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Introduction

The nonlinear Schrédinger equation has many applications in physics.
It realizes the fundamental balance between nonlinearity and
dispersion for propagation of nonlinear dispersive waves.

ity + e + [90[*0 = 0. (NLS)
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Introduction

The nonlinear Schrédinger equation has many applications in physics.
It realizes the fundamental balance between nonlinearity and
dispersion for propagation of nonlinear dispersive waves.

i+ P + [0 = 0. (NLS)

Taking into account higher-order nonlinearity and dispersion gives an
extended version of the NLS equation:

i+ e+ [P0 + et + ica | r +ics (J0Y)x + e[ *p = 0.
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Introduction

The nonlinear Schrédinger equation has many applications in physics.
It realizes the fundamental balance between nonlinearity and
dispersion for propagation of nonlinear dispersive waves.

ity + e + [90[*0 = 0. (NLS)

Taking into account higher-order nonlinearity and dispersion gives an
extended version of the NLS equation:

W + e + W)‘zw +ic1Yn + iczw)‘zwx+ic3(‘¢‘2¢)x+c4’¢‘4w =0.

What we study is a different model where the dispersion coefficient
depends on the wave intensity:

i+ (1= [9) ¢ = 0. (NLS-IDD)

C.Y. Lin, J.H. Chang, G. Kurizki, and R.K. Lee, Optics Letters 45 (2020), 1471-1474
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NLS with intensity-dependent dispersion

Two conserved quantities exist for NLS-IDD:

0(4) = — / log |1 — [i[?|dx

and
BW) = | 1P
R
Standing waves exist in the form v (x, t) = e“'u(x) with (w, u)
satisfying

wu(x) = (1 — u®)u(x).

Solitary waves with u(x) — 0 as |x| — oo exist only if w > 0, in
which case w can be scaled out by u(x) — u(y/wx).
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Phase plane portrait

Equation (1 — u?)u"" = u is integrable with the first invariant:

1 (du\®> 1
Bl (et —log |1 — u?| =
2<dx> +5log|l —u’|=C,

where C is constant. The solution is singular at u = +1.
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Possible solitary waves

Gluing the stable and unstable curves with another integral curves
give a one-parameter family of single-humped solitary waves:
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Top left: “cusped soliton". Bottom left: “bell-shaped soliton".
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Questions on existence and stability of these solitary waves

> In what space (in what sense) do they exist?

> What is the nature of singularity at u = £1?

> Can these solutions be characterized variationally?

> Are they stable in the time evolution of the NLS-IDD?
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Existence result

Definition

We say that u € H'(R) is a weak solution of the differential equation
u = (1 — u?)u" if it satisfies the following equation

(u, 0) + (1 —uP)', ¢’y — 2(u(’)?, ) =0, forevery p € H'(R),

where (-, -) is the inner product in L?(R).
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Existence result

Definition

We say that u € H'(R) is a weak solution of the differential equation
u = (1 — u?)u" if it satisfies the following equation

(u, 0) + (1 —uP)', ¢’y — 2(u(’)?, ) =0, forevery p € H'(R),

where (-, -) is the inner product in L?(R).

Theorem (Ross—Kevrekidis—P, Q.Appl.Math. 79 (2021) 641)

There exists a one-parameter continuous family of weak, positive, and
single-humped solutions of u = (1 — u®)u" parametrized by C.

What is needed for the proof beyond the phase plane analysis:

> u € H'(R);
> lim (1 — u?(x))u (x) = 0 for each xo where u(xo) = 1.
X—X0
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Nature of singularity at u = 1

It follows from the first invariant

1 (du\* 1
Z Zlog |1 — u?| =
2<dx> +2og\ u’| =C,

that the cusped soliton is defined by the implicit function

_ [ dg
|x|—/u . ue(0,1).

Asymptotic analysis [Alfimov—Korobeinikov—Lustri—P, Nonlinearity
32 (2019) 3445] gives as |x| — O:

u(x)—l—\x|\/l()g(IW[l+(’)<logk)g(l/w>].

log(1/|x[)

Hence, ' (x) ~ +/log(1/]x]) and (1 — u?)u'(x) ~ |x|log(1/|x|).

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion

8/24



Numerical illustration of the asymptotic profile
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Left: “cusped soliton". Right: “bell-shaped soliton".
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Towards the stability result

Recall the conserved quantities:

() = — /R log |1 — [¢P|dr, E(%) = /R il

Solitary wave 9 (x, ) = u(x)e™! is a critical point of the action

Ay(u) = E(u) + wQ(u),
however, the formal expansion yields
Au(u + 9) = Au(u) = 20, ') +2((1 —1®) "lu, )
+O(@'I7 + 111 =)~ @l a0,
which is not compatible with the definition of weak solutions:
ueH'(R):  wlu,p) + (1 -, ') = 2(u()?, ¢) =0,

for every ¢ € H'(R).
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New definition of weak solutions

Definition
Fix L > 0 and define

Xp:={ueHR): u(x) >1, x€ (~L,L)and u(x) < 1, [x| > L}.
Pick u; € Xy satisfying

. ML()C) —1
lim =
=L (L — [x])+/] log |L — [x[|

We say that u € X; C H'(R) is a weak solution if it satisfies the
following equation

', o)+ w((1 —u?)"lu, ) =0, forevery ¢ € Hy,
where H] := {p e H'(R) : (1 —u})'¢ € L*(R)NL>®(R)}.
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Stability result

Theorem (P-Ross—Kevrekidis, J. Phys. A 54 (2021) 445701)

For every p > 0 and L > 0, there exists a minimizer of the
constrained variational problem

:= inf : E(u) = u}.

Q,u,,L MIEHXL{Q(M) (l/l) /’L}

The minimizer coincides with a scaled version of the one-parameter
Jamily of solitary waves for C = C,.

What is needed for the proof beyond the expansion of A, in X;:

> Monotonicity of mappings C — E(uc) and C — (¢,
where 2/ is the length of the bell head,;

> Scaling transformation;

> Convexity of action A, at uc.

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion 12/24



Monotonicity of mappings C — E(uc) and C — /(¢

It follows from (u')? + log |1 — u?| = 2C that

Vi+e
E(uc) = E(ucusp) + 2/ \/2C — log(u? — 1)du
1
Vit du
te= |
‘ 1 V/2C —log(u® — 1)
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Monotonicity of mappings C — E(uc) and C — /(¢

It follows from (u')? + log |1 — u?| = 2C that

Vi+eX
E(uc) = E(ucusp) + 2/ \/2C — log(u? — 1)du
1
V14X du
le = /
‘ 1 V/2C —log(u® — 1)
% > 0 follows from
dE 1+€2C d
(uc) _ 2/ u 2.
dc 1 V/2C —log(u? — 1)
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Monotonicity of mappings C — E(uc) and C — /(¢

It follows from (u')? + log |1 — u?| = 2C that

V142

E(uc) = E(ucusp) +2/ \/ZC log(u? — 1)du

/\/1-#7 du
1 V/2C —log(u® — 1)

‘MC > 0 follows from a longer computation, which is similar to
analy51s of the period function for periodic orbits on the phase plane.

b =

1+e2¢
Cle = / Cdu
1 V/2C —log(u? — 1)

V142 .
= / \/ZC log(u log(u® — 1) du.
\/2c log(u? — 1)
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Monotonicity of mappings C — E(uc) and C — /(¢

”Mc > 0 follows from a longer computation, which is similar to
analy51s of the period function for periodic orbits on the phase plane.

Itet Cdu
Cle = /
‘ | V/2C —log(u? — 1)
1 Vi 1 —1
= / \/2C—log(u2 og (1w ) du.
2 \/2c log(u? — 1)

Denote A(u) := log(u? — 1) and write v> + A(u) = 2C for the integral
curve at the constant level C. Since A’(u) # 0 for u > 1, we have

)
d [A(”)V] - (1 A[(” A”]( )) v+ 28 g
(

A’ (u) Al(u))? A’ (u)
() AWA@Y AW
- <1 AP > TR
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Monotonicity of mappings C — E(uc) and C — /(¢

Denote A(u) := log(u? — 1) and write v> + A(u) = 2C for the integral
curve at the constant level C. Since A’(u) # 0 for u > 1, we have

)
d[A(u)v] _ (1 A[(u A”]( ))vd AW,
A(u)A" (u)

Al (u) A’ (u)]? Al (u)

AP v

Integrating by parts yields
1+4€2€C 24 Al/

scre = [T [p- 2],
1 [A" ()]

1+ u?

VT
/ [3+
1
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Monotonicity of mappings C — E(uc) and C — /(¢

Integrating by parts yields
1+4€2€C 24 Al/
1

1+2

V1teX
/ [3 + log(u® — 1)] vdu,
i

After differentiating in C, we get

dl¢ I4ex 1+ u? 5 du
ZCE /1 |:1 + M2 log(u — 1):| 7,
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Monotonicity of mappings C — E(uc) and C — /(¢

After differentiating in C, we get

dlc L+e2 1+ u?
-t 1 2 _
2C /1 [1 + 2 og(u 1)

After another integration by parts,

d [u® -1 1
2C —1o u2—1}
du[ u \/ al ) /2C —log(i2 — 1)

we finally obtain

— > 0.
dC | u2\/2C —log(u? — 1)

dec/v”e” (1+ 2)du
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Scaling transformation

Recall the variational problem for & > 0 and L > 0:
QL= ulgL{Q(u) 1 E(u) = p},

with the Euler-Lagrange equation wu = (1 — u?)u”.

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion

14 /24



Scaling transformation
Recall the variational problem for & > 0 and L > 0:
QL= ulgL{Q(u) 1 E(u) = p},
with the Euler-Lagrange equation wu = (1 — u?)u”.

Let uc be a solution of u = (1 — u?)u”. Then, u,,(x) = uc(y/wx) is a
solution of the Euler—Lagrange equation so that

Ou,) = \1@Q<uc>, E(,) = v/oE(uc)

and |
L= ﬁ€C7 n = \/EE(MC)
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Scaling transformation
Recall the variational problem for & > 0 and L > 0:
QL= ulgL{Q(u) 1 E(u) = p},
with the Euler-Lagrange equation wu = (1 — u?)u”.

Transformation (w, C) — (p, L) is invertible because the Jacobian is

o o
dw 0C 1 de dE(u
:2— E(uc)Tg C CECC) 0
oL oL |
ow 0C

Hence the mapping (w, C) — (u, L) is invertible and there exists a
unique C = Cy, 1 for every x> 0 and L > 0. In fact, £cE(uc) = Lp.
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Numerical illustrations
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Convexity of action A,

Let v + iw withreal v,w € H (}C C H'(R) be a perturbation to uc.
Then, the action is expanded as

Ap—1(uc +v+iw) = Ap=i(uc) + 0+ (v) + O—(w) + R(v, w),

where R(v,w) is the remainder term

2 2 2 2 1 2\,,2 2
R(v,w) :/ {log (1 - 2+W > M ”Cv2 Jr( +MC2)V2 +— 7 | dx.
R 1 — ug 1 —ug (1 —ug) 1 — ug.
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Convexity of action A,

Let v + iw withreal v,w € H (}C C H'(R) be a perturbation to uc.
Then, the action is expanded as

Ap=1(uc +v+iw) = A1 (uc) + 0+ (v) + O—(w) + R(v, w),
R(v,w) is cubic with respect to perturbation:

R(v,w)| < CI(1 = ug) ™ Wl[Z2npee + CII = ug) " WliFan o
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Convexity of action A,

Let v + iw withreal v,w € H (}C C H'(R) be a perturbation to uc.
Then, the action is expanded as

Ap=1(uc+v+iw) = Ay=1(uc) + Q4+ (v) + O—(w) + R(v,w),
whereas Q4 and Q_ are the quadratic forms:

0.= [ [<vx>2+“+“2‘?vz] a0 = [ [<wx>2+ W22]dx,

(1 —ug)? 1 —ug

For cusped soliton with 0 < u < 1, they are coercive and bounded as
0 (v) 2 IMlln,  Qx(v) < Cu (V72 + (1 —ug)~'v]I72)

Hence uc,, is a minimizer of Q(u) in Xy, for fixed L > 0 and y > 0.
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Numerical methods: regularization

Fix € > 0 and replace u = (1 — u?)u” by

" ue(1 — ”3

R ey

x'=sy
Y =x (1301 - X322 +0.1%)
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Numerical methods: regularization

”I/tE — uC:oHH1 —0 as

Only bell soliton uc—g can be recovered by using this numerical
method. Moreover, we have proved that

e — 0.
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Numerical methods: Petviashvili iterations

Rewrite u = (1 — u?)u" as u — u” = —u*u"" and interpret a solution

u € H'(R) as a fixed point u = T(u) of the nonlinear operator
T(u) == —(1 -9} 'W?d?u.

The fixed point can be approached by iterations {w, },en of the
Petviashvili’s method

Was1 = —A(wa)*2(1 = 82) ' w202w,,
where 5 s
Aw) = Jr(w +wx)dx'
3 [ w2w2dx
If u € H'(R) is a fixed point of T(u), then \(u) = 1.
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Numerical methods: Petviashvili iterations

Only cusped soliton ucygp can be recovered by using this numerical
method. Moreover, we have proved that if wy is in a local
neighborhood of ucysp, then

|Wn — tteuspllgn — 0 as  n — oo.

whoL O
e, 1
‘e, A €, o —~
lleals,
S 05
10°
30 2 10 0 10 20 0
x
1070
10710
®
S5
<
‘0-15 L :
100 10 1 0 30 2 -10 ; 0 20 30
n

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion 20/24



Numerical methods: Petviashvili iterations

Only cusped soliton ucygp can be recovered by using this numerical
method. Moreover, we have proved that if wy is in a local
neighborhood of ucysp, then

|Wn — tteuspllgn — 0 as  n — oo.
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Numerical methods: Newton iterations

Represent a solution of u = (1 — u?)u” as a root of the nonlinear
equation F(u) = 0, where F(u) := —(1 — u?)0?u + u. Roots of the
nonlinear equation F(«) = 0 in H'(R) can be approximated by using
the Newton iterations:

Upy] = Uy — E_IF(u,,),

where £ := —(1 — u?)0? + 14u?

1—u?"

Let u = uysp be the cusped soliton and v € H' (R) satisfy v(0) = 0.
Then,

2\ (/)2 N2 L+,
(Lv,v)y = [ (1 —u)(V)dx+ [ (w)vidx + vodx
R R R

1 —u?

2
= /(1 - uz)(v’)zdx—F/ [1 ki 2L; + (u’)z} v2dx,
R rRLI1—u
hence o (L) > 1.
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Numerical methods: Newton iterations

All solitary waves of the family u¢ can be recovered by using this
numerical method.
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Numerical methods: Newton iterations

All solitary waves of the family u¢ can be recovered by using this
numerical method.
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Numerical methods: Newton iterations

All solitary waves of the family u¢ can be recovered by using this
numerical method.
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Summary

We considered NLS equation with intensity-dependent dispersion

it + (1 = [ )the = 0.

> Continuum of singular solitary waves exists 1 (x, t) = uc(x)e".

> Each solitary wave can be characterized as a minimizer of mass
for fixed energy 1 and distance L between two singularities.

> These solitary waves are robust in the numerical simulations.

> Well-posedness and stability theory are opened for studies.
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Related problems: compactons

KdV equation with sublinear nonlinearity:
u; — a]u|0‘_1u)C Fupny =0, a€(0,1).
It admits compactly supported solutions (compactons) in the form
.2
u(t,x) =asin™e (x —ct), 0<x—ct<m,

with some uniquely specified a and c.
D.E. Pelinovsky, A.V. Slunyaev, A.V. Kokorina, and E.N. Pelinovsky, Comm.
Nonlinear Sci. Numer. Simul. 101 105855 (2021)

Similar study of stability of compactons in related problems:
P. Germain, B. Harrop—Griffiths, J. Marzuola, Q. Appl. Math. 78 (2020), 1538
S. Hakkav, A. Ramadan, A. G. Stefanov, arXiv:2110.03030 (2021)
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Related problems: compactons

KdV equation with sublinear nonlinearity:
u; — a]u|o‘_lu,C Fupny =0, a€(0,1).
It admits compactly supported solutions (compactons) in the form
.2
u(t,x) =asin™e (x —ct), 0<x—ct<m,

with some uniquely specified a and c.
D.E. Pelinovsky, A.V. Slunyaev, A.V. Kokorina, and E.N. Pelinovsky, Comm.
Nonlinear Sci. Numer. Simul. 101 105855 (2021)

Similar study of stability of compactons in related problems:
P. Germain, B. Harrop—Griffiths, J. Marzuola, Q. Appl. Math. 78 (2020), 1538
S. Hakkav, A. Ramadan, A. G. Stefanov, arXiv:2110.03030 (2021)

Thank you for your attention!

Dmitry E. Pelinovsky, McMaster University Solitary waves under intensity-dependent dispersion 24724



