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Introduction

The nonlinear Schrödinger equation has many applications in physics.
It realizes the fundamental balance between nonlinearity and
dispersion for propagation of nonlinear dispersive waves.

iψt + ψxx + |ψ|2ψ = 0. (NLS)

Taking into account higher-order nonlinearity and dispersion gives an
extended version of the NLS equation:

iψt +ψxx + |ψ|2ψ+ ic1ψxxx + ic2|ψ|2ψx + ic3(|ψ|2ψ)x + c4|ψ|4ψ = 0.

What we study is a different model where the dispersion coefficient
depends on the wave intensity:

iψt + (1− |ψ|2)ψxx = 0. (NLS-IDD)

C.Y. Lin, J.H. Chang, G. Kurizki, and R.K. Lee, Optics Letters 45 (2020), 1471–1474
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NLS with intensity-dependent dispersion

Two conserved quantities exist for NLS-IDD:

Q(ψ) = −
∫
R

log |1− |ψ|2|dx

and
E(ψ) =

∫
R
|ψx|2dx.

Standing waves exist in the form ψ(x, t) = eiωtu(x) with (ω, u)
satisfying

ωu(x) = (1− u2)u′′(x).

Solitary waves with u(x)→ 0 as |x| → ∞ exist only if ω > 0, in
which case ω can be scaled out by u(x) 7→ u(

√
ωx).
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Phase plane portrait

Equation (1− u2)u′′ = u is integrable with the first invariant:

1
2

(
du
dx

)2

+
1
2

log |1− u2| = C,

where C is constant. The solution is singular at u = ±1.
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Possible solitary waves

Gluing the stable and unstable curves with another integral curves
give a one-parameter family of single-humped solitary waves:
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Top left: “cusped soliton". Bottom left: “bell-shaped soliton".
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Questions on existence and stability of these solitary waves

. In what space (in what sense) do they exist?

. What is the nature of singularity at u = ±1?

. Can these solutions be characterized variationally?

. Are they stable in the time evolution of the NLS-IDD?

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion 6 / 24



Existence result

Definition
We say that u ∈ H1(R) is a weak solution of the differential equation
u = (1− u2)u′′ if it satisfies the following equation

〈u, ϕ〉+ 〈(1− u2)u′, ϕ′〉 − 2〈u(u′)2, ϕ〉 = 0, for every ϕ ∈ H1(R),

where 〈·, ·〉 is the inner product in L2(R).

Theorem (Ross–Kevrekidis–P, Q.Appl.Math. 79 (2021) 641)

There exists a one-parameter continuous family of weak, positive, and
single-humped solutions of u = (1− u2)u′′ parametrized by C.

What is needed for the proof beyond the phase plane analysis:
. u ∈ H1(R);
. lim

x→x0
(1− u2(x))u′(x) = 0 for each x0 where u(x0) = 1.
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Nature of singularity at u = 1

It follows from the first invariant

1
2

(
du
dx

)2

+
1
2

log |1− u2| = C,

that the cusped soliton is defined by the implicit function

|x| =
∫ 1

u

dξ√
− log(1− ξ2)

, u ∈ (0, 1).

Asymptotic analysis [Alfimov–Korobeinikov–Lustri–P, Nonlinearity
32 (2019) 3445] gives as |x| → 0:

u(x) = 1− |x|
√

log(1/|x|)
[

1 +O
(

log log(1/|x|)
log(1/|x|)

)]
.

Hence, u′(x) ∼
√

log(1/|x|) and (1− u2)u′(x) ∼ |x| log(1/|x|).
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Numerical illustration of the asymptotic profile

u(x) = 1− |x|
√

log(1/|x|)
[

1 +O
(

log log(1/|x|)
log(1/|x|)

)]
.
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Towards the stability result

Recall the conserved quantities:

Q(ψ) = −
∫
R

log |1− |ψ|2|dx, E(ψ) =

∫
R
|ψx|2dx.

Solitary wave ψ(x, t) = u(x)eiωt is a critical point of the action

Λω(u) = E(u) + ωQ(u),

however, the formal expansion yields

Λω(u + ϕ)− Λω(u) = 2〈u′, ϕ′〉+ 2〈(1− u2)−1u, ϕ〉
+O(‖ϕ′‖2

L2 + ‖(1− u2)−1ϕ‖2
L2∩L∞),

which is not compatible with the definition of weak solutions:

u ∈ H1(R) : ω〈u, ϕ〉+ 〈(1− u2)u′, ϕ′〉 − 2〈u(u′)2, ϕ〉 = 0,

for every ϕ ∈ H1(R).
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New definition of weak solutions

Definition
Fix L > 0 and define

XL :=
{

u ∈ H1(R) : u(x) > 1, x ∈ (−L,L) and u(x) ≤ 1, |x| ≥ L
}
.

Pick uL ∈ XL satisfying

lim
|x|→L

uL(x)− 1
(L− |x|)

√
| log |L− |x|||

= 1.

We say that u ∈ XL ⊂ H1(R) is a weak solution if it satisfies the
following equation

〈u′, ϕ′〉+ ω〈(1− u2)−1u, ϕ〉 = 0, for every ϕ ∈ H1
L,

where H1
L :=

{
ϕ ∈ H1(R) : (1− u2

L)−1ϕ ∈ L2(R) ∩ L∞(R)
}

.
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Stability result

Theorem (P–Ross–Kevrekidis, J. Phys. A 54 (2021) 445701)

For every µ > 0 and L > 0, there exists a minimizer of the
constrained variational problem

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ}.

The minimizer coincides with a scaled version of the one-parameter
family of solitary waves for C = CµL.

What is needed for the proof beyond the expansion of Λω in XL:

. Monotonicity of mappings C 7→ E(uC) and C 7→ `C,
where 2`C is the length of the bell head;

. Scaling transformation;

. Convexity of action Λω at uC.
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Monotonicity of mappings C 7→ E(uC) and C 7→ `C

It follows from (u′)2 + log |1− u2| = 2C that

E(uC) = E(ucusp) + 2
∫ √1+e2C

1

√
2C − log(u2 − 1)du

`C =

∫ √1+e2C

1

du√
2C − log(u2 − 1)
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1

√
2C − log(u2 − 1)du

`C =

∫ √1+e2C

1

du√
2C − log(u2 − 1)

dE(uC)
dC > 0 follows from

dE(uC)

dC
= 2

∫ √1+e2C

1

du√
2C − log(u2 − 1)

= 2`C.
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It follows from (u′)2 + log |1− u2| = 2C that

E(uC) = E(ucusp) + 2
∫ √1+e2C

1

√
2C − log(u2 − 1)du

`C =

∫ √1+e2C

1

du√
2C − log(u2 − 1)

d`C
dC > 0 follows from a longer computation, which is similar to
analysis of the period function for periodic orbits on the phase plane.

C`C =

∫ √1+e2C

1

Cdu√
2C − log(u2 − 1)

=
1
2

∫ √1+e2C

1

[√
2C − log(u2 − 1) +

log(u2 − 1)√
2C − log(u2 − 1)

]
du.
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Monotonicity of mappings C 7→ E(uC) and C 7→ `C

d`C
dC > 0 follows from a longer computation, which is similar to
analysis of the period function for periodic orbits on the phase plane.

C`C =

∫ √1+e2C

1

Cdu√
2C − log(u2 − 1)

=
1
2

∫ √1+e2C

1

[√
2C − log(u2 − 1) +

log(u2 − 1)√
2C − log(u2 − 1)

]
du.

Denote A(u) := log(u2 − 1) and write v2 + A(u) = 2C for the integral
curve at the constant level C. Since A′(u) 6= 0 for u > 1, we have

d
[

A(u)v
A′(u)

]
=

(
1− A(u)A′′(u)

[A′(u)]2

)
vdu +

A(u)

A′(u)
dv

=

(
1− A(u)A′′(u)

[A′(u)]2

)
vdu− A(u)

2v
du.
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d
[

A(u)v
A′(u)

]
=

(
1− A(u)A′′(u)

[A′(u)]2

)
vdu +

A(u)

A′(u)
dv

=

(
1− A(u)A′′(u)

[A′(u)]2

)
vdu− A(u)

2v
du.

Integrating by parts yields

2C`C =

∫ √1+e2C

1

[
3− 2A(u)A′′(u)

[A′(u)]2

]
vdu

=

∫ √1+e2C

1

[
3 +

1 + u2

u2 log(u2 − 1)

]
vdu,
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Monotonicity of mappings C 7→ E(uC) and C 7→ `C

Integrating by parts yields

2C`C =

∫ √1+e2C

1

[
3− 2A(u)A′′(u)

[A′(u)]2

]
vdu

=

∫ √1+e2C

1

[
3 +

1 + u2

u2 log(u2 − 1)

]
vdu,

After differentiating in C, we get

2C
d`C

dC
=

∫ √1+e2C

1

[
1 +

1 + u2

u2 log(u2 − 1)

]
du
v
,
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Monotonicity of mappings C 7→ E(uC) and C 7→ `C

After differentiating in C, we get

2C
d`C

dC
=

∫ √1+e2C

1

[
1 +

1 + u2

u2 log(u2 − 1)

]
du
v
,

After another integration by parts,

d
du

[
u2 − 1

u

√
2C − log(u2 − 1)

]
= − 1√

2C − log(u2 − 1)
+

1 + u2

u2 v,

we finally obtain

d`C

dC
=

∫ √1+e2C

1

(1 + u2)du

u2
√

2C − log(u2 − 1)
> 0.
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Scaling transformation

Recall the variational problem for µ > 0 and L > 0:

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ},

with the Euler–Lagrange equation ωu = (1− u2)u′′.

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion 14 / 24



Scaling transformation

Recall the variational problem for µ > 0 and L > 0:

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ},

with the Euler–Lagrange equation ωu = (1− u2)u′′.

Let uC be a solution of u = (1− u2)u′′. Then, uω(x) = uC(
√
ωx) is a

solution of the Euler–Lagrange equation so that

Q(uω) =
1√
ω

Q(uC), E(uω) =
√
ωE(uC)

and
L =

1√
ω
`C, µ =

√
ωE(uC).
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Scaling transformation

Recall the variational problem for µ > 0 and L > 0:

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ},

with the Euler–Lagrange equation ωu = (1− u2)u′′.

Transformation (ω,C) 7→ (µ,L) is invertible because the Jacobian is∣∣∣∣∣∣∣∣∣
∂µ

∂ω

∂µ

∂C

∂L
∂ω

∂L
∂C

∣∣∣∣∣∣∣∣∣ =
1

2ω

[
E(uC)

d`C

dC
+ `C

dE(uC)

dC

]
> 0.

Hence the mapping (ω,C) 7→ (µ,L) is invertible and there exists a
unique C = Cµ,L for every µ > 0 and L > 0. In fact, `CE(uC) = Lµ.
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Numerical illustrations
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Convexity of action Λω

Let v + iw with real v,w ∈ H1
`C
⊂ H1(R) be a perturbation to uC.

Then, the action is expanded as

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w),

where R(v,w) is the remainder term

R(v,w) =

∫
R

[
log

(
1− 2uCv + v2 + w2

1− u2
C

)
+

2uCv
1− u2

C
+

(1 + u2
C)v2

(1− u2
C)2 +

w2

1− u2
C

]
dx.
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Then, the action is expanded as

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w),

R(v,w) is cubic with respect to perturbation:

|R(v,w)| ≤ C‖(1− u2
C)−1v‖3

L2∩L∞ + C‖(1− u2
C)−1w‖3

L2∩L∞ ,

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion 16 / 24



Convexity of action Λω

Let v + iw with real v,w ∈ H1
`C
⊂ H1(R) be a perturbation to uC.

Then, the action is expanded as

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w),

whereas Q+ and Q− are the quadratic forms:

Q+(v) =

∫
R

[
(vx)

2 +
(1 + u2

C)v2

(1− u2
C)2

]
dx,Q−(w) =

∫
R

[
(wx)

2 +
w2

1− u2
C

]
dx,

For cusped soliton with 0 < u ≤ 1, they are coercive and bounded as

Q±(v) ≥ ‖v‖2
H1 , Q±(v) ≤ C±

(
‖v′‖2

L2 + ‖(1− u2
C)−1v‖2

L2

)
Hence uCµL is a minimizer of Q(u) in XL for fixed L > 0 and µ > 0.
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Numerical methods: regularization

Fix ε > 0 and replace u = (1− u2)u′′ by

u′′ε =
uε(1− u2

ε)

(1− u2
ε)

2 + ε2 ,
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Numerical methods: regularization

Only bell soliton uC=0 can be recovered by using this numerical
method. Moreover, we have proved that

‖uε − uC=0‖H1 → 0 as ε→ 0.
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Numerical methods: Petviashvili iterations

Rewrite u = (1− u2)u′′ as u− u′′ = −u2u′′ and interpret a solution
u ∈ H1(R) as a fixed point u = T(u) of the nonlinear operator

T(u) := −(1− ∂2
x )−1u2∂2

x u.

The fixed point can be approached by iterations {wn}n∈N of the
Petviashvili’s method

wn+1 = −λ(wn)3/2(1− ∂2
x )−1w2

n∂
2
x wn,

where

λ(w) :=

∫
R(w2 + w2

x)dx
3
∫
R w2w2

xdx
.

If u ∈ H1(R) is a fixed point of T(u), then λ(u) = 1.
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Numerical methods: Petviashvili iterations

Only cusped soliton ucusp can be recovered by using this numerical
method. Moreover, we have proved that if w0 is in a local
neighborhood of ucusp, then

‖wn − ucusp‖H1 → 0 as n→∞.
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Numerical methods: Newton iterations

Represent a solution of u = (1− u2)u′′ as a root of the nonlinear
equation F(u) = 0, where F(u) := −(1− u2)∂2

x u + u. Roots of the
nonlinear equation F(u) = 0 in H1(R) can be approximated by using
the Newton iterations:

un+1 = un − L−1F(un),

where L := −(1− u2)∂2
x + 1+u2

1−u2 .

Let u = ucusp be the cusped soliton and v ∈ H1(R) satisfy v(0) = 0.
Then,

〈Lv, v〉 =

∫
R

(1− u2)(v′)2dx +

∫
R

(uu′)′v2dx +

∫
R

1 + u2

1− u2 v2dx

=

∫
R

(1− u2)(v′)2dx +

∫
R

[
1 + 2u2

1− u2 + (u′)2
]

v2dx,

hence σ(L) ≥ 1.
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Numerical methods: Newton iterations

All solitary waves of the family uC can be recovered by using this
numerical method.
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Summary

We considered NLS equation with intensity-dependent dispersion

iψt + (1− |ψ|2)ψxx = 0.

. Continuum of singular solitary waves exists ψ(x, t) = uC(x)eit.

. Each solitary wave can be characterized as a minimizer of mass
for fixed energy µ and distance L between two singularities.

. These solitary waves are robust in the numerical simulations.

. Well-posedness and stability theory are opened for studies.
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Related problems: compactons

KdV equation with sublinear nonlinearity:

ut − α|u|α−1ux + uxxx = 0, α ∈ (0, 1).

It admits compactly supported solutions (compactons) in the form

u(t, x) = a sin
2

1−α (x− ct), 0 ≤ x− ct ≤ π,

with some uniquely specified a and c.
D.E. Pelinovsky, A.V. Slunyaev, A.V. Kokorina, and E.N. Pelinovsky, Comm.

Nonlinear Sci. Numer. Simul. 101 105855 (2021)

Similar study of stability of compactons in related problems:
P. Germain, B. Harrop–Griffiths, J. Marzuola, Q. Appl. Math. 78 (2020), 1538

S. Hakkav, A. Ramadan, A. G. Stefanov, arXiv:2110.03030 (2021)

Thank you for your attention!
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