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Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schafer, Wayne 2004]:

Uzt = U+ % (u3)zz’

where all coefficients are normalized.

The short-pulse equation
@ replaces the nonlinear Schrédinger equation for short wave packets
@ features exact solutions for modulated pulses

@ enjoys inverse scattering and an infinite set of conserved quantities



Relevant results

@ T. Schafer and C.E. Wayne (2004) proved local existence in H?(R).

@ A. Stefanov et al. (2010) considered a family of the generalized
short-pulse equations
Uzt = U+ (up)zz

and proved scattering to zero for small initial data if p > 4.

@ D.P. and A. Sakovich (2010) proved global well-posedness for small
initial data if p = 3.

@ Y. Liu, D.P. and A. Sakovich (2010) proved wave breaking for large initial
dataifp =2 and p = 3.

@ Remark: Global existence for small initial data is still opened for p = 2.



Integrability of the short-pulse equation

Let z = z(y, t) satisfy

Then, w = w(y, t) satisfies the sine—Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich, (2005), (2006)]:

wy = sin(w).

Lemma
Let the mapping [0, 7] 3 t — w(-,t) € H: be C* and

Hﬁ:{weHS(R); ||w\|ngwc<g}, s> 1.

Then, z(y, t) is invertible in y for any ¢ € [0, T] and u(z, t) = w(y(z, t),t)
solves the short-pulse equation

Ugt :u+%(u3)zz, z€eR, tel0,T].




Solutions of the short-pulse equation

A kink of the sine—Gordon equation gives a loop solution of the short-pulse
equation:

u = 2sech(y + t),
x =y — 2tanh(y +t).

u(z,t)

u. )

Figure: The loop solution u(z, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine—Gordon equation gives a modulated pulse solution:

msinysinh ¢ +ncosycoshg

m?2sin? ¢ + n2 cosh? ¢
msin 2y —nsinh2¢

— _17t+1 +7"
m?2sin® ) + n2 cosh? ¢ ac( m m)

u(y,t) = 4mn

W= 5o+,

z(y,t) =y +2mn

m?

where
¢:m(y+t)7 ZZ’:n(y*t)» n= 17m27
and m € R is a free parameter.

Figure: The pulse solution to the short-pulse equation with m = 0.25



Nonlinear dispersive equations for short pulses have been justified in a
similar context.

@ D. Alterman, J. Rauch (2003) - geometric optics approach

@ K. Barrailh, D. Lannes (2002); T. Colin, G. Gallice, K. Laurioux (2005) -
nonlocal envelope equation with full dispersion

@ M. Colin, D. Lannes (2009); D. Lannes (2011) -
regularized nonlinear Schrodinger equation

For the short-pulse equation, only linearized equations were justified from
Maxwell equations by using oscillatory integrals and Fourier analysis
Y. Chung, C. Jones, T. Schéfer, C.E. Wayne (2005).



Toy problem - quasilinear Klein—Gordon equation

Let us consider the quasilinear Klein—Gordon equation,

Ut — Uge + U+ (uS)IZ = 0.

Using new variables,

r—t

u(t,z) =2eU(1,€), T=¢€t, &= e

the Klein—Gordon equation can be written in the equivalent form,

Ure = U+ (U?)ge + € Ux».

The short-pulse equation appears by neglecting the last term €2U.,,

Agr = A+ (A%)ee.



Justification theorem

Theorem

Fixs > I and T > 0. Let A € C([0,7], H*(R)) be a local solution of the
short-pulse equation such that

sup ||a§A(T,')HHs—k <4, k=0,1,2,3,
7€[0,T]

for some ¢ > 0. Assume that there is ¢ > 0, Uy € H3(R), and V, € H*(R)
such that
U0 — A0, )l g2 + [[Vo — A7 (0, )| g1 < e.

For a sufficiently small § > 0, there exist ¢, > 0 and C, > 0 such that for all
e € (0, o) there exists a unique solution

U € C([0,T], H*(R)) n C* ([0, T], H*(R)) N C*([0,T], H' (R)),

of the Klein—Gordon equation subject to the initial data U (0, -) = Uy,
U-(0,-) = Vy satisfying

sup [|U(7,) — A(7, )|l g2 < Coe.
T€[0,T]




Assumptions of the theorem

Proposition (Schéfer & Wayne, 2004; Stefanov et al., 2010)

Fix s > 2. For any Ao € H*(R), there exists a time 7 = 7(||Ao||z+) > 0 and a
unique solution to the short-pulse equation such that

A € C([0, 7], H*(R)) N C*((0, 0], H* ' (R))

and A(0, -) = Ao. The solution depends continuously on Ay.

To obtain estimates on 8* A, we note that

A = OTTA+ (A%,
Arr = 077A+3(A%)07 A+ 44% + %(AS)&,
Arrr = 0°A+ aglA?’ +18A%0; 'A+ 3(A%):0; A+ 6A¢(0; ' A)?

123 27
(A4)§5<9 A+ =2 (A5)5 + = (AN)eee,



Bootstrapping of local solutions

Lemma

Let By € Lz(R) and consider the linear inhomogeneous equation,

B,e=B+F,
B(0,-) = By.

There exists a unique solution B € C([0, 70], L*(R)) for some 7, > 0 if either
(@) F = G¢ with G € C([0, 70], L*(R)) or (b) F € C*([0, 10], L*(R)).




Bootstrapping of local solutions

Lemma
Let By € Lz(R) and consider the linear inhomogeneous equation,

B,e=B+F,
B(0,-) = By.

There exists a unique solution B € C([0, 70], L*(R)) for some 7, > 0 if either
(@) F = G¢ with G € C([0, 70], L*(R)) or (b) F € C*([0, 10], L*(R)).

@ If Ag € H*(R)N H ' (R), s > 3, then
O 'AeC(o,n], H*H (R), A€ C'([0,70), H'(R)).
@ If Ag € H*(R)n H *(R), s > £, then
9 2A e C(0,70], H***(R)), A€ C*([0,70), H*(R)).
® If Ag € H*(R) N H*(R), s > £, and 9;° Ao + 0; ' A € L*(R), then

A e C3([0,70], H3(R))



Global well-posedness of the short-pulse equation

Proposition (D.P., A. Sakovich, 2010)
If Ap € H°(R), s > 2 and

1
65
there exists C' > 0 and a unique solution A € C(R,, H°(R)) of the
short-pulse equation with A(0, -) = Ao such that ||A(7, )|z < C.

1 40llZ2 + 1451172 <

This results follows from conserved quantities [J.C. Brunelli (2005)]:
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Kato'’s theory for symmetric quasilinear systems

Starting with the quasilinear Klein—-Gordon equation,
Ut — Ugy + U + (Us);cm =0.

we assume ||ul|pee < % and introduce

2\1/2
Ul = U, uQ:(1—3u)/ux, u3z = U.

The scalar equation is equivalent to the system
o [ w 0 —(1-3ud)? 0
5| v || (1 -3ud)t 0 0 | =
u3 0 0 0



Kato'’s theory for symmetric quasilinear systems

Starting with the quasilinear Klein—-Gordon equation,
Ut — Uz + U+ (u3);cgc =0.
we assume ||ul|pee < % and introduce
ur =ug, uz=(1- 3u2)1/2ux, u3z = U.
The scalar equation is equivalent to the system
U 0 —(1-3ud)? 0

0 o™
S| v || - 3u3)t/? 0 0| 5| ue | = f(u).
us 0 0 0 us

Proposition (T. Kato (1975))

For any uo € H*"(R) and vo € H*(R), s > § such that [|uo|[z>~ < 5, there
exists a time to = to(||uo||gs+1 + ||vo]|lzs) > 0 and a unique strong solution of
the Klein—Gordon equation such that

u € C([0,t0], H* T (R)) N C* ([0, to], H*(R)) N C*([0, to], H ' (R)),

subject to u(0, -) = uo and u.(0, -) = vo. Moreover, the local solution depends
continuously on the initial data (uo, vo).

v




Blow-up Alternative

Lemma
The local solution

u € C([0,%0), H*'(R)) N C* ([0, t0), H* (R)) N C*([0, %), H*~(R)),

blows up in a finite time ¢y < oo if and only if

tim sup (fjut, -)l|zoe + [[us(t, llzoe + flua(t, )l|zee) = co.
—to

When s =2 > g the result follows from apriori estimates on the energy,
Ei(u) = /(u2 w2 (1 — 3u%))d,
R
Ex(u) = /(ui +uZ + uiz(l — 3u2))dm,
R

By(u) = / 2y + won + 1o (1 — 3u%))da.
R



Flavor of the proof

For
Ei(u) = /(u2 +up +ui(l — 3u®))dz
R
we have from the Klein—Gordon equation,

1 dE1 (u)
2 dt

= 73/uutuidx, t €10, to],
R

Assume that My,1,2 < oo, Where

Mo = sup [lu(t,)lle, Mi= sup |lue(t,)|[zoe, Mz= sup [us(t,-)|re.

t€[0,to] te[0,to] te[0,to]
Then,
dF1 (u) C(Mo)MoM;t
T < C(Mo)MoMlEl(u) = El(u) < El(uo)e , te€ [O,t()],

hence E, (u) cannot blow up in a finite time ¢o.



Reformulation in new variables

Recall that in new variables,

r—t
2 ’

u(t,z) =2eU(T,€), T=¢€t, &=
the Klein—Gordon equation can be written in the equivalent form,

Ure = U+ (U?)ge + € Ux».

Lemma

Fix Co > 0 independently of . For any Uy € H**'(R) and Vy € H*(R), s > 2
such that ||Up|| L < Co, there exists an e-independent time

T =T(||Uo||gs+1 + ||Vollms) > 0 and a unique strong solution of the rescaled
Klein-Gordon equation for any € # 0 such that

U(r,-) € C([0,€eT], H* T (R)) N C*([0, €T], H* (R)) N C*([0, €T], H* ' (R)),

subject to U(0, -) = Up and U~ (0, -) = Vu. Moreover, the local solution blows
up in a finite time 79 < oo if and only if

limsup ([|U(7,)lzoe + [|U~(7, )l|zoe + [Ue(T, )| o) = oo

T—T0




Energy estimates for the error term

Setting U = A + ¢R, we obtain the Klein—Gordon equation for the error term,

Rer = R+ € Rer + (3A’R + 3eAR” + €R’) , + €Arr.
We shall control the energy for the error term,
E= / (R? + R + R + 2R + 'R2,) dx.
R
By Sobolev embedding, R and R, decay to zero at infinity as |£| — co and
IRz + || Rellz < CEY?

From the Klein—Gordon equation, we also have

[Rerll2 <C (6e+ EY? 4 §°E'/? +5€E+62E3/2) 7

which yields the control of [[eR, ||~ < C (E1/2 +6¢% + 02E + e3E3/2).



Method of the proof

We have seen that the short-pulse equation has local solutions
A€ C([0,T),H*(R)) for T > 0 and s > % such that

sup ||8 A( )HHS—’C S 67 k= 07 172735

T€[0,T]

for some small § > 0.
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1U(0,-) = A0, )l g2 + [[V(0,-) = A7 (0, )| g < e,
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Method of the proof

We have seen that the short-pulse equation has local solutions
A€ C([0,T),H*(R)) for T > 0 and s > % such that

sup ||8 A( )HHg—k S 57 k= 07 172735

T€[0,T]
for some small § > 0.
If the initial data satisfy
1U(0,-) — A0, )|l g2 + [V(0,-) — A7 (0, )| g2 <€,
for some small € > 0, then
IR0, )2 + |1 B-(0, )2 <1,
or EF < oco.

IfU(0,-) € H*(R), and V(0,-) € H?(R), then there exists a local solution of
the Klein—Gordon equation for the error term,

R e C([0,€eT], H*(R)) N C* ([0, €T], H*(R)) N C*([0, €T], H' (R))

The existence interval is extended as long as R is controlled in the energy
space E(7) < oo for 7 € [0, T7.



Control of energy

Lemma

We have (roughly)

E
ZZTT =7, 1| <C (5B + 6 E+ 0B +cB?),
for some (¢, d)-independent constant C' > 0, as long as the solution remains

in the function space

R e C([0,T], H*(R)) n C*([0,T], H*(R)) N C*([0, T], H' (R)).




Control of energy

Lemma

We have (roughly)

‘% —J, |J<cC (6E1/2 + 6%E + 6E¥/? +eE2) 7

for some (¢, d)-independent constant C' > 0, as long as the solution remains
in the function space

R e C([0,T], H*(R)) n C*([0,T], H*(R)) N C*([0, T], H' (R)).

By Gronwall’s inequality, we have
E(1) < Co(E(0) 4 6T)e°", 1€ 0,7,

which allows us to continue the solution from [0, €T’ to [0, T7].



Control of energy

Lemma

We have (roughly)

E
ZZTT =7, 1| <C (5B + 6 E+ 0B +cB?),
for some (¢, d)-independent constant C' > 0, as long as the solution remains

in the function space

R e C([0,T], H*(R)) n C*([0,T], H*(R)) N C*([0, T], H' (R)).

By Gronwall’s inequality, we have
BE(1) < Co(E(0) + 6T)e", 7€ 0,7,
which allows us to continue the solution from [0, €T’ to [0, T7].
Thus, we have a local solution,
U e C([o,T), H*(R)) N C*([0,T], H*(R)) N C*([0, T], H' (R)),
satisfying
sup [[U(7,) = A(7, )l 2 < Coe.

T€[0,T]



Solutions of the quasilinear Klein—Gordon equation,
Utt — Ugz + U + (Us)m =0,
which are initially closer to small solutions of the short-pulse equation,
Agr = A+ (A7),

remain close to these solutions for long but finite time intervals.



Solutions of the quasilinear Klein—Gordon equation,
Utt — Ugz + U + (Us)m =0,
which are initially closer to small solutions of the short-pulse equation,
Agr = A+ (A7),
remain close to these solutions for long but finite time intervals.

Initial proximity

=24 0.5)] <0 [wio)+ac 0.5, <06
Hu(O ) —2eA (0 5 ) || 1o < Ce ue(0,-) + Ae (O 5 )l i < Ce
implies
sup ||u(t,:) — 2€A <et, ;t) H < 0061/2,
te[0,T/€] 2¢ H?

where the leading-order term is

Jeo (o)l = 067 |

4 ()], = o
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