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Section 1

Introduction: NLS models
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Solitary waves in NLS models

Bright soliton ψ(t, x) = eitsech(x)
of the focusing NLS equation

i∂tψ + ∂2
xψ + 2|ψ|2ψ = 0

with |ψ(t, x)| → 0 as |x| → ∞

Dark soliton ψ(t, x) = e−2it tanh(x)
of the defocusing NLS equation

i∂tψ + ∂2
xψ − 2|ψ|2ψ = 0

with |ψ(t, x)| → 1 as |x| → ∞
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Generalized NLS models

The classical NLS equation realizes a balance between nonlinearity
and dispersion for propagation of nonlinear dispersive waves.

iψt + αψxx + β|ψ|2ψ = 0. (NLS)

Taking into account higher-order nonlinearity and dispersion gives an
extended version of the NLS equation:

iψt + αψxx + β|ψ|2ψ + iα1ψxxx + α2ψxxxx

+ iβ1|ψ|2ψx + iβ2(|ψ|2ψ)x + γ|ψ|4ψ = 0.

Well-posedness of initial-value problem, stability of nonlinear waves,
global dynamics (scattering versus blowup in a finite time), ...
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NLS models with intensity-dependent dispersion

A new NLS model where the dispersion depends on the wave
intensity and vanishes at a selected intensity:

iψt + α(1− |ψ|2)ψxx + β|ψ|2ψ = 0. (NLS-IDD)

C.Y. Lin, J.H. Chang, G. Kurizki, and R.K. Lee, Optics Letters 45 (2020) 1471–1474

Another NLS model where the dispersion diverges at a selected
intensity:

iψt + α(1− |ψ|2)−1ψxx + β|ψ|2ψ = 0.

A.D. Greentree, D. Richards, J.A. Vaccaro, et al., Phys. Rev. A 67 (2003), 023818

Another (regularized) NLS model where the dispersion is bounded:

i(1− ε2∂2
x )ψt + αψxx + β|ψ|2ψ = 0.

M. Colin, D. Lannes SIMA 41 (2009) 708–732

D. Lannes, Proc. R. Soc. Edinburgh Ser A 141 (2011) 253–286
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Section 2

Bright solitons in NLS-IDD
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NLS-IDD model

For NLS-IDD,

iψt + (1− |ψ|2)ψxx = 0, (NLS-IDD)

two conserved quantities exist:

Q(ψ) = −
∫
R

log |1− |ψ|2|dx

and
E(ψ) =

∫
R
|ψx|2dx.

Local solutions exist in H∞(R)
M. Poppenberg, Nonlinear Anal. 45 (2001) 723

‖ψ(t, ·)‖H1 is controlled for if ‖ψ(t, ·)‖L∞ ≤ C < 1.
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Solitary waves (bright solitons)

Standing waves have the form ψ(x, t) = eiωtu(x) with (ω, u) satisfying

ωu(x) = (1− u2)u′′(x).

Solitary waves with u(x)→ 0 as |x| → ∞ exist only if ω > 0, in
which case ω can be scaled out by u(x) 7→ u(

√
ωx).
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Solitary waves with u(x)→ 0 as |x| → ∞ exist only if ω > 0, in
which case ω can be scaled out by u(x) 7→ u(

√
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Equation (1− u2)u′′ = u is integrable with the first invariant:

1
2

(u′)2 +
1
2

log |1− u2| = C = constant

D. Pelinovsky, McMaster University Singular nonlinear waves 8 / 32



Solitary waves (bright solitons)

Equation (1− u2)u′′ = u is integrable with the first invariant:

1
2

(u′)2 +
1
2

log |1− u2| = C = constant

From the phase portrait, bright solitons are singular at u = ±1.
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Possible solitary waves

Gluing the stable and unstable curves with another integral curve
gives a one-parameter family of single-humped solitary waves:
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Questions on existence and stability of these solitary waves

. In what space (in what sense) do they exist?

. What is the nature of singularity at u = ±1?

. Can these solutions be characterized variationally?
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Existence result

Definition
We say that u ∈ H1(R) is a weak solution of the differential equation
u = (1− u2)u′′ if it satisfies the following equation

〈u, ϕ〉+ 〈(1− u2)u′, ϕ′〉 − 2〈u(u′)2, ϕ〉 = 0, for every ϕ ∈ H1(R),

where 〈·, ·〉 is the inner product in L2(R).

Theorem (Ross–Kevrekidis–P, Q.Appl.Math. 79 (2021) 641)

There exists a one-parameter continuous family of weak, positive, and
single-humped solutions of u = (1− u2)u′′ parametrized by C.

After orbits have been glued, we need to show that
. u ∈ H1(R);
. lim

x→x0
(1− u2(x))u′(x) = 0 for each x0 where u(x0) = 1.
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Nature of singularity at u = 1

It follows from the first invariant

1
2

(u′)2 +
1
2

log |1− u2| = C,

that the cusped soliton is defined by the implicit function

|x| =
∫ 1

u

dξ√
− log(1− ξ2)

, u ∈ (0, 1).

Asymptotic analysis gives as |x| → 0:

u(x) = 1− |x|
√

log(1/|x|)
[

1 +O
(

log log(1/|x|)
log(1/|x|)

)]
.

[Alfimov–Korobeinikov–Lustri–P, Nonlinearity 32 (2019) 3445]

Hence, u′(x) ∼
√

log(1/|x|) and (1− u2)u′(x) ∼ |x| log(1/|x|).
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Stability result ?

Recall the conserved quantities:

Q(ψ) = −
∫
R

log |1− |ψ|2|dx, E(ψ) =

∫
R
|ψx|2dx.

Solitary wave ψ(x, t) = u(x)eiωt is a critical point of the action

Λω(u) = E(u) + ωQ(u).

Expanding near the solitary wave yields

Λω(u + ϕ)− Λω(u) = 2〈u′, ϕ′〉+ 2ω〈(1− u2)−1u, ϕ〉
+O(‖ϕ′‖2

L2 + ‖(1− u2)−1ϕ‖2
L2∩L∞),

which is not compatible with the definition of weak solutions:

u ∈ H1(R) : ω〈u, ϕ〉+ 〈(1− u2)u′, ϕ′〉 − 2〈u(u′)2, ϕ〉 = 0,

for every ϕ ∈ H1(R).
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New definition of weak solutions

Definition
Fix L > 0 and define

XL :=
{

u ∈ H1(R) : u(x) > 1, x ∈ (−L,L) and u(x) ≤ 1, |x| ≥ L
}
.

Pick uL ∈ XL satisfying

lim
|x|→L

uL(x)− 1
(L− |x|)

√
| log |L− |x|||

= 1.

We say that u ∈ XL ⊂ H1(R) is a weak solution if it satisfies the
following equation

〈u′, ϕ′〉+ ω〈(1− u2)−1u, ϕ〉 = 0, for every ϕ ∈ H1
L,

where H1
L :=

{
ϕ ∈ H1(R) : (1− u2

L)−1ϕ ∈ L2(R) ∩ L∞(R)
}

.
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Stability result

Theorem (P–Ross–Kevrekidis, J. Phys. A 54 (2021) 445701)

For every µ > 0 and L > 0, there exists a unique minimizer of the
constrained variational problem

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ}.

For the proof, we need to complete three steps:

. Monotonicity of mappings C 7→ E(uC) and C 7→ `C,
where 2`C is the length of the bell head;

. Scaling transformation from `C to L

. Convexity of action Λω=1 at uC.
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Monotonicity of mappings C 7→ E(uC) and C 7→ `C

It follows from (u′)2 + log |1− u2| = 2C that

E(uC) = E(ucusp) + 2
∫ √1+e2C

1

√
2C − log(u2 − 1)du

and

`C =

∫ √1+e2C

1

du√
2C − log(u2 − 1)
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dE(uC)
dC > 0 follows from

dE(uC)

dC
= 2

∫ √1+e2C

1

du√
2C − log(u2 − 1)

= 2`C.
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Monotonicity of mappings C 7→ E(uC) and C 7→ `C

It follows from (u′)2 + log |1− u2| = 2C that

E(uC) = E(ucusp) + 2
∫ √1+e2C

1

√
2C − log(u2 − 1)du

and

`C =

∫ √1+e2C

1

du√
2C − log(u2 − 1)

d`C
dC > 0 follows from a longer computation, where we use the period
function for periodic orbits on the phase plane.
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Monotonicity of mappings C 7→ E(uC) and C 7→ `C

It follows from (u′)2 + log |1− u2| = 2C that

E(uC) = E(ucusp) + 2
∫ √1+e2C

1

√
2C − log(u2 − 1)du

and

`C =

∫ √1+e2C

1

du√
2C − log(u2 − 1)

The mapping C 7→ Q(uC) is non-monotone.
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Numerical illustrations of mappings C 7→ `C,E(uC),Q(uC)
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Scaling transformation

The variational problem for µ > 0 and L > 0:

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ},

is associated with the Euler–Lagrange equation ωu = (1− u2)u′′.

D. Pelinovsky, McMaster University Singular nonlinear waves 18 / 32



Scaling transformation

The variational problem for µ > 0 and L > 0:

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ},

is associated with the Euler–Lagrange equation ωu = (1− u2)u′′.

Let uC be a solution of u = (1− u2)u′′. Then, uω(x) = uC(
√
ωx) is a

solution of the Euler–Lagrange equation so that

Q(uω) =
1√
ω

Q(uC), E(uω) =
√
ωE(uC)

and
L =

1√
ω
`C, µ =

√
ωE(uC).
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Scaling transformation

The variational problem for µ > 0 and L > 0:

Qµ,L := inf
u∈XL
{Q(u) : E(u) = µ},

is associated with the Euler–Lagrange equation ωu = (1− u2)u′′.

Transformation (ω,C) 7→ (µ,L) is invertible because the Jacobian is∣∣∣∣∣∣∣∣∣
∂µ

∂ω

∂µ

∂C

∂L
∂ω

∂L
∂C

∣∣∣∣∣∣∣∣∣ =
1

2ω

[
E(uC)

d`C

dC
+ `C

dE(uC)

dC

]
> 0.

Hence the mapping (ω,C) 7→ (µ,L) is invertible and there exists a
unique C = Cµ,L for every µ > 0 and L > 0. In fact, `CE(uC) = Lµ.
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Convexity of action Λω

Let v + iw with real v,w ∈ H1
`C
⊂ H1(R) be a perturbation to uC.

Then, the action is expanded as

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w),

where R(v,w) is the remainder term

R(v,w) =

∫
R

[
log

(
1− 2uCv + v2 + w2

1− u2
C

)
+

2uCv
1− u2

C
+

(1 + u2
C)v2

(1− u2
C)2 +

w2

1− u2
C

]
dx.

D. Pelinovsky, McMaster University Singular nonlinear waves 19 / 32



Convexity of action Λω

Let v + iw with real v,w ∈ H1
`C
⊂ H1(R) be a perturbation to uC.

Then, the action is expanded as

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w),

Bright soliton is energetically stable in a Banach space X if

Λω=1(uC +v+ iw)−Λω=1(uC) ≥ K(‖u‖2
X +‖v‖2

X)−K(‖u‖3
X +‖v‖3

X).
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Then, the action is expanded as

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w),

R(v,w) is cubic with respect to perturbation:

|R(v,w)| ≤ K‖(1− u2
C)−1v‖3

L2∩L∞ + K‖(1− u2
C)−1w‖3

L2∩L∞ ,
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Convexity of action Λω

Let v + iw with real v,w ∈ H1
`C
⊂ H1(R) be a perturbation to uC.

Then, the action is expanded as

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w),

whereas Q+ and Q− are the quadratic forms:

Q+(v) =

∫
R

[
(vx)

2 +
(1 + u2

C)v2

(1− u2
C)2

]
dx,Q−(w) =

∫
R

[
(wx)

2 +
w2

1− u2
C

]
dx,

The quadratic forms are coercive and bounded as

Q±(v) ≥ ‖v‖2
H1 , Q±(v) ≤ K±

(
‖v′‖2

L2 + ‖(1− u2
C)−1v‖2

L2

)
Hence uCµL is a minimizer of Q(u) in XL for fixed L > 0 and µ > 0.
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Numerical illustrations

Solving NLS-IDD numerically

iψt + (1− |ψ|2)ψxx = 0,

from the initial data:

ψ(x, 0) =

{
PuC,head(x), |x| < `C

ucusp(|x| − `C), |x| ≥ `C

where P 6= 1 is the perturbation factor.
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Numerical illustrations
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Summary on bright solitons

We have considered NLS-IDD model

iψt + (1− |ψ|2)ψxx = 0.

. Continuum of singular solitary waves exists ψ(x, t) = uC(x)eit.

. Each solitary wave can be characterized as a minimizer of mass
for fixed energy and fixed distance between two singularities.

. Numerical computations show stability of the bright solitons.
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Section 3

Dark solitons in NLS-IDD
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Another NLS-IDD model

For another NLS-IDD,

i(1− |ψ|2)ψt + ψxx = 0,

transformation ψ(t, x) = u(t, x)e2it recovers the defocusing NLS

i(1− |u|2)ut + uxx + 2(1− |u|2)u = 0,

which admit the black soliton in the form u(x) = tanh(x).

Dark solitons u(t, x) = Uc(x− 2ct) are found from

U′′c − 2ic(1− |Uc|2)U′c + 2(1− |Uc|2)Uc = 0,

for any c ∈ R.
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Time evolution

Solutions are to be considered in the set F ,

F := {f ∈ L∞(R) : |f (x)| < 1, x ∈ R, |f (x)| → 1 as |x| → ∞} .

Dark solitons exist with Uc ∈ F .

Conjecture: the set F is invariant under the time evolution of the
NLS-IDD for solutions satisfying u(t, ·)− Uc ∈ H∞(R), t ∈ [0, τ0).
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Time evolution

Solutions are to be considered in the set F ,

F := {f ∈ L∞(R) : |f (x)| < 1, x ∈ R, |f (x)| → 1 as |x| → ∞} .

Dark solitons exist with Uc ∈ F .

NLS-IDD admits conserved mass and energy

M(ψ) =

∫
(1− |ψ|2)2dx, E(ψ) =

∫
|ψx|2dx

as well as momentum

P(ψ) =
1
2i

∫
(1− |ψ|2)2

|ψ|2
(ψ̄ψx − ψ̄xψ)dx.

Their conservation is proven for smooth solutions satisfying
ψ(t, x) = eiθ±(1 +O(e−α±|x|)) as x→ ±∞.
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Linearization and spectral stability of the black soliton

Using the decomposition ψ(t, x) = e−2it[ϕ(x) + u(t, x) + iv(t, x)],
where ϕ(x) = tanh(x) and u + iv is the perturbation, we obtain the
linearized equations of motion

(1− ϕ2)ut = L−v, (1− ϕ2)vt = −L+u,

where L+ = −∂2
x + 4− 6sech2(x) and L− = −∂2

x − 2sech2(x) are
the same as in the NLS equation.
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(1− ϕ2)ut = L−v, (1− ϕ2)vt = −L+u,

where L+ = −∂2
x + 4− 6sech2(x) and L− = −∂2

x − 2sech2(x) are
the same as in the NLS equation.

The spectral problem

L−v = λ(1− ϕ2)u, L+u = −λ(1− ϕ2)v

is defined in the Hilbert spaceH with the inner product

(f , g)H :=

∫
(1− ϕ2)f̄ gdx =

∫
sech2(x)f̄ (x)g(x)dx.
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Linearization and spectral stability of the black soliton

The spectral problem

L−v = λ(1− ϕ2)u, L+u = −λ(1− ϕ2)v

is defined in the Hilbert spaceH with the inner product

(f , g)H :=

∫
(1− ϕ2)f̄ gdx =

∫
sech2(x)f̄ (x)g(x)dx.

Theorem (P–Plum, SIAM J. Math. Anal. (2023), in print)

. The spectrum of L+ inH consists of simple eigenvalues
µn = n(n + 5), n ≥ 0.

. The spectrum of L− inH consists of simple eigenvalues
νn = n(n + 1)− 2, n ≥ 0.

. The spectrum of the stability problem inH×H consists of pairs
of isolated eigenvalues {±iω1,±iω2, · · · } and zero eigenvalue.
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Energetic stability of the black soliton

Expanding the energy functional

Λ(ψ) :=

∫
[|ψx|2 + (1− |ψ|2)2]dx

at the black soliton ϕ(x) = tanh(x) yields

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q+(u) + Q−(v) + R(u, v),

where Q+(u) = (L+u, u)L2 , Q−(v) = (L−v, v)L2 , and

R(u, v) =

∫
[(2ϕu + u2 + v2)2 − 4ϕ2u2]dx
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where Q+(u) = (L+u, u)L2 , Q−(v) = (L−v, v)L2 , and

R(u, v) =

∫
[(2ϕu + u2 + v2)2 − 4ϕ2u2]dx

Black soliton is energetically stable in a Banach space X if

Λ(ψ)− Λ(ϕ) ≥ C(‖u‖2
X + ‖v‖2

X)− C(‖u‖3
X + ‖v‖3

X).
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Energetic stability of the black soliton

Expanding the energy functional

Λ(ψ) :=

∫
[|ψx|2 + (1− |ψ|2)2]dx

at the black soliton ϕ(x) = tanh(x) yields

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q+(u) + Q−(v) + R(u, v),

where Q+(u) = (L+u, u)L2 , Q−(v) = (L−v, v)L2 , and

R(u, v) =

∫
[(2ϕu + u2 + v2)2 − 4ϕ2u2]dx

However, two obstacles arise due to nonzero boundary conditions

. L− = −∂2
x − 2sech2(x) is not coercive in H1(R)

. R(u, v) is not cubic if (u, v) /∈ H1(R).
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Energetic stability of the black soliton

For the cubic NLS, these issues were handled in [Gravejat–Smets,
2015] by using the revised decomposition

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q−(u) + Q−(v) + ‖η‖2
L2

where Q−(v) = (L−v, v)L2 and η := |ψ|2 −ϕ2 = 2ϕu + u2 + v2. The
distance for perturbations in Banach space X was chosen to be

DX(ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2

L2 + ‖|ψ1|2 − |ψ2|2‖2
L2 + ‖ψ1 − ψ2‖2

H.
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distance for perturbations in Banach space X was chosen to be

DX(ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2

L2 + ‖|ψ1|2 − |ψ2|2‖2
L2 + ‖ψ1 − ψ2‖2

H.

For the NLS–IDD, we have several advantages:

. H appears naturally in the time evolution

. Q−(u) and Q−(v) are coercive inH if
. u ∈ H satisfies orthogonality (ϕ′, u)H = (ϕ, u)H = 0
. v ∈ H satisfies orthogonality (ϕ′, v)H = (ϕ, v)H = 0
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For the cubic NLS, these issues were handled in [Gravejat–Smets,
2015] by using the revised decomposition

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q−(u) + Q−(v) + ‖η‖2
L2

where Q−(v) = (L−v, v)L2 and η := |ψ|2 −ϕ2 = 2ϕu + u2 + v2. The
distance for perturbations in Banach space X was chosen to be

DX(ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2

L2 + ‖|ψ1|2 − |ψ2|2‖2
L2 + ‖ψ1 − ψ2‖2

H.

For the four orthogonality conditions, we use the decomposition

ψ(t, x) = eiθ(t) [Uc(t),ω(t)(x + ζ(t)) + u(t, x + ζ(t)) + iv(t, x + ζ(t))
]
,

where the additional parameter ω is due to the scaling invariance
ψ(t, x) 7→ ψ(ω2t, ωx) of the NLS equation i(1− |ψ|2)ψt + ψxx = 0.
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Energetic stability of the black soliton

For the cubic NLS, these issues were handled in [Gravejat–Smets,
2015] by using the revised decomposition

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q−(u) + Q−(v) + ‖η‖2
L2

where Q−(v) = (L−v, v)L2 and η := |ψ|2 −ϕ2 = 2ϕu + u2 + v2. The
distance for perturbations in Banach space X was chosen to be

DX(ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2

L2 + ‖|ψ1|2 − |ψ2|2‖2
L2 + ‖ψ1 − ψ2‖2

H.

Theorem (P–Plum, SIAM J. Math. Anal. (2023), in print)

Assume that the initial-value problem is well-posed in F ⊂ X with the
distance DX and the values of M(ψ), E(ψ), and P(ψ) are conserved
in the time evolution. Then, the black soliton is orbitally stable in X.
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Summary on the black soliton

We considered NLS-IDD model

i(1− |ψ|2)ψt + ψxx = 0.

. Linearization at the black soliton consists of isolated eigenvalues

. Perturbations near the black soliton are controlled by the
conserved energy, mass, and momentum.

. Local existence of solutions in the set F ⊂ X needs to be
addressed in future.
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Section 4

More NLS models?
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Further emerging NLS models

The regularized NLS equation

i(1− ε2∂2
x )ut + uxx + 2(1− |u|2)u = 0.

M. Colin, D. Lannes SIMA 41 (2009) 708–732

D. Lannes, Proc. R. Soc. Edinburgh Ser A 141 (2011) 253–286

. Local well-posedness can be shown for u = ϕ+ v, where
ϕ(x) = tanh(x) and v ∈ Hs(R) with s > 1

2 .

. Theorem [P–Plum, Proceeding of AMS (2023), in print].
The black soliton ϕ is spectrally stable for ε ≤ ε0 := (5/8)1/4

and spectrally unstable for ε > ε0.

. However, the energy is defined for v ∈ H1 and the momentum is
defined for v ∈ H2(R). Orbital stability of black soliton is open.
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Numerical illustration

Initial data: u0(x) = tanh(x) + ia sech2(x) with a = 0.01
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Numerical illustration
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Numerical illustration
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Numerical illustration
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Conclusion

. We have considered new variations of the classical NLS model
with intensity-dependent dispersion or a regularized dispersion.

. Bright and black solitons are energeticaly stable in the energy
space but singularities of the NLS models with
intensity-dependent dispersion may suggest problems in the
existence of time-dependent solutions in the energy space.

. Regularized NLS models are well-posed in the energy space but
the energy space does not coincide with the momentum space.

MANY THANKS FOR YOUR ATTENTION!
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