kontorova model, solid state physics)

• P(k) =
k2

1 + λ2k2
(Kac-Baker model, magnatic spin systems)

• P(k) =
k2

√
1 + λ2k2

(Silin-Gurevich model, Josephson junctions)

In all these cases: P(k) ≡ Pλ(k) depends on λ and

Pλ(k)→ k2 as λ→ 0.

As λ→ 0

utt + Lλu + V ′(u) = 0 ⇒ utt − uxx + V ′(u) = 0
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Nonlocal nonlinear Klein–Gordon equation

Main question:

What happens with kink solutions when switching from local case λ = 0
to nonlocal case λ 6= 0?
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The Frenkel-Kontorova model

Example 5: the Frenkel-Kontorova model (1938)

utt(x , t)− 1
λ2 (u(x + λ, t)− 2u(x , t) + u(x − λ, t)) + sin u(x , t) = 0.

describes a chain of particles with nearest-neighbours interactions.

λ - a parameter of interaction between neighbours.
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The Frenkel-Kontorova model

The symbol: P(k) =
4

λ2
sin2

(
λk

2

)
The well-known (classical) results:

• There exist static 2π-kinks (on-site and inter-site).

• No travelling 2π-kinks.

• There exist infinitely many travelling 4π-kinks.

• A kink-like initial condition launched at some nonzero velocity emits
radiation, slows down, and eventually stops.
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The Frenkel-Kontorova model

(from M.Peyrard, M.D.Kruskal, Physica D, 14, p.88 (1984), initial velocity =0.8.)
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The Frenkel-Kontorova model

Why do traveling kink solutions stop?

Consider linearized Frenkel-Kontorova model at zero equilibrium:

utt(x , t)− 1
λ2 (u(x + λ, t)− 2u(x , t) + u(x − λ, t)) + u(x , t) = 0.

Dispersion relation for traveling waves after Fourier transform:

1 +
4

λ2
sin2

(
λk

2

)
= c2k2, k ∈ R,

For every c 6= 0, there exists at least one pair of solutions at k = ±k0.
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SG equation with Kac-Baker interactions

Example 6: the sine-Gordon model with Kac-Baker interactions

utt −
1

2λ

∫ ∞
−∞

exp

(
−|x − x ′|

λ

)
ux′x′(x ′, t) dx ′ + sin u = 0.

This model is local since q(x , t) =
1

2λ

∫ +∞

−∞
exp

{
−|x − x ′|

λ

}
u(x ′, t)dx ′

satisfies −λ2qxx + q = u.

The symbol: P(k) =
k2

1 + λ2k2
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x − ct)

c2uzz + sin u = qzz

−λ2qzz + q = u

Phase space: {u (mod 2π), u′, q, q′}

Equilibrium points:
O0(u = u′ = q = q′ = 0), Oπ(u = q = π, u′ = q′ = 0)

O0 is the saddle–center point:

1 +
k2

1 + λ2k2
= c2k2

For every c 6= 0, there exists exactly one pair of solutions at k = ±k0.
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SG equation with Kac-Baker interactions

Results:

• There exist static 2π-kinks for 0 < λ < 1.

• No travelling 2π-kinks.

• There exist infinitely many traveling 4π-kinks for a set of velocities.

Summary: switching from λ = 0 to λ 6= 0 results in disappearance of
traveling 2π-kink solutions in lattice and nonlocal models.

Is this a general conclusion?
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Main Claim

Consider the bifurcation problem in the general form

Lλu + F (u) = 0.

• Lλ - a Fourier multiplier operator with an even symbol Pλ(k) such that

Pλ(k)→ k2 as λ→ 0.

• F (u) - an odd function such that F (u+) = F (u−) = 0 with u+ = −u−
and

F ′(u+) = F ′(u−) > 0

• Dispersion equation Pλ(k) + F ′(u±) = 0 has one pair of roots
k = ±k0(λ), such that k0(λ)→∞ as λ→ 0.
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Main Claim

Let us consider the limiting equation u′′(z) = F (u(z)) and assume:

• It has an odd kink solution u0(z) for z ∈ R such that u0(z)→ u± as
z → ±∞.

• When u0(z) is continued for z ∈ C, the closest to real axis singularities
are located in quartets, e.g. in the upper half-plane at z± = ±α + iβ,
α, β > 0.

There exists an infinite set of values {λn}n∈N, such that for each λn, the
nonlinear equation Lλnu + F (u) = 0 admits a kink solution. Moreover, the
sequence {λn}n∈N satisfies the asymptotic law:

k0(λn) ∼ (nπ + ϕ0) /α, n→∞,

where ϕ0 is uniquely defined constant.
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Behind Main Claim

Perturbation v(z) = u(z)− u0(z) satisfies the expanded equation

(Lλ + F ′(u0)) v = Hλ + N(v),

where Hλ is the residual (explicitly computed from u0) and N(v) is O(v2).

• The homogeneous equation (Lλ + F ′(u0)) v = 0 has a pair of solutions
that behave like e±ik0(λ)z .

• To satisfy the solvability condition at the leading order, we set

J±(λ) :=
∫∞
−∞ e±ik0(λ)zHλ(z)dz = 0

• By Darboux principle and asymptotic analysis (Murray, 1984), if
Hλ(z) ∼ C0λ

qe iπκ/2(z − z±)κ, then

J±(λ) ∼ 4πλq|C0|e−βk0(λ)

Γ(−κ)|k0(λ)|κ+1
cos(αk0(λ) + π/2− arg(C0)).
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Nonlocal double SG model

Example 7: nonlocal double sine-Gordon model

utt −
1

2λ

∫ ∞
−∞

exp

(
−|x − x ′|

λ

)
ux′x′(x ′) dx ′ = sin(u) + 2a sin(2u).

• As λ→ 0, the 2π-kinks are given by:

u(z) = π + 2 arctan

(
1√

1 + 4a
sinh

[√
1 + 4a√
1− c2

(z − z0)

])
• Symmetric pairs of singularities exist for a > 0 at z± = ±α + iβ:

α =

√
1− c2

2
√

1 + 4a
cosh−1(1 + 8a), β =

π
√

1− c2

2
√

1 + 4a
.

• For fixed a > 0, there exist a discrete set of curve in the (c , λ) plane,
along which the 2π-kinks exist.
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Nonlocal double SG model

Three curves on the (c , λ) plane for a = 1/8.
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Nonlocal double SG model

The asymptotic law as n→∞:

2αk0(λn) ∼ π(1 + 2n), ⇒ π(1 + 2n)λn = δ(a, c).

1 + 2n 1 3 5 7 9 11
δ/(πλn) 3.7168 4.9763 6.3699 7.8595 9.4541 11.1396

Table: The values of δ/(πλn) for a = 1/8 and c = 0.1.
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Nonlocal double SG model

Numerical experiment 1 : initial speed is above 0.58

Evolution of kink-like excitation (high energy). 25 / 36



Nonlocal double SG model

Numerical experiment 2 : initial speed is below 0.58

Evolution of kink-like excitation (low energy).
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Discrete φ4 models

Example 8: discrete φ4 model

utt − λ−2(u(x + λ)− 2u(x) + u(x − λ)) + u(x)
(
1− u(x)2

)
= 0.

• As λ→ 0, the kinks are given by:

u0(z) = tanh(ηz), η =
1

2
√

1− c2
.

• Singularity exists at z = iπ
√

1− c2.

• No kinks exist for any c 6= 0.

27 / 36



Discrete φ4-φ6 model

Example 9: discrete φ4-φ6 model

utt − λ−2(u(x + λ)− 2u(x) + u(x − λ)) + u(1− u2)(1 + γu2) = 0.

• As λ→ 0, the kinks are given by:

u0(z) =

√
3 + γ tanh(ηz)√

3(1 + γ)− 2γ tanh2(ηz)
, η =

√
1 + γ√

2(1− c2)
.

• Symmetric pairs of singularities exist for γ > 0 at z± = ±α + iβ:

α =

√
1− c2

2
√

1 + γ
cosh−1

(
3 + 5γ

3 + γ

)
, β =

π
√

1− c2√
2(1 + a)

.

• For fixed γ > 0, there exist a discrete set of curve in the (c , λ) plane,
along which the kinks exist.
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Discrete φ4-φ6 model

The asymptotic law as n→∞:

4αk0(λn) ∼ π(3 + 4n), ⇒ π(3 + 4n)λn = χ(γ, c).

3 + 4n 3 7 11 15
χ/(πλn) 3.5303 7.3547 11.1520 15.0329

Table: The values of χ/(πλn) for γ = 5 and c = 0.6.
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Conclusion

Summary: in Examples 7 and 9, switching from λ = 0 to λ 6= 0 results in
selecting a countable set of velocities for radiationless kink propagation.

• The first ideas about existence of such countable sets go back to the
works of V.G. Gelfreich (1990,2008).

• No analytical proof of the main claim exists for now.

• The same approach can be used for homoclinic orbits (solitons)
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Saturable discrete NLS equation

Example 10: saturable DNLS model

iψt + λ−2(ψ(x + λ)− 2ψ(x) + ψ(x − λ)) + ψ(x)− θψ(x)

1 + |ψ(x)|2
= 0,

where θ is parameter.

• As λ→ 0, there exists the solitary wave for θ > 1:

u′′(x) + u(x)− θu(x)

1 + u(x)2
= 0,

but it does not exist in the explicit form.

• Symmetric pairs of singularities exist for γ > 0 at z0 = ±α + iβ with

u(z) = i +
√
θ(z − z0)

√
log(z0 − z)

[
1 +O

(
log | log |z − z0||

log |z − z0|

)]
where the value of α can only be computed numerically and β = π

2
√
θ−1 .
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Saturable discrete NLS equation

Considering now the fourth-order equation

ε2u′′′′(x) + u′′(x) + u(x)− θu(x)

1 + u(x)2
= 0,

we compute the Fourier integral as k →∞:

I (k) :=

∫
R
u′′′′(x)e ikxdx =

2π
√
θ

k2
√

log k
e−βk cos(αk)

[
1 +O

(
1

log k

)]
.

The infinitely many homoclinic orbits exist for

εm ∼
2α

π(2m − 1)
as m→∞.
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Saturable discrete NLS equation

Figure: A: the plot of W (ε) := u′′′(xP) versus ε for θ = 5, where u′(xP) = 0.
Three roots exist at ε1 ≈ 0.32, ε2 ≈ 0.22 and ε3 ≈ 0.17. B: the profiles of soliton
solutions corresponding to ε1,2,3.
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Saturable discrete NLS equation

m εm = 2α
π(2m−1) Computed εm ε−1m − ε−1m−1

1 0.42505 0.32128
2 0.25503 0.22152 1.40163
3 0.18216 0.16684 1.47497
4 0.14168 0.13322 1.51259
...

...
...

...
12 0.05101 0.05029 1.55773
13 0.04723 0.04663 1.55911
14 0.04397 0.04347 1.56117

Table: The values ε corresponding to the soliton solutions at θ = 5.
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Conclusion

Examples 10 shows that the same mechnism is valid for homoclinic orbits,
even in the case when the singularity is complicated and implicit.

Regarding the original motivation of smooth solutions of

λ−2(u(x + λ)− 2u(x) + u(x − λ)) + u(x)− θu(x)

1 + u(x)2
= 0,

we checked that the same mechanism is true for the sequence of so-called
transparent points {λm} (no energy difference between on-site and off-site
solitons on the lattice). The spacing between λm+1 − λm is defined from
the singularities in the complex plane. However, no true homoclinic orbit
exist in the lattice equations because there are infinitely many resonances
in the dispersion relation.
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