Solitary waves under intensity-dependent dispersion

Dmitry E. Pelinovsky (McMaster University, Canada)

joint work with Panos Kevrekidis and Ryan Ross (University of Massachusetts, USA)

and with Michael Plum (Karlsruhe Institute of Technology, Germany)

Classification of solitary waves

Bright soliton $\psi(t, x) = e^{it} \operatorname{sech}(x)$ of the focusing NLS equation

 $i\partial_t\psi + \partial_x^2\psi + 2|\psi|^2\psi = 0$

with $|\psi(t,x)| \to 0$ as $|x| \to \infty$

Dark soliton $\psi(t, x) = e^{-2it} \tanh(x)$ of the defocusing NLS equation

$$i\partial_t\psi + \partial_x^2\psi - 2|\psi|^2\psi = 0$$

with $|\psi(t,x)| \to 1$ as $|x| \to \infty$

The NLS equation realizes a balance between nonlinearity and dispersion for propagation of nonlinear dispersive waves.

$$i\psi_t + \psi_{xx} + |\psi|^2 \psi = 0.$$
 (NLS)

The NLS equation realizes a balance between nonlinearity and dispersion for propagation of nonlinear dispersive waves.

$$i\psi_t + \psi_{xx} + |\psi|^2 \psi = 0.$$
 (NLS)

Taking into account higher-order nonlinearity and dispersion gives an extended version of the NLS equation:

 $i\psi_t + \psi_{xx} + |\psi|^2 \psi + ic_1 \psi_{xxx} + ic_2 |\psi|^2 \psi_x + ic_3 (|\psi|^2 \psi)_x + c_4 |\psi|^4 \psi = 0.$

The NLS equation realizes a balance between nonlinearity and dispersion for propagation of nonlinear dispersive waves.

$$i\psi_t + \psi_{xx} + |\psi|^2 \psi = 0.$$
 (NLS)

Taking into account higher-order nonlinearity and dispersion gives an extended version of the NLS equation:

 $i\psi_t + \psi_{xx} + |\psi|^2 \psi + ic_1 \psi_{xxx} + ic_2 |\psi|^2 \psi_x + ic_3 (|\psi|^2 \psi)_x + c_4 |\psi|^4 \psi = 0.$

We study different NLS models where the dispersion coefficient depends on the wave intensity:

$$i\psi_t + (1 - |\psi|^2)\psi_{xx} = 0$$
 or $i\psi_t + (1 - |\psi|^2)^{-1}\psi_{xx} = 0.$

C.Y. Lin, J.H. Chang, G. Kurizki, and R.K. Lee, Optics Letters 45 (2020), 1471-1474

For NLS-IDD,

$$i\psi_t + (1 - |\psi|^2)\psi_{xx} = 0, \qquad (\text{NLS-IDD})$$

two formal conserved quantities exist:

$$Q(\psi) = -\int_{\mathbb{R}} \log|1 - |\psi|^2 |dx|$$

and

$$E(\psi) = \int_{\mathbb{R}} |\psi_x|^2 dx.$$

Standing waves have the form $\psi(x, t) = e^{i\omega t}u(x)$ with (ω, u) satisfying

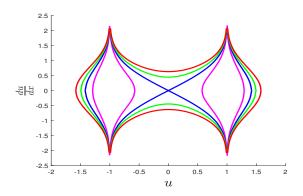
$$\omega u(x) = (1 - u^2)u''(x).$$

Solitary waves with $u(x) \to 0$ as $|x| \to \infty$ exist only if $\omega > 0$, in which case ω can be scaled out by $u(x) \mapsto u(\sqrt{\omega}x)$.

Phase plane portrait

Equation $(1 - u^2)u'' = u$ is integrable with the first invariant: $\frac{1}{2} \left(\frac{du}{dx}\right)^2 + \frac{1}{2} \log|1 - u^2| = C,$

where *C* is constant. Bright solitons are singular at $u = \pm 1$.

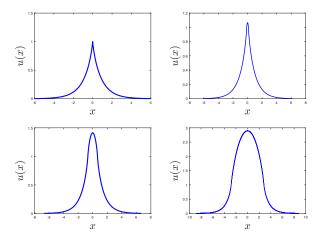


D. Pelinovsky, McMaster University

Solitary waves under intensity-dependent dispersion

Possible solitary waves

Gluing the stable and unstable curves with another integral curves give a one-parameter family of single-humped solitary waves:



Top left: "cusped soliton". Others: "bell-shaped solitons".

D. Pelinovsky, McMaster University

Solitary waves under intensity-dependent dispersion

Questions on existence and stability of these solitary waves

- ▷ In what space (in what sense) do they exist?
- ▷ What is the nature of singularity at $u = \pm 1$?
- ▷ Can these solutions be characterized variationally?

Existence result

Definition

We say that $u \in H^1(\mathbb{R})$ is a weak solution of the differential equation $u = (1 - u^2)u''$ if it satisfies the following equation

 $\langle u, \varphi \rangle + \langle (1-u^2)u', \varphi' \rangle - 2 \langle u(u')^2, \varphi \rangle = 0, \quad \text{for every } \varphi \in H^1(\mathbb{R}),$

where $\langle \cdot, \cdot \rangle$ is the inner product in $L^2(\mathbb{R})$.

Existence result

Definition

We say that $u \in H^1(\mathbb{R})$ is a weak solution of the differential equation $u = (1 - u^2)u''$ if it satisfies the following equation

 $\langle u, \varphi \rangle + \langle (1 - u^2)u', \varphi' \rangle - 2 \langle u(u')^2, \varphi \rangle = 0, \text{ for every } \varphi \in H^1(\mathbb{R}),$ where $\langle \cdot, \cdot \rangle$ is the inner product in $L^2(\mathbb{R})$.

Theorem (Ross-Kevrekidis-P, Q.Appl.Math. 79 (2021) 641)

There exists a one-parameter continuous family of weak, positive, and single-humped solutions of $u = (1 - u^2)u''$ parametrized by C.

What is needed for the proof beyond the phase plane analysis:

▷
$$u \in H^1(\mathbb{R});$$

▷ $\lim_{x \to x_0} (1 - u^2(x))u'(x) = 0$ for each x_0 where $u(x_0) = 1$.

Nature of singularity at u = 1

It follows from the first invariant

$$\frac{1}{2}\left(\frac{du}{dx}\right)^2 + \frac{1}{2}\log|1 - u^2| = C,$$

that the cusped soliton is defined by the implicit function

$$|x| = \int_{u}^{1} \frac{d\xi}{\sqrt{-\log(1-\xi^2)}}, \quad u \in (0,1).$$

Asymptotic analysis gives as $|x| \rightarrow 0$:

$$u(x) = 1 - |x| \sqrt{\log(1/|x|)} \left[1 + \mathcal{O}\left(\frac{\log \log(1/|x|)}{\log(1/|x|)}\right) \right].$$

[Alfimov–Korobeinikov–Lustri–P, Nonlinearity 32 (2019) 3445] Hence, $u'(x) \sim \sqrt{\log(1/|x|)}$ and $(1 - u^2)u'(x) \sim |x|\log(1/|x|)$.

Towards the stability result

Recall the conserved quantities:

$$Q(\psi) = -\int_{\mathbb{R}} \log|1 - |\psi|^2 |dx, \quad E(\psi) = \int_{\mathbb{R}} |\psi_x|^2 dx.$$

Solitary wave $\psi(x, t) = u(x)e^{i\omega t}$ is a critical point of the action

 $\Lambda_{\omega}(u) = E(u) + \omega Q(u),$

however, the formal expansion yields

$$\begin{split} \Lambda_{\omega}(u+\varphi) - \Lambda_{\omega}(u) &= 2\langle u', \varphi' \rangle + 2\omega \langle (1-u^2)^{-1}u, \varphi \rangle \\ &+ \mathcal{O}(\|\varphi'\|_{L^2}^2 + \|(1-u^2)^{-1}\varphi\|_{L^2 \cap L^\infty}^2), \end{split}$$

which is not compatible with the definition of weak solutions:

$$u \in H^1(\mathbb{R}): \quad \omega \langle u, \varphi \rangle + \langle (1-u^2)u', \varphi' \rangle - 2 \langle u(u')^2, \varphi \rangle = 0,$$

for every $\varphi \in H^1(\mathbb{R})$.

New definition of weak solutions

Definition

Fix L > 0 and define

 $X_L := \left\{ u \in H^1(\mathbb{R}) : \ u(x) > 1, \ x \in (-L, L) \text{ and } u(x) \le 1, \ |x| \ge L \right\}.$

Pick $u_L \in X_L$ satisfying

$$\lim_{|x| \to L} \frac{u_L(x) - 1}{(L - |x|)\sqrt{|\log|L - |x|||}} = 1.$$

We say that $u \in X_L \subset H^1(\mathbb{R})$ is a weak solution if it satisfies the following equation

$$\langle u', \varphi' \rangle + \omega \langle (1 - u^2)^{-1} u, \varphi \rangle = 0, \text{ for every } \varphi \in H^1_L,$$

where $H^1_L := \left\{ \varphi \in H^1(\mathbb{R}) : \ (1 - u^2_L)^{-1} \varphi \in L^2(\mathbb{R}) \cap L^\infty(\mathbb{R}) \right\}.$

Stability result

Theorem (P-Ross-Kevrekidis, J. Phys. A 54 (2021) 445701)

For every $\mu > 0$ and L > 0, there exists a unique minimizer of the constrained variational problem

$$\mathcal{Q}_{\mu,L} := \inf_{u \in X_L} \{ Q(u) : \quad E(u) = \mu \}.$$

What is needed for the proof beyond the expansion of Λ_{ω} in X_L :

- ▷ Monotonicity of mappings $C \mapsto E(u_C)$ and $C \mapsto \ell_C$, where $2\ell_C$ is the length of the bell head;
- Scaling transformation;
- \triangleright Convexity of action $\Lambda_{\omega=1}$ at u_C .

It follows from $(u')^2 + \log|1 - u^2| = 2C$ that

$$E(u_C) = E(u_{cusp}) + 2\int_{1}^{\sqrt{1+e^{2C}}} \sqrt{2C - \log(u^2 - 1)} du$$

and

$$\ell_C = \int_1^{\sqrt{1+e^{2C}}} \frac{du}{\sqrt{2C - \log(u^2 - 1)}}$$

It follows from $(u')^2 + \log|1 - u^2| = 2C$ that

$$E(u_C) = E(u_{cusp}) + 2\int_{1}^{\sqrt{1+e^{2C}}} \sqrt{2C - \log(u^2 - 1)} du$$

and

$$\ell_C = \int_1^{\sqrt{1+e^{2C}}} \frac{du}{\sqrt{2C - \log(u^2 - 1)}}$$

 $\frac{dE(u_C)}{dC} > 0$ follows from

$$\frac{dE(u_C)}{dC} = 2 \int_1^{\sqrt{1+e^{2C}}} \frac{du}{\sqrt{2C - \log(u^2 - 1)}} = 2\ell_C.$$

It follows from $(u')^2 + \log|1 - u^2| = 2C$ that

$$E(u_C) = E(u_{cusp}) + 2\int_1^{\sqrt{1+e^{2C}}} \sqrt{2C - \log(u^2 - 1)} du$$

and

$$\ell_C = \int_1^{\sqrt{1+e^{2C}}} \frac{du}{\sqrt{2C - \log(u^2 - 1)}}$$

 $\frac{d\ell_C}{dC} > 0$ follows from a longer computation, where we use **the period** function for periodic orbits on the phase plane.

It follows from $(u')^2 + \log|1 - u^2| = 2C$ that

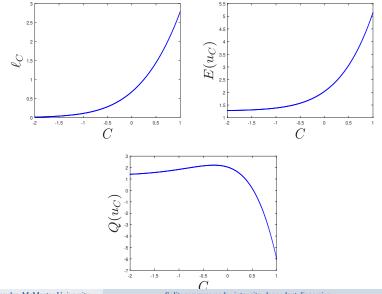
$$E(u_C) = E(u_{cusp}) + 2\int_{1}^{\sqrt{1+e^{2C}}} \sqrt{2C - \log(u^2 - 1)} du$$

and

$$\ell_C = \int_1^{\sqrt{1+e^{2C}}} \frac{du}{\sqrt{2C - \log(u^2 - 1)}}$$

The mapping $C \mapsto Q(u_C)$ is non-monotone.

Numerical illustrations of mappings $C \mapsto \ell_C, E(u_C), Q(u_C)$



D. Pelinovsky, McMaster University

Solitary waves under intensity-dependent dispersion

Scaling transformation

The variational problem for $\mu > 0$ and L > 0:

$$\mathcal{Q}_{\mu,L} := \inf_{u \in X_L} \{ Q(u) : \quad E(u) = \mu \},$$

is associated with the Euler–Lagrange equation $\omega u = (1 - u^2)u''$.

Scaling transformation

The variational problem for $\mu > 0$ and L > 0:

$$\mathcal{Q}_{\mu,L} := \inf_{u \in X_L} \{ Q(u) : \quad E(u) = \mu \},$$

is associated with the Euler–Lagrange equation $\omega u = (1 - u^2)u''$.

Let u_C be a solution of $u = (1 - u^2)u''$. Then, $u_{\omega}(x) = u_C(\sqrt{\omega}x)$ is a solution of the Euler–Lagrange equation so that

$$Q(u_{\omega}) = \frac{1}{\sqrt{\omega}}Q(u_C), \quad E(u_{\omega}) = \sqrt{\omega}E(u_C)$$

and

$$L = \frac{1}{\sqrt{\omega}} \ell_C, \quad \mu = \sqrt{\omega} E(u_C).$$

Scaling transformation

The variational problem for $\mu > 0$ and L > 0:

$$\mathcal{Q}_{\mu,L} := \inf_{u \in X_L} \{ Q(u) : \quad E(u) = \mu \},$$

is associated with the Euler–Lagrange equation $\omega u = (1 - u^2)u''$.

Transformation $(\omega, C) \mapsto (\mu, L)$ is invertible because the Jacobian is

$$\frac{\frac{\partial \mu}{\partial \omega}}{\frac{\partial L}{\partial \omega}} \frac{\frac{\partial \mu}{\partial C}}{\frac{\partial L}{\partial \omega}} = \frac{1}{2\omega} \left[E(u_C) \frac{d\ell_C}{dC} + \ell_C \frac{dE(u_C)}{dC} \right] > 0.$$

Hence the mapping $(\omega, C) \mapsto (\mu, L)$ is invertible and there exists a unique $C = C_{\mu,L}$ for every $\mu > 0$ and L > 0. In fact, $\ell_C E(u_C) = L\mu$.

Convexity of action Λ_{ω}

Let v + iw with real $v, w \in H^1_{\ell_C} \subset H^1(\mathbb{R})$ be a perturbation to u_C . Then, the action is expanded as

 $\Lambda_{\omega=1}(u_C + v + iw) = \Lambda_{\omega=1}(u_C) + Q_+(v) + Q_-(w) + R(v, w),$

where R(v, w) is the remainder term

$$R(v,w) = \int_{\mathbb{R}} \left[\log \left(1 - \frac{2u_C v + v^2 + w^2}{1 - u_C^2} \right) + \frac{2u_C v}{1 - u_C^2} + \frac{(1 + u_C^2)v^2}{(1 - u_C^2)^2} + \frac{w^2}{1 - u_C^2} \right] dx.$$

Convexity of action Λ_{ω}

Let v + iw with real $v, w \in H^1_{\ell_C} \subset H^1(\mathbb{R})$ be a perturbation to u_C . Then, the action is expanded as

 $\Lambda_{\omega=1}(u_C + v + iw) = \Lambda_{\omega=1}(u_C) + Q_+(v) + Q_-(w) + R(v, w),$

R(v, w) is cubic with respect to perturbation:

 $|R(v,w)| \le C ||(1-u_C^2)^{-1}v||_{L^2 \cap L^{\infty}}^3 + C ||(1-u_C^2)^{-1}w||_{L^2 \cap L^{\infty}}^3,$

Convexity of action Λ_{ω}

Let v + iw with real $v, w \in H^1_{\ell_C} \subset H^1(\mathbb{R})$ be a perturbation to u_C . Then, the action is expanded as

 $\Lambda_{\omega=1}(u_C + v + iw) = \Lambda_{\omega=1}(u_C) + Q_+(v) + Q_-(w) + R(v, w),$

whereas Q_+ and Q_- are the quadratic forms:

$$Q_{+}(v) = \int_{\mathbb{R}} \left[(v_{x})^{2} + \frac{(1+u_{C}^{2})v^{2}}{(1-u_{C}^{2})^{2}} \right] dx, Q_{-}(w) = \int_{\mathbb{R}} \left[(w_{x})^{2} + \frac{w^{2}}{1-u_{C}^{2}} \right] dx,$$

The quadratic forms are coercive and bounded as

 $Q_{\pm}(v) \ge \|v\|_{H^1}^2, \quad Q_{\pm}(v) \le C_{\pm} \left(\|v'\|_{L^2}^2 + \|(1-u_C^2)^{-1}v\|_{L^2}^2\right)$

Hence $u_{C_{uL}}$ is a minimizer of Q(u) in X_L for fixed L > 0 and $\mu > 0$.

Summary on bright solitons

We considered NLS equation with intensity-dependent dispersion

 $i\psi_t + (1 - |\psi|^2)\psi_{xx} = 0.$

- ▷ Continuum of singular solitary waves exists $\psi(x, t) = u_C(x)e^{it}$.
- ▷ Each solitary wave can be characterized as a minimizer of mass for fixed energy and fixed distance between two singularities.
- ▷ Well-posedness of the model is opened for further studies.

For another NLS-IDD,

$$i(1 - |\psi|^2)\psi_t + \psi_{xx} = 0, \qquad (\text{NLS-IDD})$$

transformation $\psi(x, t) = u(x, t)e^{2it}$ recovers the defocusing NLS

$$i(1-|u|^2)u_t + u_{xx} + 2(1-|u|^2)u = 0,$$

which admit the black soliton in the form u(x) = tanh(x).

Dark solitons $u(t, x) = U_c(x - 2ct)$ are found from

$$U_c'' - 2ic(1 - |U_c|^2)U_c' + 2(1 - |U_c|^2)U_c = 0,$$

for any $c \in \mathbb{R}$.

Time evolution

Solutions can be considered in the set \mathcal{F} ,

 $\mathcal{F}:=\left\{f\in L^\infty(\mathbb{R}):\ |f(x)|<1,\ x\in\mathbb{R},\ |f(x)|\to 1\ \text{as}\ |x|\to\infty\right\}.$

Dark solitons exist with $U_c \in \mathcal{F}$. We do not know if the set \mathcal{F} is invariant under the time evolution.

Time evolution

Solutions can be considered in the set \mathcal{F} ,

 $\mathcal{F} := \left\{ f \in L^{\infty}(\mathbb{R}) : |f(x)| < 1, \ x \in \mathbb{R}, \ |f(x)| \to 1 \text{ as } |x| \to \infty \right\}.$

Dark solitons exist with $U_c \in \mathcal{F}$. We do not know if the set \mathcal{F} is invariant under the time evolution.

Conserved quantities of mass and energy

$$M(\psi) = \int (1 - |\psi|^2)^2 dx, \quad E(\psi) = \int |\psi_x|^2 dx$$

and the momentum

$$P(\psi) = \frac{1}{2i} \int \frac{(1 - |\psi|^2)^2}{|\psi|^2} (\bar{\psi}\psi_x - \bar{\psi}_x\psi) dx.$$

Conservation is proven for $\psi(t, x) = e^{i\theta_{\pm}}(1 + \mathcal{O}(e^{-\alpha_{\pm}|x|})), x \to \pm \infty$.

Main result 1: linearization at the black soliton

Using the decomposition $\psi(t, x) = e^{-2it}[\varphi(x) + u(t, x) + iv(t, x)]$, where $\varphi(x) = \tanh(x)$ and u + iv is the perturbation, we obtain the linearized equations of motion

$$(1 - \varphi^2)u_t = L_- v, \quad (1 - \varphi^2)v_t = -L_+ u,$$

where $L_{+} = -\partial_x^2 + 4 - 6\operatorname{sech}^2(x)$ and $L_{-} = -\partial_x^2 - 2\operatorname{sech}^2(x)$ are the same as in the NLS equation.

Main result 1: linearization at the black soliton

Using the decomposition $\psi(t, x) = e^{-2it}[\varphi(x) + u(t, x) + iv(t, x)]$, where $\varphi(x) = \tanh(x)$ and u + iv is the perturbation, we obtain the linearized equations of motion

$$(1 - \varphi^2)u_t = L_- v, \quad (1 - \varphi^2)v_t = -L_+ u,$$

where $L_{+} = -\partial_x^2 + 4 - 6\operatorname{sech}^2(x)$ and $L_{-} = -\partial_x^2 - 2\operatorname{sech}^2(x)$ are the same as in the NLS equation.

The spectral problem

$$L_{-}v = \lambda(1-\varphi^2)u, \quad L_{+}u = -\lambda(1-\varphi^2)v$$

is defined in the Hilbert space \mathcal{H} with the inner product

$$(f,g)_{\mathcal{H}} := \int (1-\varphi^2)\bar{f}gdx = \int \operatorname{sech}^2(x)\bar{f}(x)g(x)dx.$$

Main result 1: linearization at the black soliton

The spectral problem

$$L_{-}v = \lambda(1-\varphi^2)u, \quad L_{+}u = -\lambda(1-\varphi^2)v$$

is defined in the Hilbert space ${\mathcal H}$ with the inner product

$$(f,g)_{\mathcal{H}} := \int (1-\varphi^2)\bar{f}gdx = \int \operatorname{sech}^2(x)\bar{f}(x)g(x)dx.$$

Theorem (P–Plum, 2022)

- ▷ The spectrum of L_+ in \mathcal{H} consists of simple eigenvalues $\mu_n = n(n+5), n \ge 0.$
- ▷ The spectrum of L_{-} in \mathcal{H} consists of simple eigenvalues $\nu_n = n(n+1) 2, n \ge 0.$
- ▷ The spectrum of the stability problem in $\mathcal{H} \times \mathcal{H}$ consists of pairs of isolated eigenvalues $\{\pm i\omega_1, \pm i\omega_2, \cdots\}$ and zero eigenvalue.

Expanding the energy functional

$$\Lambda(\psi) := \int [|\psi_x|^2 + (1 - |\psi|^2)^2] dx$$

at the black soliton $\varphi(x) = \tanh(x)$ yields

 $\Lambda(\psi = \varphi + u + iv) - \Lambda(\varphi) = Q_+(u) + Q_-(v) + R(u, v),$

where $Q_+(u) = (L_+u, u)_{L^2}$, $Q_-(v) = (L_-v, v)_{L^2}$, and

$$R(u,v) = \int [(2\varphi u + u^2 + v^2)^2 - 4\varphi^2 u^2] dx$$

D. Pelinovsky, McMaster University

Solitary waves under intensity-dependent dispersion

Expanding the energy functional

$$\Lambda(\psi) := \int [|\psi_x|^2 + (1 - |\psi|^2)^2] dx$$

at the black soliton $\varphi(x) = \tanh(x)$ yields

$$\Lambda(\psi = \varphi + u + iv) - \Lambda(\varphi) = Q_+(u) + Q_-(v) + R(u, v),$$

where
$$Q_+(u) = (L_+u, u)_{L^2}, Q_-(v) = (L_-v, v)_{L^2}$$
, and

$$R(u, v) = \int [(2\varphi u + u^2 + v^2)^2 - 4\varphi^2 u^2] dx$$

Black soliton is energetically stable in a Banach space X if

$$\Lambda(\psi) - \Lambda(\varphi) \ge C(\|u\|_X^2 + \|v\|_X^2) - C(\|u\|_X^3 + \|v\|_X^3).$$

Expanding the energy functional

$$\Lambda(\psi) := \int [|\psi_x|^2 + (1 - |\psi|^2)^2] dx$$

at the black soliton $\varphi(x) = \tanh(x)$ yields

$$\Lambda(\psi = \varphi + u + iv) - \Lambda(\varphi) = Q_+(u) + Q_-(v) + R(u, v),$$

where
$$Q_+(u) = (L_+u, u)_{L^2}, Q_-(v) = (L_-v, v)_{L^2}$$
, and

$$R(u, v) = \int [(2\varphi u + u^2 + v^2)^2 - 4\varphi^2 u^2] dx$$

However, two obstacles arise due to nonzero boundary conditions

$$\triangleright L_{-} = -\partial_x^2 - 2\operatorname{sech}^2(x)$$
 is not coercive in $H^1(\mathbb{R})$

▷ R(u, v) is not cubic if $(u, v) \notin H^1(\mathbb{R})$.

For the cubic NLS, this was corrected in [Gravejat-Smets, 2015]

 $\Lambda(\psi = \varphi + u + iv) - \Lambda(\varphi) = Q_{-}(u) + Q_{-}(v) + \|\eta\|_{L^2}^2$

where $Q_{-}(v) = (L_{-}v, v)_{L^2}$ and $\eta := |\psi|^2 - \varphi^2 = 2\varphi u + u^2 + v^2$. The distance for perturbations in Banach space *X* was chosen to be

 $\mathcal{D}_X(\psi_1,\psi_2) := \sqrt{\|\psi_1' - \psi_2'\|_{L^2}^2 + \||\psi_1|^2 - |\psi_2|^2\|_{L^2}^2 + \|\psi_1 - \psi_2\|_{\mathcal{H}}^2}.$

For the cubic NLS, this was corrected in [Gravejat-Smets, 2015]

 $\Lambda(\psi = \varphi + u + iv) - \Lambda(\varphi) = Q_{-}(u) + Q_{-}(v) + \|\eta\|_{L^2}^2$

where $Q_{-}(v) = (L_{-}v, v)_{L^2}$ and $\eta := |\psi|^2 - \varphi^2 = 2\varphi u + u^2 + v^2$. The distance for perturbations in Banach space *X* was chosen to be

$$\mathcal{D}_X(\psi_1,\psi_2) := \sqrt{\|\psi_1' - \psi_2'\|_{L^2}^2 + \||\psi_1|^2 - |\psi_2|^2\|_{L^2}^2 + \|\psi_1 - \psi_2\|_{\mathcal{H}}^2}.$$

For the NLS-IDD, we have several advantages:

- \triangleright \mathcal{H} appears naturally in the time evolution
- $\triangleright Q_{-}(u)$ and $Q_{-}(v)$ are coercive in \mathcal{H} if
 - ▷ $u \in \mathcal{H}$ satisfies orthogonality $(\varphi', u)_{\mathcal{H}} = (\varphi, u)_{\mathcal{H}} = 0$
 - $\triangleright v \in \mathcal{H}$ satisfies orthogonality $(\varphi', v)_{\mathcal{H}} = (\varphi, v)_{\mathcal{H}} = 0$

For the cubic NLS, this was corrected in [Gravejat-Smets, 2015]

 $\Lambda(\psi = \varphi + u + iv) - \Lambda(\varphi) = Q_{-}(u) + Q_{-}(v) + \|\eta\|_{L^{2}}^{2}$

where $Q_{-}(v) = (L_{-}v, v)_{L^2}$ and $\eta := |\psi|^2 - \varphi^2 = 2\varphi u + u^2 + v^2$. The distance for perturbations in Banach space *X* was chosen to be

$$\mathcal{D}_X(\psi_1,\psi_2) := \sqrt{\|\psi_1' - \psi_2'\|_{L^2}^2 + \||\psi_1|^2 - |\psi_2|^2\|_{L^2}^2 + \|\psi_1 - \psi_2\|_{\mathcal{H}}^2}.$$

For the four orthogonality conditions, we use the decomposition

 $\psi(t,x) = e^{i\theta(t)} \left[U_{c(t),\omega(t)}(x+\zeta(t)) + u(t,x+\zeta(t)) + iv(t,x+\zeta(t)) \right],$

where the additional parameter ω is due to the scaling invariance $\psi(t, x) \mapsto \psi(\omega^2 t, \omega x)$ of the NLS equation $i(1 - |\psi|^2)\psi_t + \psi_{xx} = 0$.

For the cubic NLS, this was corrected in [Gravejat-Smets, 2015]

 $\Lambda(\psi = \varphi + u + iv) - \Lambda(\varphi) = Q_{-}(u) + Q_{-}(v) + \|\eta\|_{L^2}^2$

where $Q_{-}(v) = (L_{-}v, v)_{L^2}$ and $\eta := |\psi|^2 - \varphi^2 = 2\varphi u + u^2 + v^2$. The distance for perturbations in Banach space *X* was chosen to be

$$\mathcal{D}_X(\psi_1,\psi_2) := \sqrt{\|\psi_1' - \psi_2'\|_{L^2}^2 + \||\psi_1|^2 - |\psi_2|^2\|_{L^2}^2 + \|\psi_1 - \psi_2\|_{\mathcal{H}}^2}$$

Theorem (P–Plum, 2022)

Assume that the initial-value problem is well-posed in X with the distance \mathcal{D}_X and the values of $M(\psi)$, $E(\psi)$, and $P(\psi)$ are conserved in the time evolution. Then, the black soliton is orbitally stable in X.

Summary on dark solitons

We considered NLS equation with intensity-dependent dispersion

 $i(1 - |\psi|^2)\psi_t + \psi_{xx} = 0.$

- ▷ Linearization at the black soliton consists of isolated eigenvalues
- Perturbations near the black soliton are controlled by the conserved energy, mass, and momentum.
- ▷ Well-posedness of the model is opened for further studies.