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Massive Dirac equations in 1D

Massive Dirac equations in one spatial dimension can be written as

{
i(ut + ux) + v = ∂ūW (u, v),
i(vt − vx) + u = ∂v̄W (u, v),

where W (u, v) : C2 → R satisfies the following three conditions:

symmetry W (u, v) = W (v , u);

gauge invariance W (e iθu, e iθv) = W (u, v) for any θ ∈ R;

quartic polynomial in (u, v) and (ū, v̄).

Applications include

Periodic lattices (optics/photonics) - W = |u|4 + 4|u|2|v |2 + |v |4.
General relativity - W = (ūv + uv̄)2 (Gross–Neveu, Soler, 1974)

Spinors - W = |u|2|v |2 (Thirring, 1958)
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Massive Thirring Model (MTM)

{
i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v , or

{
iψt − ϕx − ψ = (ψ2 + ϕ2)ψ̄,
iϕt + ψx + ϕ = (ψ2 + ϕ2)ϕ̄.

Global solutions exist in H1(R) [Goodman et al. (2003)]
or in L2(R) [Candy (2011), Huh-Moon (2015)].

Three conserved quantities are related to physical symmetries:

Q =

∫

R

(
|u|2 + |v |2

)
dx ,

P =
i

2

∫

R

(uūx − ux ū + v v̄x − vx v̄) dx ,

H =
i

2

∫

R

(uūx − ux ū − v v̄x + vx v̄) dx +

∫

R

(
−v ū − uv̄ + 2|u|2|v |2

)
dx .

Infinitely many conserved quantities exist due to integrability.
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Quick proof of global well-posedness in H
1(R)

L2 conservation gives ‖u(t)‖L2 = ‖u(0)‖L2

The nonlinear term is canceled in apriori energy estimates:

∂t
(
|u|2p+2 + |v |2p+2

)
+ ∂x

(
|u|2p+2 − |v |2p+2

)

= i(p + 1)(v ū − v̄u)(|u|2p − |v |2p).

By Gronwall’s inequality, we have

‖u(t)‖L2p+2 ≤ e2|t|‖u(0)‖L2p+2 , t ∈ [0,T ],

which holds for any p ≥ 0 including p →∞.

With the bound on ‖u(t)‖L∞ , one can obtain

d

dt
‖∂xu(t)‖2L2 ≤ Ce4|t|‖∂xu(t)‖2L2 ,

hence ‖∂xu(t)‖2L2 does not blow up in a finite time.
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Existence of solitary waves

Time-periodic space-localized solutions

u(x , t) = Uω(x)e
−iωt , v(x , t) = Vω(x)e

−iωt

satisfy a system of stationary Dirac equations. They are known in the
closed analytic form

{
u(x , t) = i sin(γ) sech

[
x sin γ − i γ

2

]
e−it cos γ ,

v(x , t) = −i sin(γ) sech
[
x sin γ + i γ

2

]
e−it cos γ .

Translations in x and t can be added as free parameters.

Constraint ω = cos γ ∈ (−1, 1) exists because of the gap in the linear
spectrum (−∞,−1] ∪ [1,∞).

Moving solitons can be obtained from the stationary solitons with the
Lorentz transformation.
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Orbital stability of solitary waves

Definition

We say that the solitary wave e−iωt
Uω(x) is orbitally stable in X if for any

ǫ > 0 there is a δ > 0, such that if ‖u(·, 0)−Uω(·)‖X ≤ δ then

inf
θ,a∈R

‖u(·, t)− e−iθ
Uω(·+ a)‖X ≤ ǫ,

for all t > 0. Here X = H1(R) or X = L2(R).

Stability of Dirac solitons was mainly studied numerically, e.g., by I.
Barashenkov (1998), G. Gottwald (2005), M. Chugunova (2006), A.
Comech (2012), A. Saxena (2014), P. Kevrekidis (2014), ...

For Soler and Thirring models, Dirac solitons were found to be
spectrally stable. For other models (e.g. for optical lattices), Dirac
solitons are unstable for some parameter values.
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Outline of presentation

1 Stability argument for MTM based on energy functionals

2 Stability argument for MTM based on Backlund transformation

3 Scattering results for MTM based on transformations to the
Zakharov–Shabat spectral problem

Some old references:

E.A. Kuznetsov and A.V. Mikhailov (1977) - “On the complete
integrability of the 2D classical MTM"

D.Kaup and A.C. Newell (1977) - “On the Coleman correspondence
and the solution of MTM"

J. Villarroel (1991) - “The DBAR problem and the MTM"
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1. Stability argument based on energy functionals
Three conserved quantities are related to physical symmetries:

Q =

∫

R

(
|u|2 + |v |2

)
dx ,

P =
i

2

∫

R

(uūx − ux ū + v v̄x − vx v̄) dx ,

H =
i

2

∫

R

(uūx − ux ū − v v̄x + vx v̄) dx +

∫

R

(
−v ū − uv̄ + 2|u|2|v |2

)
dx ,

Since the quadratic part of H is sign-indefinite, Dirac soliton can not be a
constrained minimizer of H.

Another conserved quantity R exists in H1(R):

R =

∫

R

[
|ux |2 + |vx |2 −

i

2
(uxu − uxu)(|u|2 + 2|v |2) + . . .

−(uv + uv)(|u|2 + |v |2) + 2|u|2|v |2(|u|2 + |v |2)
]
dx .
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The energy functionals

Critical points of H + ωQ for a fixed ω ∈ (−1, 1) satisfy the stationary
MTM equations. After the reduction (u, v) = (U,U), we obtain the
first-order equation

i
dU

dx
− ωU + U = 2|U|2U.

The MTM soliton U = Uω satisfies the first-order equation.

Critical points of R +ΩQ for some fixed Ω ∈ R satisfy another system
of differential equations. After the reduction (u, v) = (U,U), we
obtain the second-order equation

d2U

dx2
+ 6i |U|2 dU

dx
− 6|U|4U + 3|U|2Ū + U3 = ΩU.

U = Uω also satisfies the second-order equation if Ω = 1− ω2.
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Convexity of the energy functional

Theorem (P–Shimabukuro, 2014)

There is ω0 ∈ (0, 1] such that for any fixed ω = cos γ ∈ (−ω0, ω0),
MTM soliton is a local non-degenerate minimizer of R in H1(R)
under the fixed values of Q and P .

Consider the conserved energy functional in H1(R) by

Λω := R + (1− ω2)Q, ω ∈ (−1, 1),

where Q = ‖u‖2
L2 + ‖v‖2L2 .

Uω is a critical point of Λω.

The second variation of Λω can be block-diagonalized

STΛ′′
ω(Uω)S =

[
L+ 0
0 L−

]
,

where L+ and L− are 2× 2 matrix Schrödinger operators.
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Convexity of the energy functional

For ω ∈ (−ω0, ω0), Λ
′′
ω(Uω) has a simple negative eigenvalue and a

double zero eigenvalue for ω > 0 and ω < 0. The zero eigenvalue is
quadruple for ω = 0.

Two constraints are added to fix the values of Q and P .

Two symmetries are included to eliminate translation and rotation.

The Hessian operator Λ′′
ω(Uω) is strictly positive under the four

constraints. The conserved energy Λω is convex at Uω in the
constrained H1(R) space.

The four constraints can be realized by the choice of four modulation
parameters in the soliton orbit:
{

u(x , t) = i sin(γ) sech
[
x sin(γ)− i γ

2
− α

]
e−it cos(γ)−iβ ,

v(x , t) = −i sin(γ) sech
[
x sin(γ) + i γ

2
− α

]
e−it cos(γ)−iβ ,

with parameters α, β, frequency ω := cos γ, and speed c .
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Orbital stability result

Strict positivity (coercivity) of the second variation implies

Λω(Uω + U)− Λω(Uω) ≥ C‖U‖2H1 +O(‖U‖3H1),

for perturbation U ∈ H1(R;C2) in the constrained space.

R , Q, and P are constant in time t and so is Λω.

A global lower bound is obtained for the solution u(t) near a
modulated orbit of the MTM soliton Uω for every t ∈ R:

Λω(u)− Λω(Uω) ≥ inf
θ,x0
‖u(·, t)− e iθUω(·+ x0)‖2H1 .

This yields orbital stability of MTM solitons in H1(R) for
ω ∈ (−ω0, ω0).

Dmitry Pelinovsky (McMaster University) Massive Thirring Model 12 / 34



Recent results in this direction

Stability of N solitary waves:
◮ KdV (Sachs–Maddocks, 1993);
◮ NLS (Kapitula, 2006);
◮ derivative NLS (Le Coz–Wu, 2017);

Stability of time-periodic localized breathers:
◮ mKdV (Alejo–Munoz, 2013);
◮ sine–Gordon (Alejo–Munoz, 2016);
◮ Gardner (Alejo, 2017);

Stability of space-periodic solutions with respect to subharmonic
perturbations:

◮ KdV (Deconinck–Kaputula, 2010);
◮ NLS (Gallay-P, 2014);
◮ KP (Haragus–Li–P, 2017);
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2. Stability argument based on Bäcklund transformation

The Bäcklund transformation B is a map that takes (u, v) of the MTM to
(ũ, ṽ) of the MTM,

B : (u, v) 7→ (ũ, ṽ),

In particular, the Bäcklund transformation relates zero ↔ one soliton:

(0, 0)
B←→ (uλ, vλ)

Heuristic stability argument by Bäcklund transformation

B : stable small solution←→ solution around stable one soliton.

–Merle-Vega-2003 (KdV solitons)
–Mizumachi-P-2012 (NLS solitons)
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Lax operators for the MTM

The MTM is obtained from the compatibility condition of the linear system

~φx = L~φ and ~φt = A~φ,

where

L =
i

2
(|v |2 − |u|2)σ3 −

iλ√
2

(
0 v

v 0

)
− i√

2λ

(
0 u

u 0

)
+

i

4

(
1

λ2
− λ2

)
σ3

and

A = − i

4
(|u|2 + |v |2)σ3 −

iλ

2

(
0 v

v 0

)
− i

2λ

(
0 u

u 0

)
+

i

4

(
λ2 +

1

λ2

)
σ3

Kaup–Newell (1977); Kuznetsov–Mikhailov (1977).
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Bäcklund transformation for the MTM

Let (u, v) be a C 1 solution of the MTM system.

Let ~φ = (φ1, φ2)
t be a C 2 nonzero solution of the linear system

associated with (u, v) and λ = δe iγ/2.

A new C 1 solution of the MTM system is given by

u = −u e
−iγ/2|φ1|2 + e iγ/2|φ2|2

e iγ/2|φ1|2 + e−iγ/2|φ2|2
+

2iδ−1 sin γφ1φ2

e iγ/2|φ1|2 + e−iγ/2|φ2|2

v = −v e
iγ/2|φ1|2 + e−iγ/2|φ2|2

e−iγ/2|φ1|2 + e iγ/2|φ2|2
− 2iδ sin γφ1φ2

e−iγ/2|φ1|2 + e iγ/2|φ2|2
,

A new C 2 nonzero solution ~ψ = (ψ1, ψ2)
t of the linear system associated

with (u, v) and same λ is given by

ψ1 =
φ2

|e iγ/2|φ1|2 + e−iγ/2|φ2|2|
, ψ2 =

φ1

|e iγ/2|φ1|2 + e−iγ/2|φ2|2|
.
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Bäcklund transformation 0↔ 1 soliton

Let (u, v) = (0, 0) and define

{
φ1 = e

i
4
(λ2−λ−2)x+ i

4
(λ2+λ−2)t ,

φ2 = e−
i
4
(λ2−λ−2)x− i

4
(λ2+λ−2)t .

Then, (u, v) = (uλ, vλ) is the MTM soliton. If λ = e iγ/2 (stationary case),
the vector ~ψ is given by

{
ψ1 = e

1

2
x sin γ+ i

2
t cos γ

∣∣sech
(
x sin γ − i γ

2

)∣∣ ,
ψ2 = e−

1

2
x sin γ− i

2
t cos γ

∣∣sech
(
x sin γ − i γ

2

)∣∣ .

It decays exponentially as |x | → ∞.

In the opposite direction, if (u, v) = (uλ, vλ) and ~φ = ~ψ, then
(u, v) = (0, 0).
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Orbital stability result

Theorem (Contreras–P–Shimabukuro, 2016)

Let u(t) ∈ C (R; L2(R)) be a solution of the MTM system and λ0 ∈ CI .

There exist a real positive constant ǫ such that if the initial value

u0 ∈ L2(R) satisfies

‖u− uλ0
(0, ·)‖L2 ≤ ǫ,

then for every t ∈ R, there exists λ ∈ C such that |λ− λ0| ≤ Cǫ,

inf
a,θ∈R

‖u(t, ·+ a)− e−iθ
uλ(t, ·)‖L2 ≤ Cǫ,

where the constant C is independent of ǫ and t.

The proof does not require the inverse scattering formalism.
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How does the argument go?
Fix λ0 ∈ CI for a MTM soliton uλ0

. Take initial data u0 ∈ H2(R) s.t.
‖u0 − uλ0

‖L2 < ǫ for ǫ > 0 sufficiently small.

1 From a perturbed one-soliton to a small solution at t = 0:

There exists λ ∈ C and the corresponding L2-solution ~ψ of
∂x ~ψ = L(u0;λ)~ψ such that |λ− λ0| . ǫ. Then, Bäcklund
transformation

B(~ψ, λ) : u0 7→ ũ0

yields the estimate

‖ũ0‖L2 . ‖u0 − uλ0
(0, ·)‖L2 .

2 Time evolution of the small solution in H2(R) ⊂ L2(R).

‖ũ(t, ·)‖L2 = ‖ũ0‖L2 , t ∈ R.
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yields the estimate
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3 From the small solution to the perturbed one-soliton:

For every t ∈ R, we construct solutions of

~φx = L(ũ(t, ·), λ)~φ and ~φt = A(ũ(t, ·), λ)~φ,

which is defined with two arbitrary parameters a(t) and θ(t).

The Bäcklund transformation

B(~φ, λ) : ũ(t, ·) 7→ u(t, ·)

yields the estimate

inf
a,θ∈R

‖u(t, ·)− e−iθ
uλ(t, ·+ a)‖L2 . ‖ũ(t, ·)‖L2 ∀t ∈ R.

4 Approximating sequence u0,n in H2(R) that converges to u0 ∈ L2(R).

Sequences in H2(R) produce classical solutions of the MTM, which
are compatible with the Lax linear system for ~φ ∈ C 2(R× R).
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Recent results in this direction

Asymptotic stability for NLS:
◮ 1-soliton (Cuccagna–P, 2014);
◮ N-solitons with Backlund transformation (Contreras–P, 2014);
◮ N-solitons with inverse scattering (Saalmann, 2017);

Global existence for derivative NLS:
◮ N-solitons with Bäcklund transformation

(Shimabukuro–Saalmann–P, 2017);
◮ N-solitons with inverse scattering (Jenkins–Liu–Perry–Sulem, 2017).
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3. Scattering results for MTM
Massive Thirring Model (MTM) in physical coordinates

{
i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v ,

is rewritten in characteristic coordinates as
{

iuτ + v = 2|v |2u,
−ivξ + u = 2|u|2v ,

with ξ = (x − t)/2 and τ = (x + t)/2.

MTM in characteristic coordinates is related to the linear system

~φξ = L~φ and ~φτ = A~φ,

associated with the Kaup–Newell spectral problem

L = −iλ2σ3 + λ

(
0 w

−w̄ 0

)
, w = 2ue2i

∫
∞

ξ
|u|2dξ.
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Direct scattering problem

Kaup-Newel spectral problem

∂xψ = −iλ2σ3ψ + λQ(u)ψ, Q(u) =

[
0 u

−u 0

]

Jost functions are defined by the asymptotical limits:

Ψ±(x ;λ)→ e−iλ2xσ3 as x → ±∞.

Jost functions in Ψ± := e−iλ2xσ3 [ϕ±, φ±] satisfy Volterra’s equations

ϕ±(x ;λ) = e1 + λ

∫ x

±∞

[
1 0

0 e2iλ2(x−y)

]
Q(u(y))ϕ±(y ;λ)dy ,

φ±(x ;λ) = e2 + λ

∫ x

±∞

[
e−2iλ2(x−y) 0

0 1

]
Q(u(y))φ±(y ;λ)dy .

Fixed point arguments are not uniform in λ as |λ| → ∞ if Q(u) ∈ L1(R).
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The way around this obstacle
Introduce transformations m± := T1ϕ± and n± := T2φ±, where

T1(x ;λ) =

[
1 0

−u(x) 2iλ

]
, T2(x ;λ) =

[
2iλ −u(x)
0 1

]
,

Volterra’s integral equations are rewritten for m± and n± as follows:

m±(x ; z) = e1 +

∫ x

±∞

[
1 0

0 e2iz(x−y)

]
Q1(u(y))m±(y ; z)dy ,

n±(x ; z) = e2 +

∫ x

±∞

[
e−2iz(x−y) 0

0 1

]
Q2(u(y))n±(y ; z)dy ,

where z := λ2 and

Q1(u) =
1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]
, Q2(u) =

1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
.

Instead of one Kaup-Newell problem, two Zakharov-Shabat problems!
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A bit of history
Kaup-Newel spectral problem

∂xψ = −iλ2σ3ψ + λQ(u)ψ, Q(u) =

[
0 u

−u 0

]

is reduced to the two Zakharov–Shabat spectral problems

∂x ψ̃1,2 = −izσ3ψ̃1,2 + Q1,2(u)ψ̃1,2,

with z := λ2 and

Q1(u) =
1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]
, Q2(u) =

1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
,

Threshold on u for the nonexistence of isolated eigenvalues (P, 2011)

Inverse scattering for derivative NLS (P–Shimabukuro, 2015)

Q1 appears already in (Kaup–Newell, 1976).
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Choice of spaces

From the condition Q1,2(u) ∈ L1(R), where

Q1(u) =
1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]
, Q2(u) =

1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
,

we realize that u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R) is a natural choice.
With u ∈ L∞(R), the transformation matrices T1,2 are defined in L∞(R).

There exist unique L∞ solutions m±(·; z) for every z ∈ R.

For every x ∈ R, m∓(x ; ·), n±(x ; ·) are continued analytically in C
±.

Limits of m∓(x ; z), n±(x ; z) as |z | → ∞ are defined in C
±.

To use Fourier theory, it is better to work in H1,1(R) with u, ∂xu ∈ L2,1(R).

The inverse scattering transform for the derivative NLS starts from here
with extra constraint u ∈ H2(R) due to the time evolution ...
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Global existence for derivative NLS
Recall the Cauchy problem related to the derivative NLS equation

{
iut + uxx + i(|u|2u)x = 0, t > 0,
u|t=0 = u0 ∈ X = Hs(R),

and the Kaup-Newel spectral problem:

(KN) ∂xψ =
[
−iλ2σ3 + λQ(u)

]
ψ, ψ ∈ C

2.

Theorem (P–Shimabukuro, 2015)

For every u0 ∈ H2(R) ∩ H1,1(R) such that (KN) admits no eigenvalues or
resonances, there exists a unique global solution u(t, ·) ∈ H2(R) ∩ H1,1(R)
of the Cauchy problem for every t ∈ R. Furthermore, the map u0 7→ u is
Lipschitz.

The function spaces and the inverse scattering method is different from the
one used by (Liu–Perry–Sulem, 2015).
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Back to MTM
Massive Thirring Model (MTM) in physical coordinates

{
i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v ,

is related to the linear system

~φξ = L~φ and ~φτ = A~φ,

associated with the linear operators

L =
i

2
(|v |2 − |u|2)σ3 −

iλ√
2

(
0 v

v 0

)
− i√

2λ

(
0 u

u 0

)
+

i

4

(
1

λ2
− λ2

)
σ3

and

A = − i

4
(|u|2 + |v |2)σ3 −

iλ

2

(
0 v

v 0

)
− i

2λ

(
0 u

u 0

)
+

i

4

(
λ2 +

1

λ2

)
σ3
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Direct scattering: |λ| > 1

Spectral problem ∂xψ = Lψ can be transformed with ψ̃ = T (x ;λ)ψ with

T (x ;λ) =

[
1 0

v(x) λ

]

to the equivalent form

∂x ψ̃ = Q̃1(u, v)ψ̃ +
1

z
Q̃2(u, v)ψ̃ +

i

4

(
z − 1

z

)
σ3ψ̃,

where z := λ2 and

Q̃1 =

[
i
4
(|u|2 + |v |2) − i

2
v̄

vx +
i
2
|u|2v + i

2
u − i

4
(|u|2 + |v |2)

]
, Q̃2 =

1

2i

[
ūv −ū

v + ūv2 −ūv

]
.

This system is useful as z →∞.
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Direct scattering: |λ| < 1

Spectral problem ∂xψ = Lψ can be transformed with ψ̂ = T (x ;λ)ψ with

T (x ;λ) =

[
1 0

u(x) λ−1

]

to the equivalent form

∂x ψ̂ = Q̂1(u, v)ψ̂ + zQ̂2(u, v)ψ̂ +
i

4

(
z − 1

z

)
σ3ψ̂,

where z := λ2 and

Q̂1 =

[
− i

4
(|u|2 + |v |2) i

2
ū

ux − i
2
|v |2u − i

2
v i

4
(|u|2 + |v |2)

]
, Q̂2 = − 1

2i

[
v̄u −v̄

u + v̄u2 −v̄u

]
.

This system is useful as z → 0.
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Inverse scattering

Reconstruction formula as |z | → ∞:

ñ(x ; z) = ñ∞(x)e2 + ñ∞v̄(x)e1z
−1 +O(z−2),

with ñ∞(x) = e
1

4i

∫ x

∞
(|u|2+|v |2)dx .

Reconstruction formula as |z | → 0:

n̂(x ; z) = n̂∞(x)e2 + n̂∞ū(x)e1z +O(z2),

with n̂∞(x) = e−
1

4i

∫ x

∞
(|u|2+|v |2)dx .

Formal asymptotics (Villarroel, 1991)

Scattering to zero with PDE analysis (Candy–Lindblad, 2016)

Inverse scattering and the steepest descent method (Saalmann, 2017).
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Future result
Massive Thirring Model (MTM) in physical coordinates

{
i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v ,

Theorem (Saalmann, 2017)

For every u0 ∈ H1,1(R) sufficiently small, there exist bounded continuous
functions f± such that for every t ≥ 1 + |x |:

u(t, x) =
1√
t − x

[
e i

√
t2−x2+i |f+(x/t)|2 log(t2−x2)f+(x/t)

+e−i
√
t2−x2+i |f−(x/t)|2 log(t2−x2)f−(x/t)

]
+ ...

v(t, x) =
1√
t + x

[
e i

√
t2−x2+i |f+(x/t)|2 log(t2−x2)f+(x/t)

−e−i
√
t2−x2+i |f−(x/t)|2 log(t2−x2)f−(x/t)

]
+ ...
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Conclusion

My talk was devoted to the massive Thirring Model in physical coordinates

{
i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v ,

This is an integrable case example of the massive Dirac equations in 1D:

{
i(ut + ux) + v = ∂ūW (u, v),
i(vt − vx) + u = ∂v̄W (u, v).

The following questions were addressed:

Global existence in the Cauchy problem

Orbital stability of solitary waves

Inverse scattering near zero.
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Conclusion

Most of my talk was devoted to the massive Thirring Model (MTM) in
physical coordinates

{
i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v ,

This is an integrable case example of the massive Dirac equations in 1D:

{
i(ut + ux) + v = ∂ūW (u, v),
i(vt − vx) + u = ∂v̄W (u, v).

Interested in more questions?

Semi-discretizations preserving integrability...

Stability of N solitary waves...

Effects of nonintegrability to Dirac solitary waves...
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