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Introduction

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (KdV)

subject to the boundary conditions

lim
x→−∞

u(t, x) = 0, lim
x→+∞

u(t, x) = c2. (BC)

Applications: tidal bores, earthquake-generated waves

G. A. El, Adv. Fluid Mech. 47 (2007) 19-53

G. A. El and M. A. Hoefer, Physica D 333 (2016) 11-65
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Introduction

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (KdV)

subject to the boundary conditions

lim
x→−∞

u(t, x) = 0, lim
x→+∞

u(t, x) = c2. (BC)

The step-like initial data results in
the appearance of a rarefactive
wave (RW) for t > 0 and a
dispersive shock wave (DSW) for
t < 0.
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Introduction

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (KdV)

subject to the boundary conditions

lim
x→−∞

u(t, x) = 0, lim
x→+∞

u(t, x) = c2. (BC)

For simplicity, we consider only the RW case (t > 0) but would like
to consider interaction of solitary waves with the RW.

M. D. Maiden, D. V. Anderson, A. A. Franco, G. A. El, and M. A. Hoefer,
Phys. Rev. Lett. 120 (2018) 144101
P. Sprenger, M. A. Hoefer, and G. A. El, Phys. Rev. E 97 (2018) 032218
T. Congy, G. A. El and M. A. Hoefer, J. Fluid Mech. 875 (2019) 1145–1174

K. van der Sande, G. A. El and M. A. Hoefer, J. Fluid Mech. 928 (2021) A21
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State of the art

Depending on the initial amplitude of a solitary wave, it is either
transmitted over or trapped inside the RW background.

M. J. Ablowitz, X. D. Luo, and J. T. Cole, J. Math. Phys. 59 (2018), 091406
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State of the art

This phenomenon was interpreted from the inverse scattering method:

Lv = λv, L := − ∂2

∂x2 − u

and
∂v
∂t

=Mv, M := −3ux − 6u
∂

∂x
− 4

∂3

∂x3 ,

where lim
x→−∞

u(t, x) = 0 and lim
x→+∞

u(t, x) = c2.

. Transmitted soliton corresponds to an isolated eigenvalue of L.

. Trapped soliton corresponds to a “pseudo–embedded"
eigenvalue inside the continuous spectrum of L in [−c2, 0]

M. J. Ablowitz, X. D. Luo, and J. T. Cole, J. Math. Phys. 59 (2018), 091406
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State of the art

The rigorous IST method was applied for the step-like BC in the
DSW case (t < 0):

. N solitons added as poles in the IST method scatter towards zero
boundary conditions as t evolves.

. Phase shifts of the N solitons were appropriately computed.

. These N solitons are considered to be transmitted solitons over
the DSW background.

. No trace of trapped solitons appear in the IST method.

I. Egorova, Z. Gladka, V. Kotlyarov, and G. Teschl,
Nonlinearity 26 (2013) 1839–1864

I. Egorova, J. Michor, and G. Teschl, arXiv: 2109.08423 (2021)
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Transmitted soliton via Darboux transformation

Let u be a solution of the KdV equation and v0 be a real solution of
the Lax equations for λ = λ0 ∈ R such that v0 6= 0. Then,

û := u + 2
∂2

∂x2 log(v0)

is a new solution of the KdV equation.

If λ0 is below the bottom of the spectrum of L = −∂2
x − u, then

v0 6= 0 everywhere by Sturm’s nodal theory.
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Transmitted soliton via Darboux transformation

Let u be a solution of the KdV equation and v0 be a real solution of
the Lax equations for λ = λ0 ∈ R such that v0 6= 0. Then,

û := u + 2
∂2

∂x2 log(v0)

is a new solution of the KdV equation.

Let u(x) = 0 for x < 0 and u(x) = c2 for x > 0 at initial time t = 0.
Pick λ0 = −µ2

0 < −c2 and obtain

v0(x) =

{
eµ0(x−x0) + e−µ0(x−x0), x < 0,
c1eν0x + c2e−ν0x, x > 0,

where ν0 :=
√
µ2

0 − c2 > 0, x0 is arbitrary, and (c1, c2) are uniquely
found from the continuity of v0 and v′0 across x = 0.
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Transmitted soliton via Darboux transformation

Let u be a solution of the KdV equation and v0 be a real solution of
the Lax equations for λ = λ0 ∈ R such that v0 6= 0. Then,

û := u + 2
∂2

∂x2 log(v0)

is a new solution of the KdV equation.

The new solution is

û(x) = 2µ2
0 sech2[µ0(x− x0)], x < 0

and

û(x) = c2+4ν2
0

ν2
0 + µ2

0 + (ν2
0 − µ2

0) cosh(2µ0x0)

[(ν0 + µ0) cosh(ν0x− µ0x0) + (ν0 − µ0) cosh(ν0x + µ0x0)]
2 ,

for x < 0 and x > 0 respectively. The solution is bounded if x0 ≤ 0.
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Transmitted soliton via Darboux transformation

Let u be a solution of the KdV equation and v0 be a real solution of
the Lax equations for λ = λ0 ∈ R such that v0 6= 0. Then,

û := u + 2
∂2

∂x2 log(v0)

is a new solution of the KdV equation.

. The solitary wave on the step background decays differently as
x→ −∞ (decay rate is µ0) and as x→ +∞ (decay rate is

ν0 =
√
µ2

0 − c2).

. The Lax spectrum of the new solution is [−c2,∞) and a simple
isolated eigenvalue λ0 = −µ2

0 < −c2.
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Trapped soliton via direct scattering

Some evidences that no trapped solitons actually exist.

. Eigenfunctions of Lv = λ0v are bounded but not decaying if
λ ∈ [−c2

0,∞). No embedded eigenvalues exist if

u(x)→ c2 as x→ +∞ rapidly

. Darboux transformation does not produce any bounded solutions
if λ0 ∈ [−c2

0,∞).
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Trapped soliton via direct scattering

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0 and x0 < 0.

Eigenfunctions of Lv = λv with λ = k2 are known explicitly:

φ(x; k) = e−ikx
[

1− iµ0

k + iµ0
eµ0(x−x0)sech(µ0(x− x0)

]
, x < 0

and

ψ(x; k) = eiκx
[

1− iµ0

κ + iµ0
e−µ0(x−x0)sech(µ0(x− x0)

]
, x > 0,

where κ :=
√

c2 + k2.
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Trapped soliton via direct scattering

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0 and x0 < 0.

The scattering data are obtained from the scattering relation:

φ(x; k) = a(k)ψ(x; k) + b(k)ψ(x; k), x ∈ R,

where ψ̄ is obtained from ψ by reflection κ 7→ −κ.

Straightforward computation yields:

a(k) =
(κ + k)

(
κk + µ2

0 + iµ0(κ − k) tanh (µ0x0)
)

2κ(κ + iµ0)(k + iµ0)
.
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Trapped soliton via direct scattering

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0 and x0 < 0.

φ(x; k) and a(k) can be continued analytically for k ∈ C, Im(k) > 0.
However, k = ic is a branch point for κ :=

√
c2 + k2. Branch cuts

must be defined on iR either for Im(k) ∈ [−c, c] or for
|Im(k)| ∈ [c2,∞).

. If a(k0) = 0 with Im(k0) ∈ (c,∞), then κ0 :=
√

c2 + k2
0

satisfies Im(κ0) > 0 and φ(x; k0) = b0ψ(x; k0)→ 0 as
x→ +∞. This yields the isolated eigenvalue λ0 := k2

0, for
which the branch cut can be chosen for Im(k) ∈ [−c, c].
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Trapped soliton via direct scattering

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0 and x0 < 0.

φ(x; k) and a(k) can be continued analytically for k ∈ C, Im(k) > 0.
However, k = ic is a branch point for κ :=

√
c2 + k2. Branch cuts

must be defined on iR either for Im(k) ∈ [−c, c] or for
|Im(k)| ∈ [c2,∞).

. If a(k0) = 0 with Im(k0) ∈ (0, c), then κ0 :=
√

c2 + k2
0 satisfies

Re(κ0) > 0. If in addition, Im(κ0) < 0, then
φ(x; k0) = b0ψ(x; k0)→∞ as x→ +∞. This yields the
resonant pole λ0 := k2

0, for which the branch cut is for
|Im(k)| ∈ [c,∞).
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Trapped soliton via direct scattering

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0 and x0 < 0.

By using

a(k) =
(κ + k)

(
κk + µ2

0 + iµ0(κ − k) tanh (µ0x0)
)

2κ(κ + iµ0)(k + iµ0)
,

we are looking for roots k ∈ C with Im(k) > 0 of equation

κk + µ2
0 + iµ0(κ − k) tanh (µ0x0) = 0.

If x0 → −∞, k = iµ0 is a simple root of this equation.
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Trapped soliton via direct scattering

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0 and x0 < 0.

Assume x0 � −1.

. An isolated eigenvalue λ0 ∈ (−∞,−c2) persists near −µ2
0 if

µ0 ∈ (c,∞).

. An embedded eigenvalue λ0 ∈ (−c2, 0) moves to a resonant
pole λ = ik0 with Re(k0) < 0, Im(k0) > 0, and Im(κ0) < 0
if µ0 ∈ (0, c). Resonant poles do not correspond eigenvalues.
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Numerical experiments

We use Zabusky–Kruskal scheme to recover transmission of a large
soliton over the RW background and trapping of a small soliton
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Numerical experiments

Lax spectrum contains an isolated eigenvalue for the transmitted
soliton but does not contain any eigenvalues for the trapped soliton.
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Numerical experiments

Let a2 be the background (which depends on time t) and the solitary
wave with parameter ν2

0 is

u(t, x) = a2 + 2ν2
0 sech2[ν0(x− 4ν2

0 t − 6a2t − x0)].

Then, ν0 =
√
µ2

0 − a2 by direct scattering, where µ2
0 is parameter of

the solitary waves at zero background. The soliton amplitude is

A = a2 + 2ν2
0 = 2µ2

0 − a2.
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Numerical experiments

In order to detect a2(t) for the RW background, we solve
ut + 6uux = 0 with

u(t, x) =


0, x < −ε,
(2ε+ 6t)−1(x + ε), −ε ≤ x ≤ ε+ 6t,
1, x > ε+ 6t.

If ξ(t) is the numerically detected location of the solitary wave inside
RW, then

a2(t) = (2ε+ 6t)−1(ξ(t) + ε),

with which we compute the amplitude of the solitary waves

A(t) = 2µ2
0 − a2(t).
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Numerical experiments

Figure: Data analysis for the transmitted soliton: (a) Amplitude of the
solitary wave versus time (black) and the limiting amplitude A∞ = 2µ2

0 − c2

(red). (b) Amplitude of the solitary wave versus amplitude of the RW
background detected numerically (black) and theoretically (red). The blue
dots show the amplitude of the RW background.
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Numerical experiments

Figure: Data analysis for the trapped soliton: (a) Amplitude of the solitary
wave versus time (black) and the limiting amplitude A∞ = 2µ2

0 − c2 (red).
(b) Amplitude of the solitary wave versus amplitude of the RW background
detected numerically (black) and theoretically (red). The blue dots show the
amplitude of the RW background.
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Summary

. Transmitted solitary wave over the RW background can be
generated by using the Darboux transformation which adds an
isolated eigenvalue.

. No trapped solitary wave exists as it is related to resonant poles
of the Schrödinger equation.

. The amplitude of the transmitted soliton is determined by the
initial amplitude. The amplitude of the trapped soliton decays to
the amplitude of the RW background.

. Open question: What is a new solution generated by the Darboux
transformation from a complex-conjugate pair of resonant poles?
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Ongoing project with Mark Hoefer

The KdV equation
ut + 6uux + uxxx = 0, (KdV)

has a family of traveling periodic wave solutions

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

Question: What are the solitary waves propagating on the traveling
periodic wave background?

E. Kuznetsov, A. Mikhailov, JETP 40 (1974) 855
F. Gesztesy, R. Svirsky, Memoirs AMS 118 (1995) 1–88
X.R. Hu, S.Y. Lou, Y. Chen, Phys. Rev. E 85 (2012) 056607

A. Nakayashiki, Lett. Math. Phys. 111 (2021) 85
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Ongoing project with Mark Hoefer

The KdV equation
ut + 6uux + uxxx = 0, (KdV)

has a family of traveling periodic wave solutions

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

One can again use the Darboux–Backlund transformation

û := u + 2
∂2

∂x2 log(v0),

where v0(t, x) = v(x− ct)eωt is a solution of the Lamé equation

v′′(x) + 2k2cn2(x; k)v(x) + λv(x) = 0

with some uniquely determined ω = ω(λ).
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Ongoing project with Mark Hoefer

The KdV equation
ut + 6uux + uxxx = 0, (KdV)

has a family of traveling periodic wave solutions

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

Bright solitons
correspond to λ in
semi-infinite gap.

Dark solitons
correspond to λ in
the finite gap.
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Ongoing project with Mark Hoefer

The KdV equation
ut + 6uux + uxxx = 0, (KdV)

has a family of traveling periodic wave solutions

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

Bright soliton propagation
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Ongoing project with Mark Hoefer

The KdV equation
ut + 6uux + uxxx = 0, (KdV)

has a family of traveling periodic wave solutions

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

Dark soliton propagation
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