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Introduction

Inviscid Shocks

Dynamics of a Conservation Law

∂tv + ∂x f (v) = 0

generate shock singularities in finite time from a large class of smooth
data and for smooth f (v).
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Introduction

Viscous Shocks

Diffusive regularization leads to a viscous Burgers equation

∂tv + ∂x f (v) = ε2∂2xv .
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Introduction

Dispersive Shocks

Dispersive regularization leads to the Korteweg–de Vries equation

∂tv + ∂x f (v) + ε3∂3xv = 0.
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Introduction

Granular chains

Granular chains contain densely packed, elastically interacting
particles with Hertzian contact forces.

N. Boechler, G. Theocharis, P.G. Kevrekidis, M.A. Porter, C. Daraio.
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Introduction

Logarithmic models

Granular chains are modeled with Newton’s equations of motion:

x ′′n (t) = V ′(xn+1 − xn)− V ′(xn − xn−1), n ∈ Z,

where xn is the displacement of the nth particle and V is the interaction
potential for spherical beads (H. Hertz, 1882):

V (x) = |x |1+αH(−x), α =
3

2
,

where H is the step (Heaviside) function. For hollow materials, α→ 1.

The conservative model yields the logarithmic KdV equation

∂tv + ∂x(v log |v |) + ∂3xv = 0

The dissipative model yields the logarthmic Burgers equation

∂tv + ∂x(v log |v |) = ∂2xv

G. James & D. P., 2014; G. James, 2021
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Introduction

Modular nonlinearity

In a similar context of dynamics of particles with piecewise interaction
potentials, models with modular nonlinearities have been derived:

The modular KdV equation

∂tv + ∂x |v |+ ∂3xv = 0

The modular Burgers equation

∂tv = ∂x |v |+ ∂2xv

C. M. Hedberg, O. V. Rudenko, 2016–2018

The models are linear for sign-definite solutions. Nonlinear waves
correspond to the sign-changing solutions, for which the modeling problem
becomes a moving interface problem between solutions of linear equations.
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Traveling waves

Traveling waves in the modular Burgers equation

Starting with
∂tv = ∂x |v |+ ∂2xv ,

we can think of the traveling wave solutions v(t, x) = W (x − ct), where

W ′′(x) + sign(W )W ′(x) + cW ′(x) = 0, x ∈ R.

Q What is the function space for solutions?

A Space of piecewise C 2 functions satisfying the interface conditiion

[W ′′]+−(x0) = −2|W ′(x0)|

at each interface located at x0, where [f ]+−(x0) = f (x+0 )− f (x−0 ) is
the jump of a piecewise continuous function f across x0.
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Traveling waves

Traveling waves in the modular Burgers equation

Integrating once yields

W ′(x) + |W (x)|+ cW (x) = d , x ∈ R,

where the constant of integration is identical for all pieces of piecewise C 2

function W (x) : R→ R.

If W± = lim
x→±∞

W (x), then bounded solutions only exist if W− < 0 <W+

with uniquely selected speed

c =
W+ + W−
W+ −W−

and uniquely defined profile W up to spatial translations:

W (x) =

{
W+(1− e−(1+c)x), x > 0,

W−(1− e(1−c)x), x < 0.

If W+ = −W−, then c = 0 and W (−x) = −W (x) is odd.
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Traveling waves

Motivational questions

1 Is the viscous shock W stable in the time evolution of the modular
Burgers equation?

2 How does the interface moves in the time evolution depending on the
initial conditions?

3 Is there the finite-time extinction of the area between two consequent
interfaces?

4 How can we model the moving interface problems numerically?
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Asymptotic stability

Interface equation

It is natural to look for solutions of the modular Burgers equation

∂tv = ∂x |v |+ ∂2xv

in class of piecewise C 2 functions.

If v(t, ξ(t)) = 0 defines the interface at x = ξ(t), then

[vt ]
+
−(ξ(t)) = 0 and [vx ]+−(ξ(t)) = 0,

whereas
[vxx ]+−(ξ(t)) = −2|vx(t, ξ(t))|

determines the interface equation for ξ(t), t > 0.
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Asymptotic stability

Simple case: odd data

It follows from
∂tv = ∂x |v |+ ∂2xv

that if v(0,−x) = −v(0, x) is odd at t = 0, then v(t,−x) = −v(t, x)
remains odd for all t > 0. The interface is located at ξ(t) = 0, t > 0.

Adding an odd perturbation w(t, x) to the odd viscous shock
W (x) = (1− e−|x |)sgn(x) with c = 0 as v(t, x) = W (x) + w(t, x), we
get the linear initial-boundary-value problem

wt = wx + wxx , x > 0, t > 0,
w(t, 0) = 0, t > 0,
w(t, x)→ 0 as x → +∞, t > 0,
w(0, x) = w0(x), x > 0,
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Asymptotic stability

Main result: odd data

Theorem (Le, Pelinovsky, Poullet, 2021)

For every ε > 0 there is δ > 0 such that for every odd v0 satisfying

‖v0 −W ‖H2 < δ,

there exists a unique odd solution v(t, x) with v(0, x) = v0(x) satisfying

‖v(t, ·)−W ‖H2 < ε, t > 0

and
‖v(t, ·)−W ‖W 2,∞ → 0 as t → +∞.

Since W (0) = 0, W ′(0) = 1, and H2 is embedded into C 1, we have
v(t, x) = W (x) + w(t, x) > 0 for every x > 0 and t > 0.

The result is extended to W (x − ct) under suitably scaled data.
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Asymptotic stability

General case: single interface

Consider the viscous shock W (x) = (1− e−|x |)sgn(x) with c = 0 but
make no assumption on the symmetry of the perturbations. With the
decomposition

v(t, x) = W (x − ξ(t)) + w(t, x − ξ(t)), y = x − ξ(t),

we have now the linear initial-boundary-value problem
wt = (ξ′(t)± 1)wy + wyy + ξ′(t)W ′(y), ±y > 0, t > 0,
w(t, 0) = 0, t > 0,
w(t, x)→ 0 as y → ±∞, t > 0,
w(0, y) = w0(y), y ∈ R,

The two equations on half-lines are coupled by the interface conditions

(ξ′(t)± 1)wy (t, 0±) + wyy (t, 0±) + ξ′(t) = 0,

which are consistent due to the conditions [uxx ]+−(ξ(t)) = −2|ux(t, ξ(t))|.
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Asymptotic stability

Main result: general data

Theorem (Le, Pelinovsky, Poullet, 2021)

Fix α ∈
(
0, 12
)
. For every ε > 0 there is δ > 0 s.t. for every v0 s.t.

‖v0 −W ‖H2∩W 2,∞ + ‖eα|·|(v0 −W )‖W 2,∞ < δ

there exists a unique solution v(t, x) with v(0, x) = v0(x) satisfying

‖v(t, ·+ ξ(t))−W ‖H2∩W 2,∞ < ε, t > 0

and
‖v(t, ·+ ξ(t))−W ‖W 2,∞ → 0 as t → +∞,

with ξ′ ∈ L1(R+) ∩ L∞(R+) and ξ∞ := lim
t→+∞

ξ(t).
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Numerical approximations

Reformulation for numerical approximations

The original problem for general perturbation w(t, y) with y = x − ξ(t):
wt = (ξ′(t)± 1)wy + wyy + ξ′(t)e−y , ±y > 0, t > 0,
w(t, 0) = 0, t > 0,
w(t, x)→ 0 as y → ±∞, t > 0,
w(0, y) = w0(y), y ∈ R,

By using variables v±(t, y) := w(t, y)∓ w(t,−y) with y > 0 we obtain
the coupled system{

v+t = v+y + v+yy + ξ′(t)v−y , y > 0,
v−t = v−y + v−yy + ξ′(t)v+y + 2ξ′(t)e−y , y > 0,

subject to v±(t, 0) = 0, v−y (t, 0) = 0, and ξ′(t) = − v−yy (t,0)

2+v+
y (t,0)

.

Dmitry Pelinovsky (McMaster University) Shocks in the modular Burgers equation 16 / 31



Numerical approximations

Remarks on the numerical method

Central-difference approximation of spatial derivatives.

Neumann condition for v−y (t, 0) = 0 is modelled with an extra grid

point v−−1(t) = v−1 (t).

The smoothness condition for v+y (t, 0) + v+yy (t, 0) = 0 is modelled
with an extra grid point

v+−1(t) = −2 + h

2− h
v+1 (t).

The interface condition ξ′(t) = − v−yy (t,0)

2+v+
y (t,0)

is resolved as

ξ′(t) = −
(2− h)v−1 (t)

hv+1 (t) + h2(2− h)
.

Time steps are performed with the implicit Crank-Nicholson method

Dmitry Pelinovsky (McMaster University) Shocks in the modular Burgers equation 17 / 31



Numerical approximations

Initial data with Gaussian decay

v+(0, y) = 0.1(y − 0.5y2)e−y
2
, v−(0, y) = 0.5y2e−y

2
.
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Numerical approximations

Initial data with exponential decay

v+(0, y) = 0.1(y + 0.5y2)e−y , v−(0, y) = 0.5y2e−y ,

-10 -5 0 5 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t=0

t=4

t=8

-1 -0.5 0 0.5

-0.05

0

0.05

0 2 4 6 8 10 12

t

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(t
)

(t)

Dmitry Pelinovsky (McMaster University) Shocks in the modular Burgers equation 19 / 31



Numerical approximations

Convergence in time for L2-norm of perturbation
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Multiple shocks

Initial data with multiple interfaces

Main question: Is there the finite-time extinction of the area between two
consequent interfaces?
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Interface at x = 0 persists for odd data. Interfaces at x = ±ξ(t) move.
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Multiple shocks

A simple argument suggesting finite-time coalescence

Let z(t, x) := 1− u(t, x). It satisfies zt = −|1− z |x + zxx .
If z(0, ·) : (0,∞)→ R is positive and integrable, then z(t, ·) : (0,∞)→ R
is positive and integrable for t > 0 by comparison principle.

We have for some time t ∈ [0, τ0)

0 < ξ(t) ≤
∫ ξ(t)

0
z(t, x)dx ≤

∫ ∞
0

z(t, x)dx =: M(t),

because z(t, x) ≥ 1 for x ∈ [0, ξ(t)] and z(t, x) ≥ 0 for x ∈ [ξ(t),∞).

On the other hand,

dM

dt
= −1− zx(t, 0) ≤ −1.

Hence, M(t) ≤ M(0)− t and we have finite-time coalescence: ξ(τ0) = 0.
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Multiple shocks

Reformulation for numerical approximations

The original problem is
ut = −ux + uxx , u(t, x) < 0, 0 < x < ξ(t),
ut = ux + uxx , u(t, x) > 0, ξ(t) < x <∞,
u(t, 0) = 0, u(t, ξ(t)) = 0, lim

x→+∞
u(t, x) = 1,

By using y := x/ξ(t), the boundary-value problem is mapped to the
time-independent regions:

ut = ξ−1(ξ′y − 1)uy + ξ−2uyy , u(t, y) < 0, 0 < y < 1,
ut = ξ−1(ξ′y + 1)uy + ξ−2uyy , u(t, y) > 0, 1 < y <∞,
u(t, 0) = 0, u(t, 1) = 0, lim

y→+∞
u(t, y) = 1,

closed with the interface condition:

ξ′(t) = −1− uyy (t, 1+)

ξ(t)uy (t, 1)
= +1− uyy (t, 1−)

ξ(t)uy (t, 1)
.
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Multiple shocks

Remarks on the numerical method

Central-difference approximation of spatial derivatives.

The grid on [0, 1] is complemented with the extra grid point
yN+1 = 1 + h and the approximation u∗N+1. The grid on [1, L] with
L = 10 is complemented with the extra grid point yN−1 = 1− h and
the approximation u∗N−1. Note that u∗N±1 6= uN±1.

The additional variables u∗N+1 and u∗N−1 are found from the interface

conditions: [uy ]+−(1) = 0 and [uyy ]+−(1) = −2ξ(t)|uy (t, 1)|. This
yields the relation between linear advection-diffusion equation and

ξ′(t) = −(2− hξ)(uN+1 + uN−1)

hξ(uN+1 − uN−1)
.

Time steps are performed with the implicit Crank-Nicholson method

Dmitry Pelinovsky (McMaster University) Shocks in the modular Burgers equation 24 / 31



Multiple shocks

Initial data and evolution: α = 1.5

u0(x) =

{
x(1− x)(ax2 + bx + c), 0 < x < 1,

1− e−α(x
2−1), 1 < x <∞,

with ξ′(0) = 2(α− 1), where a, b, c are uniquely defined by α.
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Multiple shocks

Initial data and evolution: α = 0.5

u0(x) =

{
x(1− x)(ax2 + bx + c), 0 < x < 1,

1− e−α(x
2−1), 1 < x <∞,

with ξ′(0) = 2(α− 1), where a, b, c are uniquely defined by α.
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Multiple shocks

Conjecture based on numerical data [P., de Rijk, 2023]

There exists t0 ∈ (0,∞) such that

ξ(t) ∼
√
t0 − t, ux(t, ξ(t)) ∼ (t0 − t), uxx(t, ξ(t)−) ∼

√
t0 − t.

This is in agreement with

ξ′(t) = +1− uxx(t, ξ(t)−)

ux(t, 1)
.

Furthermore, we conjecture∣∣∣∣∣
∫ ξ(t)

0
u(t, x)dx

∣∣∣∣∣ ∼ (t0 − t)2,

∫ ξ(t)

0
u2(t, x)dx ∼

√
(t0 − t)7,

in agreement with the balance laws

d

dt

∫ ξ(t)

0
udx = ux(t, ξ(t))− ux(t, 0),

d

dt

∫ ξ(t)

0
u2dx = −2

∫ ξ(t)

0
u2xdx .
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Multiple shocks

The method of data extraction, e.g. for ξ(t) ∼
√
t0 − t

For a fixed value of t0 (past the termination time of our computations) ,
we compute c1 (left) and c2 in the linear regression

log(ξ(t)) versus c1 log(t0 − t) + c2

as well as the approximation error (right). The minimal error of 10−9 is
attained at t0 = 0.17 with c1 = 0.492.
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Summary and open questions

Summary

Evolution of the modular Burgers equation is considered.

Asymptotic stability of a traveling viscous shock is proven and
illustrated numerically.

It is shown that shock waves with multiple interfaces extinct in a
finite time due to finite-time coalesence of interfaces

A precise scaling law of the finite-time coalescence is suggested based
on the numerical data.
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Summary and open questions

Open question

1 Numerical approximations of shock waves with multiple interfaces as
a problem with moving boundaries.

2 Numerical approximation of solitary waves with multiple interfaces in
the modular KdV equation.

3 Analytical proof of well-posedness of the linear evolution with multiple
interfaces.

4 Analytical proof of the precise scaling law of the finite-time
coalescence.

5 Expanding methods to the Burgers and KdV models with logartihmic
nonlinearities...
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Summary and open questions
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