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Korteweg-de Vries equation

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0

is posed for real u on (t, x) ∈ R× R.

Question: Can we numerically approximate this equation on a equally
spaced grid xn = nh, n ∈ Z with step size h?

Answer: Yes, in many di�erent ways, for example, with accuracy O(h2):

dun

dt
+

un+1 + un−1
2

un+1 − un−1
2h

+
un+2 − 2un+1 + 2un−1 − un−2

2h3
= 0

However,

Such discretizations have many problems with stability of iterations.

Such discretizations do not preserve integrability properties of KdV.
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The KdV equation
ut + 6uux + uxxx = 0

is a compatibility condition of the spectral problem[
∂2

∂x2
+ u

]
ψ = λψ

and the linear time-evolution problem

∂ψ

∂t
=

[
4
∂3

∂x3
+ 6u

∂

∂x
+ 3

∂u

∂x

]
ψ.

This gives

in�nitely many conserved quantities,

in�nitely many exact solutions,

Bäcklund�Darboux transformations between solutions,

inverse scattering for the Cauchy problem,

and many many more.

Recent surprising discovery: Bäcklund�Darboux transformations also de�ne
integrable discretizations of integrable PDEs.
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What is a Bäcklund�Darboux transformation?

Consider [
∂2

∂x2
+ u

]
ψ = λψ

and de�ne any nonzero solution ψ0 for any �xed λ0. Then,

ψ̃ =
∂ψ

∂x
− 1

ψ0

∂ψ0

∂x
ψ

satis�es [
∂2

∂x2
+ ũ

]
ψ̃ = λψ̃

with new

ũ = u − 2
∂2

∂x2
logψ0.

If u is a solution to the KdV, then ũ is a new solution to the KdV.
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Example

u = 0 is a trivial solution to the KdV.

Fix λ0 > 0 and solve:

∂2

∂x2
ψ0 = λ0ψ0 ⇒ ψ0 = c1e

√
λ0x + c2e

−
√
λ0x ,

where c1, c2 ∈ R are arbitrary.

Then

ũ = u − 2
∂2

∂x2
logψ0 = λ0sech

2(
√
λ0(x − x0))

is the KdV soliton at t = 0 with x0 expressed by (c1, c2).

Hence BT maps 0-solution to 1-soliton: BTλ0(0) = uλ0 .
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Bianchi's permutability theorem

ũ = BTλ(u), û = BTµ(u) ⇒ BTµ(ũ) = BTλ(u) =: ˜̂u.

Moreover,
( ˜̂w − w)(w̃ − ŵ) = 4(λ− µ),

where w is the potential for u: u = ∂w
∂x .

Interpret this as the lattice equation with

w := wn,m, w̃ = wn+1,m, ŵ = wn,m+1, ˜̂w = wn+1,m+1

and denote 4λ = p2, 4µ = q2. Then, the permutability theorem gives the
fully discrete KdV equation (in the potential form):

(wn+1,m+1 − wn,m)(wn+1,m − wn,m+1) = p2 − q2.

The fully discrete equation is completely integrable!
J. Hietarinta, N. Joshi, and F. Nijho�, Discrete systems and Integrability

(Cambridge University Press, 2016)
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How does discrete KdV represent continuous KdV?

(wn+1,m+1 − wn,m)(wn+1,m − wn,m+1) = p2 − q2.

Set wn,m = np + mq + vn,m to have v = 0 as a trivial solution. Then, the
semi-continuous limit vn,m = Vn(m/q) as q →∞ yields

vn,m+1 = Vn(τ) + q−1∂τVn(τ) +O(q−2), τ := mq−1

leading to the integrable semi-discretization in the formal limit q →∞:

∂τ (Vn+1 + Vn) = 2p(Vn+1 − Vn)− (Vn+1 − Vn)2.

By taking another continuous limit Vn(τ) = V (τ, n/p) as p →∞, we can
recover the continuous KdV equation (in the potential form):

∂τV = ∂ξV + p−2
[
1

6
∂3ξV + (∂ξV )2

]
+O(p−4), ξ := np−1.
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Massive Thirring Model

{
i(ut + ux) + v = 2|v |2u,
i(vt − vx) + u = 2|u|2v , or

{
iψt − ϕx − ψ = (ψ2 + ϕ2)ψ̄,
iϕt + ψx + ϕ = (ψ2 + ϕ2)ϕ̄.

One of the two examples of relativistically invariant nonlinear Dirac
equations in (1+1) dimensions.

Derived in relativistic �eld theory by W. Thirring (1958).

Integrable by inverse scattering since the works of A. Mikhailov (1976).

Admits stable solitary waves [Y. Shimabukuro (2016)].

No integrable semi-discretizations are known [T. Tsuchida (2015)]
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Integrable semi-discretization of the MTM system


4i dUn

dt
+ Qn+1 + Qn + 2i

h
(Rn+1 − Rn) + U2

n(R̄n + R̄n+1)

−Un(|Qn+1|2 + |Qn|2 + |Rn+1|2 + |Rn|2)− ih
2
U2
n(Q̄n+1 − Q̄n) = 0,

−2i
h

(Qn+1 − Qn) + 2Un − |Un|2(Qn+1 + Qn) = 0,

Rn+1 + Rn − 2Un + ih
2
|Un|2(Rn+1 − Rn) = 0,

In the continuum limit

Un(t) = U(x = hn, t), Rn(t) = R(x = hn, t), Qn(t) = Q(x = nh, t),

we obtain U = R and{
2i ∂R∂t + i ∂R∂x + Q − R|Q|2 = 0,

−i ∂Q∂x + R − |R|2Q = 0,

which yields the MTM for R(t, x) = u(t − x , x) and Q(t, x) = v(t − x , x).
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The integrable semi-discretization is a starting point for

Derivation of discrete Dirac solitons and analysis of their stability.

Comparison of numerical simulations between di�erent discretizations
of the MTM system.

Derivation of an integrable semi-discretization of another fundamental
model in the �eld theory, the sine�Gordon equation

utt − uxx + sin(u) = 0.

Derivation of fully discrete version of the MTM system.
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