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Background of the problem

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (KdV)

with the step-like data

lim
x→−∞

u(t, x) = u−, lim
x→+∞

u(t, x) = u+.

Applications: tidal bores, earthquake-generated waves

G. A. El, Adv. Fluid Mech. 47 (2007) 19-53

G. A. El and M. A. Hoefer, Physica D 333 (2016) 11-65

Dmitry E. Pelinovsky, McMaster University Solitons and breathers on wave background 2 / 14



Background of the problem

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (KdV)

with the step-like data

lim
x→−∞

u(t, x) = u−, lim
x→+∞

u(t, x) = u+.

The step-like initial data results in
the appearance of a rarefaction
wave (RW) if u+ > u− and a
dispersive shock wave (DSW) if
u+ < u−.
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Background of the problem

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (KdV)

with the step-like data

lim
x→−∞

u(t, x) = u−, lim
x→+∞

u(t, x) = u+.

Soliton propagation on RW and DSW background have been
considered recently:

M. D. Maiden, D. V. Anderson, A. A. Franco, G. A. El, and M. A. Hoefer,
Phys. Rev. Lett. 120 (2018) 144101
P. Sprenger, M. A. Hoefer, and G. A. El, Phys. Rev. E 97 (2018) 032218
T. Congy, G. A. El and M. A. Hoefer, J. Fluid Mech. 875 (2019) 1145–1174

K. van der Sande, G. A. El and M. A. Hoefer, J. Fluid Mech. 928 (2021) A21
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Background of the problem

We are dealing with the canonical model for the shallow water waves,
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0, (KdV)

with the step-like data

lim
x→−∞

u(t, x) = u−, lim
x→+∞

u(t, x) = u+.

This is the toy model for soliton gases analyzed in mathematics and
observed in hydrodynamical experiments:

M. Bertola, R. Jenkins, and A. Tovbis (2022), arXiv: 2210.01350
M. Girotti, T. Grava, R. Jenkins, K. McLaughlin A. Minakov (2022),
arXiv:2205.02601
T. Congy, G. A. El, G. Roberti, and A. Tovbis (2022) arXiv:2208.04472

Y. Mao, S. Chandramouli, W. Xu, and M. A. Hoefer (2023) arXiv: 2302.11161
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State of the art

Soliton-RW:
a) Tunneling.
b) Trapping.

Soliton-DSW:
a) Tunneling.
b) Trapping.

M. J. Ablowitz, J. T. Cole, M. A. Hoefer, Stud. Appl. Math. (2023) in print.
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State of the art

Soliton-RW: Depending on the initial amplitude of a solitary wave, it
is either transmitted over or trapped inside the RW background.

M. J. Ablowitz, X. D. Luo, and J. T. Cole, J. Math. Phys. 59 (2018), 091406
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State of the art

This phenomenon was interpreted from the inverse scattering method:

Lv = λv, L := − ∂2

∂x2 − u

and
∂v
∂t

=Mv, M := −3ux − 6u
∂

∂x
− 4

∂3

∂x3 ,

where lim
x→−∞

u(x, t) = 0 and lim
x→+∞

u(x, t) = c2.

. Transmitted soliton corresponds to an isolated eigenvalue of L in
(−∞,−c2) outside the continuous spectrum on [−c2,∞).

. Trapped soliton corresponds to a “pseudo–embedded"
eigenvalue inside the continuous spectrum of L in [−c2, 0]

M. J. Ablowitz, X. D. Luo, and J. T. Cole, J. Math. Phys. 59 (2018), 091406
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State of the art

Soliton-DSW: The rigorous IST method was applied for the step-like
boundary conditions:

. N solitons added as poles in the IST method scatter towards zero
boundary conditions as t evolves.

. Phase shifts of the N solitons were appropriately computed.

. These N solitons are considered to be transmitted solitons over
the DSW background.

. No differences between transmitted and trapped solitons appear
in the IST method.

I. Egorova, Z. Gladka, V. Kotlyarov, and G. Teschl, Nonlinearity 26 (2013) 1839

I. Egorova, J. Michor, and G. Teschl, arXiv: 2109.08423 (2021)
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Soliton-RW interaction: transmitted soliton

Main result: Transmitted soliton on the RW background can be
constructed via Darboux transformation.

A. Mucalica and D.E. Pelinovsky, Solitons on the rarefaction wave background via

the Darboux transformation, Proc. R. Soc. A 478 (2022) 20220474

Darboux transformation: Let u be a solution of the KdV equation
and v0 be a real solution of the Lax equations for λ = λ0 ∈ R such
that v0 6= 0. Then,

û := u + 2
∂2

∂x2 log(v0)

is a new solution of the KdV equation.
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Soliton-RW interaction: transmitted soliton

Main result: Transmitted soliton on the RW background can be
constructed via Darboux transformation.

A. Mucalica and D.E. Pelinovsky, Solitons on the rarefaction wave background via

the Darboux transformation, Proc. R. Soc. A 478 (2022) 20220474

Darboux transformation: Let u be a solution of the KdV equation
and v0 be a real solution of the Lax equations for λ = λ0 ∈ R such
that v0 6= 0. Then,

û := u + 2
∂2

∂x2 log(v0)

is a new solution of the KdV equation.

If λ0 is below the bottom of the spectrum of L = −∂2
x − u, then

v0 6= 0 everywhere by Sturm’s nodal theory.
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Soliton-RW interaction: transmitted soliton

Let u(x) = 0 for x < 0 and u(x) = c2 for x > 0 at initial time t = 0.
Pick λ0 = −µ2

0 < −c2 and obtain

v0(x) =

{
eµ0(x−x0) + e−µ0(x−x0), x < 0,
c1eν0x + c2e−ν0x, x > 0,

where ν0 :=
√
µ2

0 − c2 > 0, x0 is arbitrary, and (c1, c2) are uniquely
found from the continuity of v0 and v′0 across x = 0.
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Soliton-RW interaction: transmitted soliton

Let u(x) = 0 for x < 0 and u(x) = c2 for x > 0 at initial time t = 0.
Pick λ0 = −µ2

0 < −c2 and obtain

v0(x) =

{
eµ0(x−x0) + e−µ0(x−x0), x < 0,
c1eν0x + c2e−ν0x, x > 0,

where ν0 :=
√
µ2

0 − c2 > 0, x0 is arbitrary, and (c1, c2) are uniquely
found from the continuity of v0 and v′0 across x = 0.

The new solution is given by

û(x) =

{
2µ2

0 sech2[µ0(x− x0)], x < 0,

c2 + 4ν2
0

ν2
0+µ2

0+(ν2
0−µ

2
0) cosh(2µ0x0)

[(ν0+µ0) cosh(ν0x−µ0x0)+(ν0−µ0) cosh(ν0x+µ0x0)]
2 , x > 0.

The solution is bounded if x0 ≤ 0.
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Soliton-RW interaction: transmitted soliton

Let u(x) = 0 for x < 0 and u(x) = c2 for x > 0 at initial time t = 0.
Pick λ0 = −µ2

0 < −c2 and obtain

v0(x) =

{
eµ0(x−x0) + e−µ0(x−x0), x < 0,
c1eν0x + c2e−ν0x, x > 0,

where ν0 :=
√
µ2

0 − c2 > 0, x0 is arbitrary, and (c1, c2) are uniquely
found from the continuity of v0 and v′0 across x = 0.

. The solitary wave decays differently as x→ −∞ (decay rate is

µ0) and as x→ +∞ (decay rate is ν0 =
√
µ2

0 − c2).

. The Lax spectrum of the new solution is [−c2,∞) and a simple
isolated eigenvalue λ0 = −µ2

0 < −c2.
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Soliton-RW interaction: trapped soliton

Some evidences that no trapped solitons actually exist.

. Eigenfunctions of Lv = λ0v are bounded but not decaying if
λ ∈ [−c2

0,∞). No embedded eigenvalues exist if

u(x)→ c2 as x→ +∞ rapidly

. Darboux transformation does not produce any bounded solutions
if λ0 ∈ [−c2

0,∞).

We shall prove that no trapped soliton exists for one example.

A. Mucalica and D.E. Pelinovsky, Solitons on the rarefaction wave background via

the Darboux transformation, Proc. R. Soc. A 478 (2022) 20220474
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Soliton-RW interaction: trapped soliton

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0, x0 < 0, and H(x) is the Heaviside step function.

Eigenfunctions of Lv = λv with λ = k2 are known explicitly:

φ(x; k) = e−ikx
[

1− iµ0

k + iµ0
eµ0(x−x0)sech(µ0(x− x0)

]
, x < 0

and

ψ(x; k) = eiκx
[

1− iµ0

κ + iµ0
e−µ0(x−x0)sech(µ0(x− x0)

]
, x > 0,

where κ :=
√

c2 + k2.
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Soliton-RW interaction: trapped soliton

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0, x0 < 0, and H(x) is the Heaviside step function.

The scattering data are obtained from the scattering relation:

φ(x; k) = a(k)ψ(x; k) + b(k)ψ(x; k), x ∈ R,

where ψ̄ is obtained from ψ by reflection κ 7→ −κ.

Straightforward computation yields:

a(k) =
(κ + k)

(
κk + µ2

0 + iµ0(κ − k) tanh (µ0x0)
)

2κ(κ + iµ0)(k + iµ0)
.
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Soliton-RW interaction: trapped soliton

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0, x0 < 0, and H(x) is the Heaviside step function.

φ(x; k) and a(k) can be continued analytically for k ∈ C, Im(k) > 0.
Zeros of a(k) for Im(k) > 0 correspond to solutions of Lv = λv with
λ = k2 and φ(x; k)→ 0 as x→ −∞.

However, k = ic is a branch point for κ :=
√

c2 + k2. Branch cuts
must be defined on iR.

Dmitry E. Pelinovsky, McMaster University Solitons and breathers on wave background 5 / 14



Soliton-RW interaction: trapped soliton

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0, x0 < 0, and H(x) is the Heaviside step function.

By using

a(k) =
(κ + k)

(
κk + µ2

0 + iµ0(κ − k) tanh (µ0x0)
)

2κ(κ + iµ0)(k + iµ0)
,

we are looking for roots k ∈ C with Im(k) > 0 of equation

κk + µ2
0 + iµ0(κ − k) tanh (µ0x0) = 0.

If x0 → −∞, k = iµ0 is a simple root of this equation for the
eigenvalue λ0 = k2 = −µ2

0 with either µ0 ∈ (c,∞) or µ0 ∈ (0, c).
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Soliton-RW interaction: trapped soliton

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0, x0 < 0, and H(x) is the Heaviside step function.

For every sufficiently large x0 � −1, there exists an isolated real
eigenvalue λ0 ≈ −µ2

0 if µ0 ∈ (c,∞).

In this case, k0 ∈ iR and κ0 =
√

c2 + k2
0 ∈ iR such that

φ(x; k0) = b0ψ(x; k0)→ 0 as x→ +∞. The branch cut can be
chosen for Im(k) ∈ [−c, c].
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Soliton-RW interaction: trapped soliton

Consider a linear superposition of a soliton and the step function:

u(x) = 2µ2
0sech2(µ0(x− x0)) + c2H(x),

where µ0 > 0, x0 < 0, and H(x) is the Heaviside step function.

For every sufficiently large x0 � −1, there exists a resonant pole
λ0 ∈ C with Re(λ0) ≈ −µ2

0 if µ0 ∈ (0, c).

In this case k0 ∈ C and κ0 =
√

c2 + k2
0 ∈ C satisfies Re(κ0) > 0 and

Im(κ0) < 0 so that φ(x; k0) = b0ψ(x; k0)→∞ as x→ +∞. The
branch cut can be chosen for |Im(k)| ∈ [c,∞).
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Numerical experiments

We use Zabusky–Kruskal scheme to recover transmission of a large
soliton over the RW background and trapping of a small soliton
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Numerical experiments

Lax spectrum contains an isolated eigenvalue for the transmitted
soliton but does not contain any eigenvalues for the trapped soliton.

Dmitry E. Pelinovsky, McMaster University Solitons and breathers on wave background 6 / 14



Numerical experiments

Let a2 be the background (which depends on time t) and the solitary
wave with parameter ν2

0 is

u(t, x) = a2 + 2ν2
0 sech2[ν0(x− 4ν2

0 t − 6a2t − x0)].

Then, ν0 =
√
µ2

0 − a2 by direct scattering, where µ2
0 is parameter of

the solitary waves at zero background. The soliton amplitude is

A = a2 + 2ν2
0 = 2µ2

0 − a2.

We can detect numerically the background parameter a2 at time t > 0
from the location of the local maximum for the solitary wave.
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Numerical experiments

In order to detect a2(t) for the RW background, we solve
ut + 6uux = 0 with

u(t, x) =


0, x < −ε,
(2ε+ 6t)−1(x + ε), −ε ≤ x ≤ ε+ 6t,
1, x > ε+ 6t.

Let ξ(t) be the numerically detected location of the solitary wave
inside RW. Then,

a2(t) = (2ε+ 6t)−1(ξ(t) + ε),

with which we compute the amplitude of the solitary waves

A(t) = 2µ2
0 − a2(t).

Dmitry E. Pelinovsky, McMaster University Solitons and breathers on wave background 6 / 14



Numerical experiments

Figure: Data analysis for the transmitted soliton: (a) Amplitude of the
solitary wave versus time (black) and the limiting amplitude A∞ = 2µ2

0 − c2

(red). (b) Amplitude of the solitary wave versus amplitude of the RW
background detected numerically (black) and theoretically (red). The blue
dots show the amplitude of the RW background.
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Numerical experiments

Figure: Data analysis for the trapped soliton: (a) Amplitude of the solitary
wave versus time (black) and the limiting amplitude A∞ = 2µ2

0 − c2 (red).
(b) Amplitude of the solitary wave versus amplitude of the RW background
detected numerically (black) and theoretically (red). The blue dots show the
amplitude of the RW background.
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Summary on Soliton-RW interactions

. A transmitted soliton over the RW background can be generated
by using the Darboux transformation which adds an isolated
eigenvalue to the spectrum.

. No trapped soliton exists as it is related to resonant poles of the
Schrödinger equation.

. The final amplitude of the transmitted soliton is determined by
the initial amplitude. The amplitude of the trapped soliton slowly
decays towards the amplitude of the RW background.
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Soliton–DSW interactions

Since the DSW is modeled by the modulated traveling periodic wave,
we consider the interaction of the soliton with a family of traveling
periodic waves. The normalized traveling wave of the KdV equation:

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

with the period 2K(k).
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Soliton–DSW interactions

Since the DSW is modeled by the modulated traveling periodic wave,
we consider the interaction of the soliton with a family of traveling
periodic waves. The normalized traveling wave of the KdV equation:

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

with the period 2K(k).

This is the most general traveling periodic wave solution due to the
scaling transformation

u(t, x) ⇒ α2u(α3t, αx), α > 0,

the Galilean transformation

u(t, x) ⇒ β + u(t, x− 6βt), β ∈ R,

and the translational symmetry: u(t, x)→ u(t, x− γ), γ ∈ R.
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Soliton–DSW interactions

Since the DSW is modeled by the modulated traveling periodic wave,
we consider the interaction of the soliton with a family of traveling
periodic waves. The normalized traveling wave of the KdV equation:

u(t, x) = 2k2cn2(x− ct; k), c = 4(2k2 − 1).

with the period 2K(k).

sn, cn, and dn are real-valued Jacobi elliptic functions with

sn2 + cn2 = 1, dn2 + k2sn2 = 1.

Parameter k ∈ (0, 1) is the elliptic modulus. Elliptic functions reduce
to the trigonometric functions as k→ 0 and to the hyperbolic
functions as k→ 1.
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Soliton–DSW interactions

Question: What are properties of the solitary wave propagating on the
traveling periodic wave background?

E. Kuznetsov, A. Mikhailov, JETP 40 (1974) 855
F. Gesztesy, R. Svirsky, Memoirs AMS 118 (1995) 1–88
X.R. Hu, S.Y. Lou, Y. Chen, Phys. Rev. E 85 (2012) 056607

A. Nakayashiki, Lett. Math. Phys. 111 (2021) 85

Due to periodicity of the interactions between the solitary wave and
the periodic background, we refer to these solutions as breathers and
study their properties (speed, localization, phase shift).

M. Hoefer, A. Mucalica and D.E. Pelinovsky, KdV breathers on cnoidal wave

background, J. Physics A: Mathem. Theor. 56 (2023) 185701
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Soliton–DSW interactions

One can again use the Darboux–Backlund transformation

û := u + 2
∂2

∂x2 log(v0),

where v0(t, x) = v(x− ct)eωt is a solution of the Lamé equation

v′′(x) + 2k2cn2(x; k)v(x) + λv(x) = 0

with some uniquely determined ω = ω(λ).
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Soliton–DSW interactions

Bright breathers
correspond to λ in
semi-infinite gap.

Dark breathers
correspond to λ in
the finite gap.
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Soliton–DSW interactions

Bright breather
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Soliton–DSW interactions

Dark breather
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Construction of breathers

The Lamé equation

v′′(x) + 2k2cn2(x; k)v(x) + λv(x) = 0

is solved with the explicit functions

v±(x) =
H(x± α)

Θ(x)
e∓xZ(α),

where λ = 1− 2k2 + k2cn(α; k) and

H(x) = θ1(
πx
2K

) = 2
∞∑

n=1

(−1)n−1q(n−1/2)2
sin(2n− 1)(

πx
2K

),

Θ(x) = θ4(
πx
2K

) = 1 + 2
∞∑

n=1

(−1)nqn2
cos(2n)(

πx
2K

).

D. F. Lawden, Elliptic Functions and Applications, (Springer, 2013)
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Construction of breathers

Nontrivial relation between λ and α:

λ = 1− 2k2 + k2cn(α; k)
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Construction of breathers

The time evolution of the eigenfunctions follows from the separation
of variables in the Lax system:

v±(t, x) =
H(x− ct ± α)

Θ(x− ct)
e∓(x−ct)Z(α)∓tω(α),

where ω(α) is found from the time evolution equation:

ω(α) = (c0 + 4λ− 2φ0(x))

[
Z(α)± Z(x)∓ H′(x± α)

H(x± α)

]
∓ φ′0(x),

or equivalently at x = 0:

ω(α) = 4(λ+ k2 − 1)

[
Θ′(α)

Θ(α)
− H′(α)

H(α)

]
.
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Construction of breathers

Darboux transformation for λ in the semi-infinite gap is applied with

v0(x, t) = c+v+(x, t) + c−v−(x, t)

where v±(x, t) > 0 and c± > 0. We can use that

k2cn2(x, k) = k2 − 1 +
E(k)

K(k)
+ ∂2

x log Θ(x)

and obtain the new solution

û = u + 2
∂2

∂x2 log(v0) = 2
[

k2 − 1 +
E(k)

K(k)

]
+ 2∂2

x log τ,

τ = Θ(x− c0t + αb)eκb(x−cbt+x0) + Θ(x− c0t − αb)e−κb(x−cbt+x0)

with uniquely defined parameters cb > c0, κb > 0, and αb ∈ [0,K]
for each λ.

Dmitry E. Pelinovsky, McMaster University Solitons and breathers on wave background 9 / 14



Construction of breathers

Darboux transformation for λ in the finite gap is applied with

v0(x, t) = c+v+(x, t) + c−v−(x, t)

but v±(x, t) are sign-indefinite. However, translation of the new
solution û = û(x + iK′, t) yields a bounded solution

û = u + 2
∂2

∂x2 log(v0) = 2
[

k2 − 1 +
E(k)

K(k)

]
+ 2∂2

x log τ,

τ = Θ(x− c0t + αd)e−κd(x−cdt+x0) + Θ(x− c0t − αd)eκd(x−cdt+x0)

with uniquely defined parameters cd < c0, κd > 0, and αd ∈ [0,K]
for each λ.

Dmitry E. Pelinovsky, McMaster University Solitons and breathers on wave background 9 / 14



Bright breathers

Here ∆b = 2παb/K(k) is normalized phase shift.
We can prove ∆′b(λ) > 0, κ′b(λ) < 0, and cb > c0.
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Bright breathers
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Dark breathers

Here ∆d = 2παd/K(k) is normalized phase shift.
We can prove ∆′d(λ) < 0, maxκd(λ), and cd < c0.
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Dark breathers
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Dark breathers

Limits k→ 0 and k→ 1 can be studied very precisely thanks to
availability of the exact solutions in the closed form.

The limit k→ 1 gives the 2-soliton solutions with two solitons of two
different speeds.

The limit k→ 0 for the bright breather of KdV yields the 1-soliton
solution.

The limit k→ 0 for the dark breathers of KdV yields the dark solitons
of NLS in agreement with

. Zakharov, V. E.; Kuznetsov, E. A. Multiscale expansions in the
theory of systems integrable by the inverse scattering transform.
Phys. D 18 (1986), no. 1-3, 455–463.
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Comparison between breathers and Soliton-DSW
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Summary on Soliton-DSW interactions

. A transmitted soliton over the DSW background can be related
to the bright breather solution.

. A trapped soliton in the DSW background can be related to the
dark breather solution.

. Parameters of the breather solutions are computed explicitly in
terms of the Jacobi elliptic functions.
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Transmission of solitons in other integrable models

Defocusing NLS and modified KDV equations are also physically
interesting models where similar problems are relevant and similar
solutions can be constructed. For the defocusing MKDV,

ut − 6u2ux + uxxx = 0,

the normalized traveling wave is

u(x, t) = φ0(x + c0t), φ0(x) = ksn(x; k), c0 = 1 + k2,

although it is not the most general solution of the MKDV equation. It
corresponds to

φ′′′ − 6φ2φ′ + cφ′ = 0 ⇒ φ′′ − 2φ3 + cφ = b,

with b = 0. The most general solution has b 6= 0.
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Transmission of solitons in other integrable models

The spectral problem is self-adjoint

ϕx =

(
iζ u
u −iζ

)
ϕ,

hence the spectrum associated with the traveling periodic wave is
purely real: ζ ∈ R.
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Transmission of solitons in other integrable models

Explicit solutions for eigenfunctions are available:
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iπx
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where

s(z) =
1
2

Z(iz)− 1
2

Z(iz′), z′ = K′(k)− z

and
ζ(z) =

1
2

dn(iz)dn(iz′).

D. A. Takahashi, Phys. Rev E. 93 (2016) 062224
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Transmission of solitons in other integrable models
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Transmission of solitons in other integrable models

New solution for soliton on the periodic background is obtained with
the Darboux transformation:

û = u− 4iζ0p0q0

p2
0 − q2

0
,

where ϕ = (p0, q0) is a superposition of two linearly independent
solutions with q0 = p̄0. However, the new solution is singular and a
bounded solution is obtained after the transformation: x→ x + iK′.
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Transmission of solitons in other integrable models

The solution surface of the breather on the periodic background:
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Transmission of solitons in other integrable models

The family of breathers on the periodic background:
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Transmission of solitons in other integrable models

Characteristics of the dark breather (phase shift, localization, speed)
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Transmission of solitons in other integrable models

Other models with modulationally stable periodic waves?

Benjamin–Ono equation, intermediate Long–Wave equation,
Kadomtsev–Petviashvili-II equation?

Many thanks for your attention!
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