Integrable semi-discretizations of integrable PDEs

Dmitry Pelinovsky

Korteweg-de Vries equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}=0
$$

is posed for real u on $(t, x) \in \mathbb{R} \times \mathbb{R}$.

Question: Can we numerically approximate this equation on a equally spaced grid $x_{n}=n h, n \in \mathbb{Z}$ with step size h ?

Answer: Yes, in many different ways, for example, with accuracy $\mathcal{O}\left(h^{2}\right)$:

However,

- Such discretizations have many problems with stability of iterations.
- Such discretizations do not preserve integrability properties of KdV.

Korteweg-de Vries equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}=0
$$

is posed for real u on $(t, x) \in \mathbb{R} \times \mathbb{R}$.

Question: Can we numerically approximate this equation on a equally spaced grid $x_{n}=n h, n \in \mathbb{Z}$ with step size h ?

Answer: Yes, in many different ways, for example, with accuracy $\mathcal{O}\left(h^{2}\right)$:

$$
\frac{d u_{n}}{d t}+\frac{u_{n+1}+u_{n-1}}{2} \frac{u_{n+1}-u_{n-1}}{2 h}+\frac{u_{n+2}-2 u_{n+1}+2 u_{n-1}-u_{n-2}}{2 h^{3}}=0
$$

However,

- Such discretizations have many problems with stability of iterations.
- Such discretizations do not preserve integrability properties of KdV.

The $K d V$ equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

is a compatibility condition of the spectral problem

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+u\right] \psi=\lambda \psi
$$

and the linear time-evolution problem

$$
\frac{\partial \psi}{\partial t}=\left[4 \frac{\partial^{3}}{\partial x^{3}}+6 u \frac{\partial}{\partial x}+3 \frac{\partial u}{\partial x}\right] \psi
$$

This gives

- infinitely many conserved quantities,
- infinitely many exact solutions,
- Bäcklund-Darboux transformations between solutions,
- inverse scattering for the Cauchy problem, and many many more.

The $K d V$ equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

is a compatibility condition of the spectral problem

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+u\right] \psi=\lambda \psi
$$

and the linear time-evolution problem

$$
\frac{\partial \psi}{\partial t}=\left[4 \frac{\partial^{3}}{\partial x^{3}}+6 u \frac{\partial}{\partial x}+3 \frac{\partial u}{\partial x}\right] \psi
$$

This gives

- infinitely many conserved quantities,
- infinitely many exact solutions,
- Bäcklund-Darboux transformations between solutions,
- inverse scattering for the Cauchy problem, and many many more.

Recent surprising discovery: Bäcklund-Darboux transformations also define integrable discretizations of integrable PDEs.

What is a Bäcklund-Darboux transformation?

Consider

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+u\right] \psi=\lambda \psi
$$

and define any nonzero solution ψ_{0} for any fixed λ_{0}. Then,

$$
\tilde{\psi}=\frac{\partial \psi}{\partial x}-\frac{1}{\psi_{0}} \frac{\partial \psi_{0}}{\partial x} \psi
$$

satisfies

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+\tilde{u}\right] \tilde{\psi}=\lambda \tilde{\psi}
$$

with new

$$
\tilde{u}=u-2 \frac{\partial^{2}}{\partial x^{2}} \log \psi_{0} .
$$

If u is a solution to the $K d V$, then \tilde{u} is a new solution to the $K d V$.

Example

$u=0$ is a trivial solution to the KdV .
Fix $\lambda_{0}>0$ and solve:

$$
\frac{\partial^{2}}{\partial x^{2}} \psi_{0}=\lambda_{0} \psi_{0} \quad \Rightarrow \quad \psi_{0}=c_{1} e^{\sqrt{\lambda_{0}} x}+c_{2} e^{-\sqrt{\lambda_{0} x}}
$$

where $c_{1}, c_{2} \in \mathbb{R}$ are arbitrary.
Then

$$
\tilde{u}=u-2 \frac{\partial^{2}}{\partial x^{2}} \log \psi_{0}=\lambda_{0} \operatorname{sech}^{2}\left(\sqrt{\lambda_{0}}\left(x-x_{0}\right)\right)
$$

is the KdV soliton at $t=0$ with x_{0} expressed by $\left(c_{1}, c_{2}\right)$.
Hence BT maps 0-solution to 1-soliton: $B T_{\lambda_{0}}(0)=u_{\lambda_{0}}$.

Bianchi's permutability theorem

$$
\tilde{u}=B T_{\lambda}(u), \quad \hat{u}=B T_{\mu}(u) \Rightarrow B T_{\mu}(\tilde{u})=B T_{\lambda}(u)=: \tilde{u} .
$$

Moreover,

$$
(\tilde{\hat{w}}-w)(\tilde{w}-\hat{w})=4(\lambda-\mu)
$$

where w is the potential for $u: u=\frac{\partial w}{\partial x}$.
Interpret this as the lattice equation with

$$
w:=w_{n, m}, \quad \tilde{w}=w_{n+1, m}, \quad \hat{w}=w_{n, m+1}, \quad \tilde{\tilde{w}}=w_{n+1, m+1}
$$

and denote $4 \lambda=p^{2}, 4 \mu=q^{2}$. Then, the permutability theorem gives the fully discrete KdV equation (in the potential form):

$$
\left(w_{n+1, m+1}-w_{n, m}\right)\left(w_{n+1, m}-w_{n, m+1}\right)=p^{2}-q^{2} .
$$

Bianchi's permutability theorem

$$
\tilde{u}=B T_{\lambda}(u), \quad \hat{u}=B T_{\mu}(u) \quad \Rightarrow \quad B T_{\mu}(\tilde{u})=B T_{\lambda}(u)=: \tilde{\hat{u}} .
$$

Moreover,

$$
(\tilde{\hat{w}}-w)(\tilde{w}-\hat{w})=4(\lambda-\mu)
$$

where w is the potential for $u: u=\frac{\partial w}{\partial x}$.
Interpret this as the lattice equation with

$$
w:=w_{n, m}, \quad \tilde{w}=w_{n+1, m}, \quad \hat{w}=w_{n, m+1}, \quad \tilde{\hat{w}}=w_{n+1, m+1}
$$

and denote $4 \lambda=p^{2}, 4 \mu=q^{2}$. Then, the permutability theorem gives the fully discrete KdV equation (in the potential form):

$$
\left(w_{n+1, m+1}-w_{n, m}\right)\left(w_{n+1, m}-w_{n, m+1}\right)=p^{2}-q^{2} .
$$

The fully discrete equation is completely integrable!
J. Hietarinta, N. Joshi, and F. Nijhoff, Discrete systems and Integrability
(Cambridge University Press, 2016)

How does discrete KdV represent continuous KdV ?

$$
\left(w_{n+1, m+1}-w_{n, m}\right)\left(w_{n+1, m}-w_{n, m+1}\right)=p^{2}-q^{2}
$$

Set $w_{n, m}=n p+m q+v_{n, m}$ to have $v=0$ as a trivial solution. Then, the semi-continuous limit $v_{n, m}=V_{n}(m / q)$ as $q \rightarrow \infty$ yields

$$
v_{n, m+1}=V_{n}(\tau)+q^{-1} \partial_{\tau} V_{n}(\tau)+\mathcal{O}\left(q^{-2}\right), \quad \tau:=m q^{-1}
$$

leading to the integrable semi-discretization in the formal limit $q \rightarrow \infty$:

$$
\partial_{\tau}\left(V_{n+1}+V_{n}\right)=2 p\left(V_{n+1}-V_{n}\right)-\left(V_{n+1}-V_{n}\right)^{2}
$$

By taking another continuous limit $V_{n}(\tau)=V(\tau, n / p)$ as $p \rightarrow \infty$, we can recover the continuous KdV equation (in the potential form):

$$
\partial_{\tau} V=\partial_{\xi} V+p^{-2}\left[\frac{1}{6} \partial_{\xi}^{3} V+\left(\partial_{\xi} V\right)^{2}\right]+\mathcal{O}\left(p^{-4}\right), \quad \xi:=n p^{-1}
$$

Massive Thirring Model

$$
\left\{\begin{array} { l }
{ i (u _ { t } + u _ { x }) + v = 2 | v | ^ { 2 } u , } \\
{ i (v _ { t } - v _ { x }) + u = 2 | u | ^ { 2 } v , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
i \psi_{t}-\varphi_{x}-\psi=\left(\psi^{2}+\varphi^{2}\right) \bar{\psi}, \\
i \varphi_{t}+\psi_{x}+\varphi=\left(\psi^{2}+\varphi^{2}\right) \bar{\varphi} .
\end{array}\right.\right.
$$

- One of the two examples of relativistically invariant nonlinear Dirac equations in $(1+1)$ dimensions.
- Derived in relativistic field theory by W. Thirring (1958).
- Integrable by inverse scattering since the works of A. Mikhailov (1976).
- Admits stable solitary waves [Y. Shimabukuro (2016)].
- No integrable semi-discretizations are known [T. Tsuchida (2015)]

Integrable semi-discretization of the MTM system

$$
\left\{\begin{array}{l}
4 i \frac{d U_{n}}{d t}+Q_{n+1}+Q_{n}+\frac{2 i}{h}\left(R_{n+1}-R_{n}\right)+U_{n}^{2}\left(\bar{R}_{n}+\bar{R}_{n+1}\right) \\
\left.-U_{n}\left|Q_{n+1}\right|^{2}+\left|Q_{n}\right|^{2}+\left|R_{n+1}\right|^{2}+\left|R_{n}\right|^{2}\right)-\frac{i h}{2} U_{n}^{2}\left(\bar{Q}_{n+1}-\bar{Q}_{n}\right)=0, \\
-\frac{2 i}{h}\left(Q_{n+1}-Q_{n}\right)+2 U_{n}-\left|U_{n}\right|^{2}\left(Q_{n+1}+Q_{n}\right)=0, \\
R_{n+1}+R_{n}-2 U_{n}+\frac{i h}{2}\left|U_{n}\right|^{2}\left(R_{n+1}-R_{n}\right)=0,
\end{array}\right.
$$

In the continuum limit $U_{n}(t)=U(x=h n, t), \quad R_{n}(t)=R(x=h n, t), \quad Q_{n}(t)=Q(x=n h, t)$,

Integrable semi-discretization of the MTM system

$$
\left\{\begin{array}{l}
4 i \frac{d U_{n}}{d t}+Q_{n+1}+Q_{n}+\frac{2 i}{h}\left(R_{n+1}-R_{n}\right)+U_{n}^{2}\left(\bar{R}_{n}+\bar{R}_{n+1}\right) \\
-U_{n}\left(\left|Q_{n+1}\right|^{2}+\left|Q_{n}\right|^{2}+\left|R_{n+1}\right|^{2}+\left|R_{n}\right|^{2}\right)-\frac{i h}{2} U_{n}^{2}\left(\bar{Q}_{n+1}-\bar{Q}_{n}\right)=0, \\
-\frac{2 i}{h}\left(Q_{n+1}-Q_{n}\right)+2 U_{n}-\left|U_{n}\right|^{2}\left(Q_{n+1}+Q_{n}\right)=0, \\
R_{n+1}+R_{n}-2 U_{n}+\frac{i h}{2}\left|U_{n}\right|^{2}\left(R_{n+1}-R_{n}\right)=0,
\end{array}\right.
$$

In the continuum limit

$$
U_{n}(t)=U(x=h n, t), \quad R_{n}(t)=R(x=h n, t), \quad Q_{n}(t)=Q(x=n h, t)
$$

we obtain $U=R$ and

$$
\left\{\begin{array}{l}
2 i \frac{\partial R}{\partial t}+i \frac{\partial R}{\partial x}+Q-R|Q|^{2}=0 \\
-i \frac{\partial Q}{\partial x}+R-|R|^{2} Q=0
\end{array}\right.
$$

which yields the MTM for $R(t, x)=u(t-x, x)$ and $Q(t, x)=v(t-x, x)$.

The integrable semi-discretization is a starting point for

- Derivation of discrete Dirac solitons and analysis of their stability.
- Comparison of numerical simulations between different discretizations of the MTM system.
- Derivation of an integrable semi-discretization of another fundamental model in the field theory, the sine-Gordon equation

$$
u_{t t}-u_{x x}+\sin (u)=0
$$

- Derivation of fully discrete version of the MTM system.

