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Introduction

◮ Granular chains contain densely packed, elastically interacting

particles with Hertzian contact forces.

◮ Experimental works focus on transmission of solitary and periodic

traveling waves.



The granular chain
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Newton’s equations of motion define FPU (Fermi-Pasta-Ulam) lattice:

d2xn

dt2
= V ′(xn+1 − xn)−V ′(xn − xn−1), n ∈ Z,

where xn is the displacement of the nth particle.

The interaction potential for spherical beads is

V (x) =
1

1+α
|x |1+αH(−x), α =

3

2
,

where H is the step (Heaviside) function.

H. Hertz, J. Reine Angewandte Mathematik 92 (1882), 156



Nesterenko’s solitary wave
Let un = xn − xn−1 and consider traveling wave un(t) = wn(n− t).

d2w

dz2
=∆(w |w |α−1), z ∈ R,

with (∆w)(z) = w(z +1)−2w(z)+w(z −1).



Nesterenko’s solitary wave
Let un = xn − xn−1 and consider traveling wave un(t) = wn(n− t).

d2w

dz2
=∆(w |w |α−1), z ∈ R,

with (∆w)(z) = w(z +1)−2w(z)+w(z −1).

Expanding ∆= ∂2
z +

1
12

∂4
z and integrating twice yield ODE

w = w |w |α−1 +
1

12

d2

dz2
w |w |α−1, z ∈ R,

which has compacton solutions

wc(z) =

{

Acos
2

α−1 (Bz), |z| ≤ π
2B
,

0, |z| ≥ π
2B
,

where

A =

(

1+α

2α

)
1

1−α

, B =

√
3(α−1)

α
.

No small parameter justifies this approximation.



Boussinesq approximation

The fully nonlinear Boussinesq equation takes the form

utt = (u |u|α−1)xx +
1

12
(u |u|α−1)xxxx .

V.F. Nesterenko, (1983); K. Ahnert–A. Pikovsky (2009).

Cauchy problem for the Boussinesq equation is ill-posed.



Boussinesq approximation

The fully nonlinear Boussinesq equation takes the form

utt = (u |u|α−1)xx +
1

12
(u |u|α−1)xxxx .

V.F. Nesterenko, (1983); K. Ahnert–A. Pikovsky (2009).

Cauchy problem for the Boussinesq equation is ill-posed.

Based on the differential–difference equation, one can prove

◮ existence of a solitary wave in H1(R)
[G. Friesecke–J. Wattis (1994), A. Stefanov–P. Kevrekidis, (2012)]

◮ the double-exponential decay of a solitary wave

[J. English–R. Pego, (2005)]



Korteweg–de Vries approximation

Consider the FPU lattice

d2un

dt2
= V ′(un+1)−2V ′(un)+V ′(un−1), n ∈ Z,

with V (x)∼ |x |1+αH(−x). No reduction exists for small-amplitude

waves unless a precompression is used with un ≤ C < 0, ∀n ∈ Z.



Korteweg–de Vries approximation

Consider the FPU lattice

d2un

dt2
= V ′(un+1)−2V ′(un)+V ′(un−1), n ∈ Z,

with V (x)∼ |x |1+αH(−x). No reduction exists for small-amplitude

waves unless a precompression is used with un ≤ C < 0, ∀n ∈ Z.

If α = 1+ ε2, then one can write

(

d2

dt2
−∆

)

un =∆ fε(un), n ∈ Z,

where

fε(u) := u (|u|ε −1) = εu ln |u|+O(ε2).

Experimental data: For the chains of hollow spherical particles of

different width, α is defined in the range 1.1 ≤ α ≤ 1.5.



Korteweg–de Vries approximation
Let α = 1+ ε2 and use the asymptotic multi-scale expansion

un(t) = v(ξ,τ)+higher order terms,

where

ξ := 2
√

3ε(n− t), τ :=
√

3ε3 t.

The FPU chain is reduced to the KdV equation with the logarithmic

nonlinearity (log-KdV) [A.Chatterjee (1999); G.James–D.P (2014)]:

∂v

∂τ
+

∂

∂ξ
(v logv)+

∂3v

∂ξ3
= 0, (τ,ξ) ∈ R

+×R.



Korteweg–de Vries approximation
Let α = 1+ ε2 and use the asymptotic multi-scale expansion

un(t) = v(ξ,τ)+higher order terms,

where

ξ := 2
√

3ε(n− t), τ :=
√

3ε3 t.

The FPU chain is reduced to the KdV equation with the logarithmic

nonlinearity (log-KdV) [A.Chatterjee (1999); G.James–D.P (2014)]:

∂v

∂τ
+

∂

∂ξ
(v logv)+

∂3v

∂ξ3
= 0, (τ,ξ) ∈ R

+×R.

Justification of the KdV equation for smooth FPU chains is known

[G. Schneider–C.E. Wayne (1998); D.Bambusi–A.Ponno (2006);

G.Friesecke–R.L.Pego (1999-2004)].

Justification of the log–KdV equation can only be proved under

precompression [E.Duma–D.P (2014)].



Traveling solitary wave
Log-KdV equation for traveling waves can be integrated once to get

d2v

dξ2
+ v ln |v |= 0,

which admits the Gaussian solitary wave

v(ξ) = e1/2−ξ2/4.
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Figure : Solitary waves (blue) in comparison with the compactons (red) and

the Gaussian solitons (green) for α = 1.5 (left) and α = 1.1 (right).



Numerical evidence of convergence of the approximation
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Figure : The L∞ distance between solitary waves of the FPU chain and either

Nesterenko compactons (blue dots) or Gaussian solitons (green dots) vs. α.



Numerical evidence of stability
Lattice of N = 2000 particles is excited with the initial impact

ẋn(0) = 0.1δn,0, ẋn(0) = 0 for all n ≥ 1.

A Gaussian solitary wave is formed asymptotically as t evolves.
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Figure : Formation of a Gaussian wave (blue curve) in the Hertzian FPU

lattice with α = 1.01: t ≈ 30.5 (left) and t ≈ 585.6 (right).



Questions for the log–KdV equation

The log-KdV equation

∂v

∂τ
+

∂

∂ξ
(v logv)+

∂3v

∂ξ3
= 0, (τ,ξ) ∈ R

+×R.

1. Existence of global solutions for the initial data v0 in the energy

space H1(R)

2. Linear orbital stability of the Gaussian solitary wave in H1(R).

3. Spectrum of the linearized operator and semi-group estimates.

4. Nonlinear stability of global solutions in the neighborhood of

Gaussian solitary waves.



Global existence of solutions

The log-KdV equation has the associated energy functional

E(v) =
1

2

∫
R

[

(

∂v

∂ξ

)2

− v2

(

logv − 1

2

)

]

dξ,

defined in the set

X :=
{

v ∈ H1(R) : v2 log |v | ∈ L1(R)
}

.

Theorem 1 (R. Carles–D.P, 2014)

For any v0 ∈ X, there exists a global solution v ∈ L∞(R,X) to the

log–KdV equation such that

‖v(τ)‖L2 ≤ ‖v0‖L2 , E(v(τ))≤ E(v0), for all τ > 0.



Proof of global existence [Th. Cazenave (1980)]

1. Construct an approximation of the logarithmic nonlinearity, e.g.

f ε(v) =

{

v log(v), |v | ≥ ε,
(

log(ε)− 3
4

)

v + 1
ε2 v3 − 1

4ε4 v5, |v | ≤ ε,

hence f ε ∈ C2(R) and f ε(v)→ v log(v) as ε → 0 for every v ∈R.
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4
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ε2 v3 − 1

4ε4 v5, |v | ≤ ε,

hence f ε ∈ C2(R) and f ε(v)→ v log(v) as ε → 0 for every v ∈R.

2. Obtain existence of the global approximating solutions

vε ∈ C(R,H1(R)) to the generalized KdV equations

{

vε
τ + vε

ξξξ
+ f ′ε(v

ε)vε
ξ
= 0, τ > 0,

vε|τ=0 = v0.

(Kenig, Ponce, Vega, 1991).
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‖vε(τ)‖H1 +‖(vε(τ))2 log(vε(τ))‖L1 ≤ C(v0).
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1. Construct an approximation of the logarithmic nonlinearity, e.g.

f ε(v) =

{

v log(v), |v | ≥ ε,
(

log(ε)− 3
4

)

v + 1
ε2 v3 − 1

4ε4 v5, |v | ≤ ε,

hence f ε ∈ C2(R) and f ε(v)→ v log(v) as ε → 0 for every v ∈R.

2. Obtain existence of the global approximating solutions

vε ∈ C(R,H1(R)) to the generalized KdV equations

{

vε
τ + vε

ξξξ
+ f ′ε(v

ε)vε
ξ
= 0, τ > 0,

vε|τ=0 = v0.

(Kenig, Ponce, Vega, 1991).

3. Obtain uniform estimates for all ε > 0 and τ ∈ R:

‖vε(τ)‖H1 +‖(vε(τ))2 log(vε(τ))‖L1 ≤ C(v0).

4. Pass to the limit ε → 0 and obtain a global solution v ∈ L∞(R,X)
to the log–KdV equation.



Uniqueness

Lemma: Assume that a solution v ∈ L∞(R,X) to the log–KdV

equation satisfies the additional condition

∂ξ log |v | ∈ L∞([−τ0,τ0]×R).

Then, the solution v(t) ∈ X is unique for every τ ∈ (−τ0,τ0), depends

continuously on the initial data v0 ∈ X, and satisfies ‖v(τ)‖L2 = ‖v0‖L2

and E(v(τ)) = E(v0) for all τ ∈ (−τ0,τ0).



Uniqueness

Lemma: Assume that a solution v ∈ L∞(R,X) to the log–KdV

equation satisfies the additional condition

∂ξ log |v | ∈ L∞([−τ0,τ0]×R).

Then, the solution v(t) ∈ X is unique for every τ ∈ (−τ0,τ0), depends

continuously on the initial data v0 ∈ X, and satisfies ‖v(τ)‖L2 = ‖v0‖L2

and E(v(τ)) = E(v0) for all τ ∈ (−τ0,τ0).

◮ If v(ξ) = e
2−ξ2

4 (the Gaussian solitary wave), then ∂ξ log |v | is

unbounded as |ξ| → ∞.

◮ Question of the nonlinear orbital stability of the Gaussian solitary

wave is open.



Linearization at the Gaussian solitary wave

Gaussian wave v0 = e
2−ξ2

4 is a critical point of the energy function in X

E(v) =
1

2

∫
R

[

(

∂v

∂ξ

)2

− v2

(

logv − 1

2

)

]

dξ.

Although E(v) is not C2 at v = 0, its second variation is well defined at

v0 by the quadratic form 〈Lw ,w〉L2 for the perturbation w = v − v0,

where

L =− ∂2

∂ξ2
−1− log(v0) =− ∂2

∂ξ2
− 3

2
+

ξ2

4

is the Schrödinger operator for a quantum harmonic oscillator.
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4 is a critical point of the energy function in X

E(v) =
1
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∫
R

[

(

∂v

∂ξ

)2

− v2

(

logv − 1

2

)

]

dξ.

Although E(v) is not C2 at v = 0, its second variation is well defined at

v0 by the quadratic form 〈Lw ,w〉L2 for the perturbation w = v − v0,

where

L =− ∂2

∂ξ2
−1− log(v0) =− ∂2

∂ξ2
− 3

2
+

ξ2

4

is the Schrödinger operator for a quantum harmonic oscillator.

The time evolution of the perturbation w(τ,ξ) = v(τ,ξ)− v0(ξ) is

given by the linearized log–KdV equation

∂w

∂τ
=

∂

∂ξ
Lw .



Spectral stability
If w(τ,ξ) = W (ξ)eλτ, we arrive to the linear eigenvalue problem

∂ξLW = λW .

The operator L is self-adjoint in L2(R) with domain

Dom(L) = {u ∈ H2(R), ξ2 u ∈ L2(R)}.

The spectrum of L consists of simple eigenvalues at integers:

σ(L) = {n−1, n ∈ N0}.

The eigenfunctions of L are given by Hermite functions and decay like

the Gaussian wave v0(ξ) = e
2−ξ2

4 .



Spectral stability
If w(τ,ξ) = W (ξ)eλτ, we arrive to the linear eigenvalue problem

∂ξLW = λW .

The operator L is self-adjoint in L2(R) with domain

Dom(L) = {u ∈ H2(R), ξ2 u ∈ L2(R)}.

The spectrum of L consists of simple eigenvalues at integers:

σ(L) = {n−1, n ∈ N0}.

The eigenfunctions of L are given by Hermite functions and decay like

the Gaussian wave v0(ξ) = e
2−ξ2

4 .

Theorem 2 (R. Carles–D.P, 2014)

The spectrum of ∂xL in L2(R) is purely discrete and consists of a

double zero eigenvalue and a sequence of simple eigenvalues

{±iωn}n∈N s.t. ωn → ∞ as n → ∞. The eigenfunctions for nonzero

eigenvalues are smooth in ξ but decay algebraically as |ξ| → ∞.



Construction of eigenfunctions
Consider eigenfunctions of the linear eigenvalue problem AW = λW ,

A := ∂ξL =− ∂3

∂ξ3
+

1

4
(ξ2 −6)

∂

∂ξ
+

1

2
ξ.

If λ 6= 0, W belongs to XA := Dom(A)∩ Ḣ−1(R),

Dom(A) =
{

u ∈ H3(R) : ξ2∂ξu ∈ L2(R), ξu ∈ L2(R)
}

.



Construction of eigenfunctions
Consider eigenfunctions of the linear eigenvalue problem AW = λW ,

A := ∂ξL =− ∂3

∂ξ3
+

1

4
(ξ2 −6)

∂

∂ξ
+

1

2
ξ.

If λ 6= 0, W belongs to XA := Dom(A)∩ Ḣ−1(R),

Dom(A) =
{

u ∈ H3(R) : ξ2∂ξu ∈ L2(R), ξu ∈ L2(R)
}

.

By using the Fourier transform, the linear eigenvalue problem can be

written in the form ÂŴ = λŴ , where

Â =
i

4
k
(

−∂2
k +4k2 −6

)

.

If W ∈ XA, then Ŵ ∈ X̂A with

X̂A =
{

û ∈ H1(R) : k∂2
k û ∈ L2(R), k3û ∈ L2(R), k−1û ∈ L2(R)

}

.

It makes sense to write λ = i
4
E .



Construction of eigenfunctions

The linear eigenvalue problem is

d2û

dk2
+

(

E

k
+6−4k2

)

û(k) = 0, k ∈ R.

◮ As k → 0, two linearly independent solutions exist

û1(k) = k +O(k2), û2(k) = 1+O(k log(k)).

The second solution does not belong to X̂A.

◮ As |k | → ∞, there exists only one decaying solution satisfying

û(k) = ke−k2 (

1+O(|k |−1)
)

.

The shooting problem from k = 0 to k =±∞ is over-determined.



Construction of eigenfunctions

◮ The way around is to define eigenfunctions piecewise:

û(k) =

{

û+(k), k > 0,
0, k < 0,

or û(k) =

{

0, k > 0,
û−(k), k < 0,

where û±(0) = 0 (to ensure that û ∈ X̂A).
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k1/2v̂+(k) = Ev̂+(k), k ∈ (0,∞),

which is now in the symmetric form. Hence E ∈ R.



Construction of eigenfunctions

◮ The way around is to define eigenfunctions piecewise:

û(k) =

{

û+(k), k > 0,
0, k < 0,

or û(k) =

{

0, k > 0,
û−(k), k < 0,

where û±(0) = 0 (to ensure that û ∈ X̂A).

◮ For û+, we set û+(k) = k1/2v̂+(k) and obtain

k1/2

(

− d2

dk2
+4k2 −6

)

k1/2v̂+(k) = Ev̂+(k), k ∈ (0,∞),

which is now in the symmetric form. Hence E ∈ R.

◮ For E = 0, we have v̂+ = k1/2e−k2

> 0 for k > 0. By Sturm’s

Theorem, the set of eigenvalues {En}n∈N0
satisfies

0 = E0 < E1 < E2 < ... and En → ∞ as n → ∞.



Numerical illustration
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Figure : Eigenfunctions û of the spectral problem versus k for the first three

eigenvalues E0 = 0, E1 ≈ 5.411, and E2 ≈ 12.308.



Linear orbital stability

Consider time evolution of the perturbation w(τ,ξ) = v(τ,ξ)− v0(ξ):

{

∂τw = ∂ξLw ,
w(0) = w0.

Theorem 3 (G.James–D.P., 2014)

The Gaussian solitary wave is linearly orbitally stable in space H1(R).

The solitary wave is said to be linearly orbitally stable if for every

w0 ∈ Dom(∂xL) with 〈v0,w0〉L2 = 0 there exists constant C such that

‖w(τ)‖H1∩L2
1
≤ C‖w0‖H1∩L2

1
, τ > 0,

where ‖w0‖L2
1
= ‖|ξ|w0(ξ)‖L2(R).



Symplectic decomposition

We know that ∂ξL has a double zero eigenvalue because

Lv ′
0 = 0, ∂ξLv0 =−v ′

0.

The constraint 〈v0,w0〉L2 = 0 removes the algebraic growth of

perturbations in τ.

Using the decomposition

w(τ,ξ) = a(τ)v ′
0(ξ)+b(τ)v0(ξ)+ y(ξ,τ)

with 〈v0,y〉L2 = 0 and 〈∂−1
ξ

v0,y〉L2 = 0, we obtain

da

dτ
+b = 0,

db

dτ
= 0,

∂y

∂τ
= ∂ξLy .

If 〈v0,w0〉L2 = 0, then b(τ) = b(0) = 0 and a(τ) = a(0).



Proof of linear orbital stability

Conservation of energy Ec(y) := 〈Ly ,y〉L2 holds for smooth solutions:

d

dτ

1

2
〈Ly ,y〉L2 = 〈Ly ,∂τy〉L2 = 〈Ly ,∂ξLy〉L2 = 0.

The energy is coercive as follows.

Lemma 4

There exists a constant C ∈ (0,1) such that for every

y ∈ H1(R)∩L2
1(R) satisfying the constraints

〈v0,y〉L2 = 〈∂−1
x v0,y〉L2 = 0,

it is true that

C‖y‖2
H1∩L2

1
≤ 〈Ly ,y〉L2 ≤ ‖y‖2

H1∩L2
1
.

From here, we obtain the Lyapunov stability of the zero equilibrium

y = 0 and hence linear orbital stability of the Gaussian solitary wave.



Nonlinear orbital or asymptotic stability ?

◮ Because the spectrum of ∂xL is purely discrete, no asymptotic

stability result can hold for Gaussian solitary waves.

◮ This agrees with the result of Th. Cazenave (1983):

the Lp norms for the solution v to the log–NLS equation do not

vanish as t → ∞ (or in a finite time) for any p ≥ 2 including p = ∞.



Nonlinear orbital or asymptotic stability ?

◮ Because the spectrum of ∂xL is purely discrete, no asymptotic

stability result can hold for Gaussian solitary waves.

◮ This agrees with the result of Th. Cazenave (1983):

the Lp norms for the solution v to the log–NLS equation do not

vanish as t → ∞ (or in a finite time) for any p ≥ 2 including p = ∞.

◮ Analysis of perturbations to v0 meets the following obstacle.

If w(τ,ξ) := v(τ,ξ)− v0(ξ), then w satisfies

wτ = ∂ξLw −∂ξN(w),

where

N(w) := w log

(

1+
w

v0

)

+ v0

[

log

(

1+
w

v0

)

− w

v0

]

.

“Small” w(τ,ξ)/v0(ξ) may grow like eξ2/4.



Another idea explored recently

Consider the decomposition of solutions to the linearized equation

{

∂τw = ∂ξLw ,
w(0) = w0.

in terms of Hermite functions

w(τ) = ∑
n∈N0

cn(τ)un, Lun = (n−1)un.

The evolution problem is given by a chain of equations:

2
dcn

dτ
= n

√
n+1cn+1 − (n−2)

√
ncn−1, n ∈ N0.



Another idea explored recently

Consider the decomposition of solutions to the linearized equation

{

∂τw = ∂ξLw ,
w(0) = w0.

in terms of Hermite functions

w(τ) = ∑
n∈N0

cn(τ)un, Lun = (n−1)un.

The evolution problem is given by a chain of equations:

2
dcn

dτ
= n

√
n+1cn+1 − (n−2)

√
ncn−1, n ∈ N0.

◮ The constraint 〈v0,w0〉L2 = 0 yields c0(τ) = 0 for every τ ∈ R.

◮ The mode c1 is eliminated by c′1(τ) = c2(τ)/
√

2.

◮ If w ∈ H1(R)∩L2
1(R), then {cn}n∈N is defined in ℓ2

1(N).



Jacobi difference equation

If {cn}n∈N is defined in ℓ2
1(N), then we can set

cn+1 =
inan√

n
, n ∈ N,

where {an}n∈N is defined in ℓ2(N).

The sequence {an}n∈N satisfies the evolution problem

da

dt
=

i

2
Ja,

where J is the Jacobi operator defined by

(Ja)n :=
√

n(n+1)(n+2)an+1 +
√

(n−1)n(n+1)an−1, n ∈ N.



Jacobi difference equation

Applying the theory of difference equations (G. Teschl, 2000):

◮ The Jacobi operator J has a limit circle at infinity.

All solutions of Jf = zf are in ℓ2(N).
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Applying the theory of difference equations (G. Teschl, 2000):

◮ The Jacobi operator J has a limit circle at infinity.
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Jacobi difference equation

Applying the theory of difference equations (G. Teschl, 2000):

◮ The Jacobi operator J has a limit circle at infinity.

All solutions of Jf = zf are in ℓ2(N).

◮ The self-adjoint extension of J is constructed from the condition

W∞(f ,v) = 0, where Jv = 0 and W∞ is the limit of the discrete

Wronskian Wn as n → ∞.

◮ The spectrum of J consists of a countable set of simple real

isolated eigenvalues.

◮ For every a(0) ∈ ℓ2(N), there exists a unique solution

a(t) ∈ ℓ2(N) to the evolution problem satisfying

‖a(t)‖ℓ2 = ‖a(0)‖ℓ2 for every t ∈ R.



Eigenvalues and eigenvectors

Solutions of Jf = zf for z ∈ R
+:
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Figure : (a) Convergence of the sequence {Wn}n∈N as n → ∞ for z = 1.

(b) Oscillatory behavior of W∞ versus z.



Back to the same problem
If Am = f2m−1 and Bm = f2m, then

Am = O(m−3/4), Bm = O(m−5/4) as m → ∞.

The decay rate is too slow for the decomposition

y := u− c1u1 = ∑
n∈N

in√
n

fnun+1 = yodd + iyeven,

so that yodd ∈ H2(R)∩L2
2(R), yeven ∈ H1(R)∩L2

1(R), but

yeven /∈ H2(R)∩L2
2(R).

If w(τ,ξ) := v(τ,ξ)− v0(ξ), then w satisfies

wτ = ∂ξLw −∂ξN(w),

where

N(w) := w log

(

1+
w

v0

)

+ v0

[

log

(

1+
w

v0

)

− w

v0

]

.

“Small” w(τ,ξ)/v0(ξ) may grow like an inverse Gaussian function of ξ.
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Conclusion

The log-KdV equation

∂v

∂τ
+

∂

∂ξ
(v logv)+

∂3v

∂ξ3
= 0, (τ,ξ) ∈ R

+×R.

The following questions were addressed:

1. Existence of global solutions in the energy space H1(R)
Yes, but no uniqueness or continuous dependence yet.

2. Linear orbital stability of the Gaussian solitary wave in H1(R).
Yes.

3. Spectrum of the linearized operator and the semi-group

estimates. Yes, but eigenfunctions have slow decay at infinity.

4. Nonlinear stability of global solutions in the neighborhood of

Gaussian solitary waves. Not yet.
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