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Section 2

Breathers and Modulating pulses
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Examples of a breather

The standard example is the breather of the sine–Gordon equation:

utt − uxx + sin(u) = 0,

given by the exact solution

u(x, t) = 4 arctan

√
1− ω2 cos(ωt)

ω cosh(
√

1− ω2x)
, 0 < ω < 1.

This is the standing breather which also generates a family of moving
breathers by the Lorentz transformation:

u(x, t) = ũ
(

x− ct√
1− c2

,
t − cx√
1− c2

)
, −1 < c < 1.
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Examples of a breather

The breather solution satisfies

u(x, t + T) = u(x, t) and lim
|x|→∞

u(x, t) = 0,

with T = 2π/ω.
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Examples of a breather

One striking asymptotic limit is the small-amplitude, slow-scale
approximation:

u(x, t) = 4 arctan

√
1− ω2 cos(ωt)

ω cosh(
√

1− ω2x)
, ω ∈ (0, 1).

If ε :=
√

1− ω2 is small, then the power expansions yields

u(x, t) = 4εsech(εx) cos(ω(ε)t) +O(ε3),

with
ω(ε) =

√
1− ε2 = 1− 1

2
ε2 +O(ε4).
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Small-amplitude expansions

This suggest the reduction of the sine–Gordon equation

utt − uxx + sin(u) = 0,

with the small-amplitude, slow-scale expansions

u(x, t) = ε[A(εx, ε2t)eit + Ā(εx, ε2t)e−it] +O(ε3).

Since sin(u) = u− 1
6 u3 +O(u5) and e±it are in the null space of

1 + ∂2
t in L2

per, we get the NLS equation for A = A(ξ, τ) from the
solvability condition in L2

per at the order of O(ε3):

2iAτ − Aξξ −
1
2
|A|2A = 0.

The breather corresponds to the NLS soliton A(ξ, τ) = 2sech(ξ)e−
i
2 τ .
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Small-amplitude expansions

However, the expansions fail for non-integrable versions of the wave
equation, e.g. for the φ4 theory:

utt − uxx + u− 1
6

u3 = 0.

. H. Segur, M. D. Kruskal, Phys. Rev. Lett. 58 (1987), 747

. J. Denzler, Commun. Math. Phys. 158 (1993) 397

. B. Birnir, H.P. McKean, A. Weinstein, CPAM 47 (1994) 1043

. Justification of the NLS approximation holds only on long but
finite time intervals:

sup
t∈[0,τ0ε−2]

|u(·, t)− εA(ε·, ε2t)eit − εĀ(ε·, ε2t)e−it‖L∞ ≤ Cε3.
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Small-amplitude expansions

The breather solutions can be thought to be a solution of the form

u(x, t) = v(ξ, θ), ξ := x− ct, θ := kx− ωt

for some approrpriately choosen parameters c, k, ω and with
boundary conditions

u(x, θ + 2π) = u(x, θ) and lim
|ξ|→∞

v(ξ, θ) = 0.

The PDE is converted to the spatial dynamical system in ξ by using
Fourier series in θ. A center manifold does not allow us generally to
construct a homoclinic orbit with zero boundary conditions.

. M. Groves and G. Schneider, Comm. Math. Phys. 219 (2001);
J. Diff. Eqs. 219 (2005); Comm. Math. Phys. 278 (2008).
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Small-amplitude expansions

Instead of breathers, we would then have modulating pulses which are
not trully localized (also called generalized breathers).

O(ε2N) O(ε)

cg

cpO(ε−(2N+1))

O(ε−1)

-�
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Breathers versus modulating pulses

Besides integrable systems, true breathers exist in some models:

. Lattices with weak coupling:

ün − ε2(∆u)n + un + u3
n = 0, n ∈ Z.

S. Aubry & R. MacKay (1994); D.P., T. Penati, S. Paleari (2020)

. Systems with periodic coefficients

s(x)utt−uxx−ρ(x)u+u3 = 0, s(x+2π) = s(x), ρ(x+2π) = ρ(x).

C. Blank, M. Chirilus, V. Lescarret, G. Schneider (2011);
A. Hirsch & W. Reichel (2019); S. Kohler & W. Reichel (2022)

. Curl–curl wave equations: M. Plum & W. Reichel (2016), (2023)
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Breathers versus modulating pulses

In more general models, modulating pulses exist instead of breathers:

. Standing modulating pulse solutions of the wave equation with
periodic coefficients

utt − uxx − ρ(x)u + u3 = 0, ρ(x + 2π) = ρ(x).

V. Lescarret, G. Schneider (2009); T. Dohnal, D. Rudolf (2020)

. Traveling modulating pulse solutions of the Gross-Pitaevskii
equation with periodic potentials:

iψt = −ψxx + ρ(x)ψ + |ψ|2ψ, ρ(x + 2π) = ρ(x)

D.P & G. Schneider (2008); D.P. (2011);
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Breathers versus modulating pulses

No results for traveling modulating pulse solutions in the wave
equation with periodic coefficients so far.

utt − uxx + ρ(x)u = γu3, ρ(x + 2π) = ρ(x).

Here traveling modulating pulses have three spatial scales:

ξ = x− ct, θ = kx− ωt, x.

T. Dohnal, D.P., G. Schneider, Nonlinearity (2024) under review.
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Section 3

Traveling modulating pulses in the wave
equation with periodic coefficients
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Linear theory and traveling modulating pulses

Consider the linear wave equation

∂2
t u(x, t)− ∂2

x u(x, t) + ρ(x)u(x, t) = 0, ρ(x + 2π) = ρ(x),

with 2π-periodic, bounded, and positive coefficient ρ.
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Linear theory and traveling modulating pulses

Consider the linear wave equation

∂2
t u(x, t)− ∂2

x u(x, t) + ρ(x)u(x, t) = 0, ρ(x + 2π) = ρ(x),

with 2π-periodic, bounded, and positive coefficient ρ.

Solutions are given by the family of Bloch modes:

u(x, t) = e±iωn(l)teilxfn(l, x), n ∈ N, l ∈ B := R\Z,

where fn(l, x) = fn(l, x + 2π) and fn(l, x) = fn(l + 1, x)eix are
L2([0, 2π]) normalized eigenfunctions and

0 < ω1(l) ≤ ω2(l) ≤ · · · ≤ ωn(l) ≤ ωn+1(l) ≤ . . . ∀l ∈ B,
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Linear theory and traveling modulating pulses

Consider the linear wave equation

∂2
t u(x, t)− ∂2

x u(x, t) + ρ(x)u(x, t) = 0, ρ(x + 2π) = ρ(x),

with 2π-periodic, bounded, and positive coefficient ρ.

ωn

l1
2−1

2

-

6
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Linear theory and traveling modulating pulses

Consider the linear wave equation

∂2
t u(x, t)− ∂2

x u(x, t) + ρ(x)u(x, t) = 0, ρ(x + 2π) = ρ(x),

with 2π-periodic, bounded, and positive coefficient ρ.

For fixed n0 ∈ N and l0 ∈ B, we can approximate the traveling
modulating pulse by

uapp(x, t) = εA(ε(x− cgt), ε2t)fn0(l0, x)eil0xe−iωn0 (l0)t + c.c.,

where cg = ω′n0
(l0), and A = A(X,T) is a soliton of the NLS equation:

2i∂TA + ω′′n0
(l0)∂2

XA + γn0(l0)|A|2A = 0,

with γn0(l0) = 3‖fn0(`0, ·)‖4
L4/ωn0(l0).
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Main theorem [T. Dohnal, D.P., G. Schneider (2024)]

Choose n0 ∈ N and l0 ∈ B such that ωn(l0) 6= ωn0(l0), ∀n 6= n0,
ω′n0

(l0) 6= ±1, ω′′n0
(l0) 6= 0, and

ω2
n(ml0) 6= m2ω2

n0
(l0), m ∈ {3, 5, . . . 2N + 1}, ∀n ∈ N.

There are ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) there exist
traveling modulating pulse solutions of the semi-linear wave equation:

u(x, t) = v(ξ, z, x) with ξ = x− cgt, z = l0x− ωt,

with v ∈ C2([−ε−(2N+1), ε−(2N+1)],X ) satisfying

sup
ξ∈[−ε−(2N+1), ε−(2N+1)]

|v(ξ, z, x)− h(ξ, z, x)| ≤ Cε2N ,

where X := H2
per(T,L2(T)) ∩ H1

per(T,H1
per(T)) ∩ L2(T,H2

per(T)).
The function h ∈ C2(R,X ) satisfies

lim
|ξ|→∞

h(ξ, z, x) = 0 and sup
ξ,z,x∈R

∣∣h(ξ, z, x)− uapp(ξ, z, x)
∣∣ ≤ Cε2.
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Some remarks about the main result

The illustration of the main result is the same picture:

O(ε2N) O(ε)

cg

cpO(ε−(2N+1))

O(ε−1)

-�

D. Pelinovsky, McMaster University Breathers and Modulating pulses 11 / 23



Some remarks about the main result

As a consequence, the modulating pulses are relevant for the
initial-value problem for the wave equation.

Theorem
Let v be the constructed solution and take an arbitrary function
φ ∈ C2(R \ [−ε−(2N+1), ε−(2N+1)],X ) such that

vext(ξ, z, x) :=

{
v(ξ, x, z), (ξ, x, z) ∈ [−ε−(2N+1), ε−(2N+1)]× R× R,
φ(ξ, x, z), (ξ, x, z) ∈ otherwise

satisfies vext ∈ C2(R,X ). Let u0(x) := vext(x, `0x, x) and

u1(x) := −cg∂ξvext(x, `0x, x)− ω∂zvext(x, `0x, x).

The corresponding solution of the wave equation satisfies
u(x, t) = v(x− cgt, l0x− ωt, x) for every
(x, t) ∈ [−ε−(2N+1), ε−(2N+1)]× (0,∞) with |x|+ t < ε−2N+1.
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Spatial dynamics formulation

Starting with the wave equation

∂2
t u(x, t)− ∂2

x u(x, t) + ρ(x)u(x, t) = γu(x, t)3, ρ(x + 2π) = ρ(x),

we introduce three spatial scales in

u(x, t) = v(ξ, z, x) with ξ = x− cgt, z = l0x− ωt.

This yields[
(c2 − 1)∂2

ξ + 2(cω − l0)∂ξ∂z − 2∂ξ∂x + (ω2 − l20)∂2
z − 2l0∂z∂x − ∂2

x
]

v

+ ρ(x)v = γv3,

with v(ξ, z + 2π, x) = v(ξ, z, x + 2π) = v(ξ, z, x). We can use the
Fourier series in z but not in x.
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Spatial dynamics formulation

By using Fourier series in z and writing the first-order system in ξ, we
obtain the spatial dynamical system:

(1−c2)∂ξ

(
ṽm

w̃m

)
= Am(ω, c)

(
ṽm

w̃m

)
−γ
(

0
(ṽ ∗ ṽ ∗ ṽ)m

)
, m ∈ Z,

where

Am(ω, c) =

(
0 1

−(∂x + iml0)2 + ρ(x)− m2ω2 2imcω − 2(∂x + iml0)

)
.

For each m ∈ Z, Am(ω, c) : D ⊂ R→ R are linear operators with

D = H2
per(T)× H1

per(T), R = H1
per(T)× L2(T)

D. Pelinovsky, McMaster University Breathers and Modulating pulses 12 / 23



Spatial dynamics formulation

By using Fourier series in z and writing the first-order system in ξ, we
obtain the spatial dynamical system:

(1−c2)∂ξ

(
ṽm

w̃m

)
= Am(ω, c)

(
ṽm

w̃m

)
−γ
(

0
(ṽ ∗ ṽ ∗ ṽ)m

)
, m ∈ Z,

where

Am(ω, c) =

(
0 1

−(∂x + iml0)2 + ρ(x)− m2ω2 2imcω − 2(∂x + iml0)

)
.

We are looking for the solution map
[0, ξ0] 3 ξ 7→ (ṽm, w̃m)m∈Z ∈ C1([0, ξ0],D) in function space

D := [`2,2(Z,L2(T)) ∩ `2,1(Z,H1
per(T)) ∩ `2,0(Z,H2

per(T))]

× [`2,1(Z,L2(T)) ∩ `2,0(Z,H1
per(T))].
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Eigenvalues of the spatial system

Recall that the bifurcation case corresponds to ω0 = ωn0(l0) and
cg = ω′n0

(l0). The eigenvalue problem Am(ω0, cg)~V = λ~V is
reformulated in the scalar form:

[−(∂x + iml0 + λ)2 + ρ(x)]V(x) = (mω0 − icgλ)2V(x),

which is solved with Bloch eigenfunctions in

ω2
n(ml0 − iλ) = (mω0 − icgλ)2, n ∈ N.
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Eigenvalues of the spatial system

Recall that the bifurcation case corresponds to ω0 = ωn0(l0) and
cg = ω′n0

(l0). The eigenvalue problem Am(ω0, cg)~V = λ~V is
reformulated in the scalar form:

[−(∂x + iml0 + λ)2 + ρ(x)]V(x) = (mω0 − icgλ)2V(x),

which is solved with Bloch eigenfunctions in

ω2
n(ml0 − iλ) = (mω0 − icgλ)2, n ∈ N.

No information on roots of λ is available, but zero roots λ = 0 are
controlled from the non-resonance conditions ωn(l0) 6= ω0, n 6= n0,

ω2
n(ml0) 6= m2ω2

0, m ∈ {3, 5, . . . 2N + 1}, ∀n ∈ N.

The zero root λ = 0 is double in the subspace n = n0.
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Eigenvalues of the spatial system

Recall that the bifurcation case corresponds to ω0 = ωn0(l0) and
cg = ω′n0

(l0). The eigenvalue problem Am(ω0, cg)~V = λ~V is
reformulated in the scalar form:

[−(∂x + iml0 + λ)2 + ρ(x)]V(x) = (mω0 − icgλ)2V(x),

which is solved with Bloch eigenfunctions in

ω2
n(ml0 − iλ) = (mω0 − icgλ)2, n ∈ N.

One can show that the non-resonance conditions can be satisfied for
ρ(x) = 1 (low-contrast potentials). In this case, the roots are defined
by the quadratic equations

1 + (n + ml0 − iλ)2 = (mω0 − icgλ)2.

Moreover, one can find conditions when all roots are simple.
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Algorithm for justification of a homoclinic orbit

Step 1: Decomposition near the bifurcation.(
ṽ1(ξ, x)
w̃1(ξ, x)

)
= εq0(ξ)F0(x) + εq1(ξ)F1(x)︸ ︷︷ ︸+εS1(ξ, x),

and (
ṽm(ξ, x)
w̃m(ξ, x)

)
= εSm(ξ, x), m 6= 1,

where the small parameter is defined for ω = ω0 + ε2 and c = cg.
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Algorithm for justification of a homoclinic orbit

Step 2: Near-identity transformation to reduce the residual terms.

They are performed based on the bounds

‖(ΠA1(ω0, cg)Π)−1‖R→D +

2N+1∑
m=3

‖Am(ω0, cg)−1‖R→D ≤ C0,

which is obtained from the resolvent equations(
0 1

Lm Mm

)(
v
w

)
=

(
f
g

)
,

with

Lm = −(∂x + iml0)2 + ρ(x)− m2ω2
0,

Mm = 2imcgω0 − 2(∂x + iml0),
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Algorithm for justification of a homoclinic orbit

After Steps 1 and 2, the system

d
dξ

(
q0
q1

)
=

(
q1
0

)
+ ε2F(q0, q1,S)

d
dξ

Sm = Am(ω0, cg)Sn + ε2Fm(q0, q1,S)

becomes

d
dξ

(
q0
q1

)
=

(
q1
0

)
+

N∑
j=1

ε2jF(j)(q0, q1) + ε2N+2F(N)(q0, q1,S)

d
dξ

Sm = Am(ω0, cg)Sn + ε2N+2Fm(q0, q1) + ε2F̃m(q0, q1,S)
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Algorithm for justification of a homoclinic orbit

Step 3: Construction of a reversible homoclinic orbit

d
dξ

(
q0
q1

)
=

(
q1
0

)
+

N∑
j=1

ε2jF(j)(q0, q1)

satisfying Im(q0) = 0 and Re(q1) = 0.

fixed space of reversibility Re q0

Re q1
homoclinic orbit

-

6
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Algorithm for justification of a homoclinic orbit

Step 3: Construction of a reversible homoclinic orbit

d
dξ

(
q0
q1

)
=

(
q1
0

)
+

N∑
j=1

ε2jF(j)(q0, q1)

satisfying Im(q0) = 0 and Re(q1) = 0.

We have the leading-order approximation with

‖q0 − A(ε·)‖L∞ ≤ Cε, ‖q1 − εA′(ε·)‖L∞ ≤ Cε2,

The persistence analysis is done by the implicit function theorem in
H1(R) because of the symmetries of the truncated system with the
2-parameter family of solutions

(q0(ξ + ξ0)eiθ0 , q1(ξ + ξ0)eiθ0), ξ0, θ0 ∈ R.
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Algorithm for justification of a homoclinic orbit

After Step 3, we can write (q0, q1) = (Q0, εQ1) + (q0, εq1), where
(Q0, εQ1) is the homoclinic orbit of the truncated system. The
abstract system is

∂ξc0,r = εΛ0(ξ)c0,r + εG(c0,r, cr) + ε2N+1GR(c0,hom + c0,r, cr),

∂ξcr = Λrcr + ε2F(c0,hom + c0,r, cr) + ε2N+2FR(c0,hom + c0,r, cr),

Λr contains nonzero eigenvalues for stable, center, and unstable
manifolds of the linearized system. We assume

‖eΛsξ‖D→D ≤ K, ξ ≥ 0,

‖eΛuξ‖D→D ≤ K, ξ ≤ 0,

‖eΛcξ‖D→D ≤ K, ξ ∈ R.
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Algorithm for justification of a homoclinic orbit

After Step 3, we can write (q0, q1) = (Q0, εQ1) + (q0, εq1), where
(Q0, εQ1) is the homoclinic orbit of the truncated system. The
abstract system is

∂ξc0,r = εΛ0(ξ)c0,r + εG(c0,r, cr) + ε2N+1GR(c0,hom + c0,r, cr),

∂ξcr = Λrcr + ε2F(c0,hom + c0,r, cr) + ε2N+2FR(c0,hom + c0,r, cr),

Step 4: Center-stable manifold. For every a ∈ Dc, b ∈ Ds s.t.
‖a‖Dc + ‖b‖Ds ≤ Cε2N , there exists a family of local solutions with

sup
ξ∈[0,ε−(2N+1)]

(‖c0,r(ξ)‖C4+‖cc(ξ)‖Dc+‖cs(ξ)‖Ds+‖cu(ξ)‖Du) ≤ Cε2N ,

satisfying cc(0) = a and e−ξ0Λscs(ξ0) = b at ξ0 = ε−(2N+1). These
parameters are chosen to satisfy the reversibility constraints.
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Section 4

Breathers localized in time
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Example: the focusing NLS equation

The focusing nonlinear Schrödinger (NLS) equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0

admits the exact solution [Akhmediev, Eleonsky, & Kulagin (1985)]

ψ(x, t) = eit
[

1− 2(1− λ2) cosh(kλt) + ikλ sinh(kλt)
cosh(kλt)− λ cos(kx)

]
,

commonly known as Akhmediev breathers.
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The engineering setup

The FPU model:

mün + k(t)un = β(d + un − un−1)−α − β(d + un+1 − un)−α,

where α, β,m, d > 0 and k(t + 2π) = k(t).

FPU models a chain of repelling magnets surrounded by time
modulated coils (Chong, Kim, Daraios et al.: arXiv:2310.06934)
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The engineering setup

The FPU model:

mün + k(t)un = β(d + un − un−1)−α − β(d + un+1 − un)−α,

where α, β,m, d > 0 and k(t + 2π) = k(t).

Time-localized breathers were observed in experiments:
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Bifurcation theory

For N particles with Dirichlet conditions u0 = uN+1 = 0, we use the
discrete Fourier sine modes:

un(t) =

N∑
m=1

ûm(t) sin(qmn), qm :=
πm

N + 1
, 1 ≤ m ≤ N

and obtain the linear Schrodinger problem

Lûm = λmûm, L = −m∂2
t − k(t),

where λm = 4 sin2 (qm
2

)
.
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Bifurcation theory

For N particles with Dirichlet conditions u0 = uN+1 = 0, we use the
discrete Fourier sine modes:

un(t) =

N∑
m=1

ûm(t) sin(qmn), qm :=
πm

N + 1
, 1 ≤ m ≤ N

and obtain the linear Schrodinger problem

Lûm = λmûm, L = −m∂2
t − k(t),

where λm = 4 sin2 (qm
2

)
.

The spectrum of L is purely continuous in

σ(L) = [ν0, µ1] ∪ [µ2, ν1] ∪ [ν2, µ3] ∪ [µ4, ν3] ∪ · · ·
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Bifurcation theory

We are looking for a bifurcation case of k0(t) when λm0 = µ1 or
λm0 = µ2 for one m0 ∈ {1, 2, . . . ,N}.
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Main theorem [C. Chong, D.P., G. Schneider (2024)]

Assume two conditions (spectral assumption and nonzero normal
form). Then there exists an ε0 > 0 such that for all ε ∈ (0, ε0) and
every M ∈ N the FPU system possesses two generalized homoclinic
solutions U±hom(t) : [−ε−M+1, ε−M+1]→ RN satisfying

sup
t∈[−ε−M+1,ε−M+1]

‖U±hom(t)−U±(t)‖+‖(U±hom)′(t)−(U±)′(t)‖ ≤ CεM−1

where U±(t) : R→ RN satisfy lim
|t|→∞

‖U±(t)‖+ ‖(U±)′(t)‖ = 0 and

can be approximated as

(U±)n(t) = ±ε
[
A(εt)F(t) + Ā(εt)F(t)

]
sin(qm0n) +O(ε2),

where F(t + T) = −F(t) and A(τ) = αsech(βτ) are uniquely
defined with some α, β > 0.
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Numerical illustration
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Comparison between normal form and numerics
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Algorithm for justification of the homoclinic solutions

Step 1: Bifurcation setup.

Let k(t) = k0(t) + σε2 and pick k0(t) so that λm0 = µ1 for one
m0 ∈ {1, 2, . . . ,N}. This corresponds to the spectral band
{λ1(`)}`∈[0, 2π

T ) with λ1(`0) = µ1 for `0 = π
T . Assume no other

Floquet multipliers to coincide with +1 or −1.
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Algorithm for justification of the homoclinic solutions

Step 1: Bifurcation setup.

Let k(t) = k0(t) + σε2 and pick k0(t) so that λm0 = µ1 for one
m0 ∈ {1, 2, . . . ,N}. This corresponds to the spectral band
{λ1(`)}`∈[0, 2π

T ) with λ1(`0) = µ1 for `0 = π
T . Assume no other

Floquet multipliers to coincide with +1 or −1.

Step 2: Formal derivation of the normal form. Expanding

un(t) = εU(1)
n (t) + ε2U(2)

n (t) + ε3U(3)
n (t) +O(ε4),

we select the leading order in the form

U(1)
n (t) = A(εt)g1(t) sin(qm0n),

where g1(t + T) = −g1(t) is the bifurcating mode of L0g1 = µ1g1.
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Algorithm for justification of the homoclinic solutions

At the order of O(ε2), we get

L0U(2)
n + ∆U(2)

n = 2mA′(τ)g′1(t) sin(qm0n) + χ2A(τ)2g1(t)2F(2)
n ,

where τ = εt and F(2)
n = −2 sin(qm0)(1− cos(qm0)) sin(2qm0n).

The solution for U(2)
n (t) can be written in the form

U(2)
n (t) = A′(τ)h1(t) sin(qm0n) + χ2A(τ)2h2(t) sin(2qm0n),

where

(L0 − ω2(qm0))h1 = 2mg′1(t),

(L0 − ω2(2qm0))h2 = −2 sin(qm0)(1− cos(qm0))g1(t)2.

The unique solution for h1(t + T) = −h1(t) and h2(t + T) = h2(t)
exists under the spectral assumption.
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Algorithm for justification of the homoclinic solutions

At the order of O(ε3), we get

L0U(3)
n + ∆U(3)

n = σU(1)
n + 2m∂τ∂tU

(2)
n + m∂2

τU(1)
n

+ 2χ2

[
(U(1)

n+1 − U(1)
n )(U(2)

n+1 − U(2)
n )− (U(1)

n − U(1)
n−1)(U(2)

n − U(2)
n−1)

]
− χ3

[
(U(1)

n+1 − U(1)
n )3 − (U(1)

n − U(1)
n−1)3

]
.

Projection to the mode sin(qm0n) yields the cubic normal form:

1
2
λ′′1(`0)A′′(τ) + σA(τ) + χA(τ)3 = 0,

where λ′′1(`0) is the band curvature at λ1(`0) = µ1, where λ′1(`0) = 0,
and χ 6= 0 under the normal form assumption.
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Algorithm for justification of the homoclinic solutions

Step 3: Justification of the normal form. The normal form theorem
near the double period bifurcation (Iooss–Adelmeyer, 1998) after
diagonalization, near-identity transformations, and the use of
reversibility.
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Conclusion

. Generalized breathers have been considered either as the
time-periodic and space-localized pulses or as the time-localized
and space-periodic orbits.

. These solutions can be recovered in the spatial dynamical
systems on a long but finite spatial scale.

. Numerical experiments do not often distinguish between true
breathers and generalized modulating pulses.

MANY THANKS FOR YOUR ATTENTION!

BEST WISHES TO MICHAEL!!!

D. Pelinovsky, McMaster University Breathers and Modulating pulses 23 / 23


	Workshop in honor of Michael Plum
	Breathers and Modulating pulses
	Traveling modulating pulses in the wave equation with periodic coefficients
	Breathers localized in time

