Periodic and double periodic waves in NLS: existence and stability

Dmitry E. Pelinovsky
Collaborators: Jinbing Chen (Nanjing), Amin Chabchoub (Kyoto/Sydney),
Mariana Haragus (Besancon),
Jeremy Upsal (Seattle),
Robert White (McMaster)

Department of Mathematics, McMaster University, Canada
http://dmpeli.math.mcmaster.ca

The focusing NLS equation

The focusing nonlinear Schrödinger (NLS) equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

has been derived as the main model for modulating quasi-harmonic waves

$$
\epsilon \psi\left(\epsilon(x-c t), \epsilon^{2} t\right) e^{i\left(k_{0} x-\omega_{0} t\right)}+\epsilon \bar{\psi}\left(\epsilon(x-c t), \epsilon^{2} t\right) e^{-i\left(k_{0} x-\omega_{0} t\right)}+\text { higher-order terms }
$$

from water wave equations, Maxwell equations, and the like.

$\psi(x, t)=e^{i t}$ is the constant-amplitude wave,
$\psi(x, t)=\operatorname{sech}(x) e^{i t / 2}$ is a solitary wave.

The rogue wave of the cubic NLS equation

The focusing nonlinear Schrödinger (NLS) equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

admits the exact solution

$$
\psi(x, t)=\left[1-\frac{4(1+2 i t)}{1+4 x^{2}+4 t^{2}}\right] e^{i t} .
$$

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Modulational instability of the constant-amplitude wave

The rogue wave solution is related to the modulational instability of the constant-amplitude wave:

$$
\psi(x, t)=e^{i t}\left[1+\left(k^{2}+2 i \Lambda\right) e^{\Lambda t+i k x}+\left(k^{2}+2 i \bar{\Lambda}\right) e^{\bar{\Lambda} t-i k x}\right]
$$

where $k \in \mathbb{R}$ is the wave number and Λ is given by

$$
\Lambda^{2}=k^{2}\left(1-\frac{1}{4} k^{2}\right)
$$

The wave is unstable for $k \in(0,2)$.

Other rogue waves - Akhmediev breathers (AB)

Spatially periodic homoclinic solution was constructed by N.N. Akhmediev, V.M. Eleonsky, and N.E. Kulagin (1985):

$$
\psi(x, t)=e^{i t}\left[1-\frac{2\left(1-\lambda^{2}\right) \cosh (k \lambda t)+i k \lambda \sinh (k \lambda t)}{\cosh (k \lambda t)-\lambda \cos (k x)}\right],
$$

where $k=2 \sqrt{1-\lambda^{2}} \in(0,2)$ and $\lambda \in(0,1)$ is the only free parameter. There is a unique solution for each spatial period $L=\frac{2 \pi}{k}=\frac{\pi}{\sqrt{1-\lambda^{2}}}>\pi$.

Other rogue waves - Kuznetsov-Ma breathers

Temporally periodic soliton was constructed by E. A. Kuznetsov (1977) and Y.-C. Ma (1979):

$$
\psi(x, t)=\left[1-\frac{2\left(\lambda^{2}-1\right) \cos (\beta \lambda t)+i \beta \lambda \sin (\beta \lambda t)}{\lambda \cosh (\beta x)-\cos (\beta \lambda t)}\right] e^{i t},
$$

where $\beta=2 \sqrt{\lambda^{2}-1}$ and $\lambda \in(1, \infty)$ is the only free parameter. There is a unique solution for each temporal period $T=\frac{2 \pi}{\beta \lambda}=\frac{\pi}{\lambda \sqrt{\lambda^{2}-1}}>0$ with $k=i \beta$.

Traveling periodic waves

The focusing nonlinear Schrödinger (NLS) equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

also admits the periodic traveling and standing wave solutions, e.g. the dnoidal and cnoidal waves:

$$
\psi_{\mathrm{dn}}(x, t)=\operatorname{dn}(x ; k) e^{i\left(1-k^{2} / 2\right) t}, \quad \psi_{\mathrm{cn}}(x, t)=k \operatorname{cn}(x ; k) e^{i\left(k^{2}-1 / 2\right) t}
$$

where $k \in(0,1)$ is elliptic modulus.

Rogue wave on background of periodic waves

J. Chen, D. P., Proceedings A (2018)
J. Chen, D. P., R. White, Physica D (2020)

Double-periodic wave background

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):

$$
\begin{gathered}
\psi(x, t)=k \frac{\operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; k)+i \sqrt{1+k} \operatorname{sn}(t ; k) \operatorname{dn}(\sqrt{1+k} x ; k)}{\sqrt{1+k} \operatorname{dn}(\sqrt{1+k} x ; \kappa)-\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; \kappa)} e^{i t}, \\
\psi(x, t)=\frac{\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)+i \sqrt{k(1+k)} \operatorname{sn}(t ; k)}{\sqrt{1+k}-\sqrt{k} \operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)} e^{i k t}
\end{gathered}
$$

where $k \in(0,1)$ is elliptic modulus and $\kappa \in(0,1)$ is determined by k.

Rogue wave on background of double-periodic waves

J. Chen, D. P., R. White, Phys. Rev. E (2019)

NLS hierarchy

The focusing nonlinear Schrödinger (NLS) equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

is a member of the NLS hierarchy

$$
\frac{d}{d t_{k}}\left[\begin{array}{l}
u \\
\bar{u}
\end{array}\right]=J \nabla H_{k}(u), \quad \nabla H_{k+1}(u)=R \nabla H_{k}(u)
$$

where

$$
J=i\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad R=i\left[\begin{array}{cc}
\partial_{x}+2 \bar{u} \partial_{x}^{-1} u & -2 \bar{u} \partial_{x}^{-1} \bar{u} \\
2 u \partial_{x}^{-1} u & -\partial_{x}-2 u \partial_{x}^{-1} \bar{u}
\end{array}\right],
$$

Thus, we obtain

$$
\begin{aligned}
& H_{0}=\int_{\mathbb{R}}|u|^{2} d x, \quad H_{1}=\frac{i}{2} \int_{\mathbb{R}}\left(u \bar{u}_{x}-u_{x} \bar{u}\right) d x, \\
& H_{2}=\int_{\mathbb{R}}\left(\left|u_{x}\right|^{2}-|u|^{4}\right) d x, \quad H_{3}=\frac{i}{2} \int_{\mathbb{R}}\left[u_{x} \bar{u}_{x x}-u_{x x} \bar{u}_{x}-3|u|^{2}\left(u \bar{u}_{x}-u_{x} \bar{u}\right)\right] d x .
\end{aligned}
$$

Stationary Lax-Novikov equations

The stationary (Lax-Novikov) equations are given by

$$
\begin{aligned}
& \nabla H_{1}(u)+2 c \nabla H_{0}(u)=0, \\
& \nabla H_{2}(u)+2 c \nabla H_{1}(u)+4 b \nabla H_{0}(u)=0, \\
& \nabla H_{3}(u)+2 c \nabla H_{2}(u)+4 b \nabla H_{1}(u)+8 a \nabla H_{0}(u)=0,
\end{aligned}
$$

or explicitly,

$$
\begin{aligned}
& u^{\prime}(x)+2 i c u=0 \\
& u^{\prime \prime}(x)+2|u|^{2} u+2 i c u^{\prime}+4 b u=0, \\
& u^{\prime \prime \prime}(x)+6|u|^{2} u^{\prime}+2 i c\left(u^{\prime \prime}+2|u|^{2} u\right)+4 b u^{\prime}+8 i a u=0,
\end{aligned}
$$

where c, b, a are constants.

Solutions of stationary Lax-Novikov equations

In terms of the NLS equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

the stationary Lax-Novikov equations

$$
\begin{aligned}
& u^{\prime}+2 i c u=0 \\
& u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}+4 b u=0 \\
& u^{\prime \prime \prime}+6|u|^{2} u^{\prime}+2 i c\left(u^{\prime \prime}+2|u|^{2} u\right)+4 b u^{\prime}+8 i a u=0
\end{aligned}
$$

generate the following solutions:
(1) Constant-amplitude wave $\psi(x, t)=\boldsymbol{A} e^{-2 i c(x+c t)+i A^{2} t}$,
(2) Traveling standing wave $\psi(x, t)=u(x+c t) e^{-2 i b t}$
(3) Double-periodic wave $\psi(x, t)=[q(x, t)+i \delta(t)] e^{i t+i \alpha(t)}$, where $q(x+L, t)=q(x, t+T)=q(x, t), \delta(t+T)=\delta(t), \alpha(t+T)=\alpha(t)$.

Characterization of $u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}+4 b u=0$

Consider the Lax system of linear equations

$$
\varphi_{x}=U(\lambda, u) \varphi, \quad U(\lambda, u)=\left(\begin{array}{cc}
\lambda & u \\
-\bar{u} & -\lambda
\end{array}\right)
$$

and

$$
\varphi_{t}=V(\lambda, u) \varphi, \quad V(\lambda, u)=i\left(\begin{array}{cc}
\lambda^{2}+\frac{1}{2}|u|^{2} & \frac{1}{2} u_{x}+\lambda u \\
\frac{1}{2} \bar{u}_{x}-\lambda \bar{u} & -\lambda^{2}-\frac{1}{2}|u|^{2}
\end{array}\right) .
$$

Fix $\lambda=\lambda_{1} \in \mathbb{C}$ with $\varphi=\left(p_{1}, q_{1}\right) \in \mathbb{C}^{2}$ and set $u=p_{1}^{2}+\bar{q}_{1}^{2}$. The spectral problem $\varphi_{x}=U(\lambda, u) \varphi$ becomes the Hamiltonian system generated by

$$
H=\lambda_{1} p_{1} q_{1}+\bar{\lambda}_{1} \bar{p}_{1} \bar{q}_{1}+\frac{1}{2}\left(p_{1}^{2}+\bar{q}_{1}^{2}\right)\left(\bar{p}_{1}^{2}+q_{1}^{2}\right)
$$

with additional constant $F=i\left(p_{1} q_{1}-\bar{p}_{1} \bar{q}_{1}\right)$.
(Cao-Geng, 1990) (Cao-Wu-Geng, 1999) (R.Zhou, 2009) (Chen-P, 2018)

Second-order Lax-Novikov equation

By differentiating of the constraints between u and $\left(p_{1}, q_{1}\right)$, we obtain

$$
\begin{aligned}
u & =p_{1}^{2}+\bar{q}_{1}^{2}, \\
u^{\prime}+2 i F u & =2\left(\lambda_{1} p_{1}^{2}-\bar{\lambda}_{1} \bar{q}_{1}^{2}\right), \\
u^{\prime \prime}+2|u|^{2} u+2 i F u^{\prime}-4 H u & =4\left(\lambda_{1}^{2} p_{1}^{2}+\bar{\lambda}_{1}^{2} \bar{q}_{1}^{2}\right),
\end{aligned}
$$

which yields the second-order Lax-Novikov equation:

$$
u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}+4 b u=0
$$

where $c:=F+i\left(\lambda_{1}-\bar{\lambda}_{1}\right)$ and $b:=-H-i F\left(\lambda_{1}-\bar{\lambda}_{1}\right)-\left|\lambda_{1}\right|^{2}$.
The second-order equation admits two conserved quantities:

$$
\begin{aligned}
i\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)-2 c|u|^{2} & =4 a, \\
\left|u^{\prime}\right|^{2}+|u|^{4}+4 b|u|^{2} & =8 d .
\end{aligned}
$$

Integrability of the Hamiltonian system

The Hamiltonian system for $\left(p_{1}, q_{1}\right)$ is obtained from the Lax equation

$$
\frac{d}{d x} W(\lambda)=U(\lambda, u) W(\lambda)-W(\lambda) U(\lambda, u)
$$

where $U(\lambda, u)$ is defined under the constraint $u=p_{1}^{2}+\bar{q}_{1}^{2}$ and

$$
W(\lambda)=\left(\begin{array}{cc}
W_{11}(\lambda) & W_{12}(\lambda) \\
\bar{W}_{12}(-\lambda) & -\bar{W}_{11}(-\lambda)
\end{array}\right),
$$

with

$$
W_{11}(\lambda)=1-\frac{p_{1} q_{1}}{\lambda-\lambda_{1}}+\frac{\bar{p}_{1} \bar{q}_{1}}{\lambda+\bar{\lambda}_{1}}, \quad W_{12}(\lambda)=\frac{p_{1}^{2}}{\lambda-\lambda_{1}}+\frac{\bar{q}_{1}^{2}}{\lambda+\bar{\lambda}_{1}} .
$$

Due to relations between u and $p_{1}^{2}, \bar{q}_{1}^{2}$, and $p_{1} q_{1}$, we have

$$
W_{11}(\lambda)=\frac{\lambda^{2}+i c \lambda+b+\frac{1}{2}|u|^{2}}{\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)}, \quad W_{12}(\lambda)=\frac{u \lambda+i c u+\frac{1}{2} u^{\prime}}{\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)} .
$$

Algebraic polynomial for $u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}+4 b u=0$

$\operatorname{det} W(\lambda)$ is constant in (x, t) and has simple poles at λ_{1} and $-\bar{\lambda}_{1}$:

$$
\operatorname{det}[W(\lambda)]=-1+\frac{2 H+F^{2}}{\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)}=-\frac{P(\lambda)}{\left(\lambda-\lambda_{1}\right)^{2}\left(\lambda+\bar{\lambda}_{1}\right)^{2}}
$$

so that $P(\lambda)$ is constant in (x, t) and has roots at λ_{1} and $-\bar{\lambda}_{1}$:

$$
\begin{aligned}
P(\lambda) & =\left(\lambda^{2}+i c \lambda+b+\frac{1}{2}|u|^{2}\right)^{2}-\left(u \lambda+i c u+\frac{1}{2} u^{\prime}\right)\left(\bar{u} \lambda+i c \bar{u}-\frac{1}{2} \bar{u}^{\prime}\right) \\
& =\lambda^{4}+2 i c \lambda^{3}+\left(2 b-c^{2}\right) \lambda^{2}+2 i(a+b c) \lambda+b^{2}-2 a c+2 d \\
& =\left(\lambda-\lambda_{1}\right)\left(\lambda+\bar{\lambda}_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda+\bar{\lambda}_{2}\right),
\end{aligned}
$$

where constants (a, b, c, d) are incorporated from the second-order Lax-Novikov equation and its two conserved quantities.

Lax spectrum for the standing periodic waves

Two possible solutions for the standing periodic waves $(a=c=0)$:

$$
u(x)=\operatorname{dn}(x ; k), \quad u(x)=k \operatorname{cn}(x ; k) .
$$

Solutions are periodic with some period and the Lax spectrum of $\varphi_{x}=U(\lambda, u) \varphi$ coincides with the Floquet spectrum.

Red dots show roots of $P(\lambda)$, e.g., eigenvalues of the nonlinearization method.

$u^{\prime \prime \prime}+6|u|^{2} u^{\prime}+2 i c\left(u^{\prime \prime}+2|u|^{2} u\right)+4 b u^{\prime}+8 i a u=0$

Fix $\lambda=\lambda_{1} \in \mathbb{C}$ with $\varphi=\left(p_{1}, q_{1}\right) \in \mathbb{C}^{2}$ and $\lambda=\lambda_{2} \in \mathbb{C}$ with $\varphi=\left(p_{2}, q_{2}\right) \in \mathbb{C}^{2}$ such that $\lambda_{1} \neq \pm \lambda_{2}$ and $\lambda_{1} \neq \pm \bar{\lambda}_{2}$. Set

$$
u=p_{1}^{2}+\bar{q}_{1}^{2}+p_{2}^{2}+\bar{q}_{2}^{2} .
$$

The spectral problem $\varphi_{x}=U(\lambda, u) \varphi$ becomes the Hamiltonian system with four conserved quantities:

$$
\begin{aligned}
F_{0} & =i\langle\mathrm{p}, \mathrm{q}\rangle, \\
F_{1} & =\langle\Lambda \mathrm{p}, \mathrm{q}\rangle+\frac{1}{2}\langle\mathrm{p}, \mathrm{p}\rangle\langle\mathrm{q}, \mathrm{q}\rangle-\frac{1}{2}\langle\mathrm{p}, \mathrm{q}\rangle^{2}, \\
F_{2} & =i\left[\left\langle\Lambda^{2} \mathrm{p}, \mathrm{q}\right\rangle+\frac{1}{2}\langle\Lambda \mathrm{p}, \mathrm{p}\rangle\langle\mathrm{q}, \mathrm{q}\rangle+\frac{1}{2}\langle\mathrm{p}, \mathrm{p}\rangle\langle\Lambda \mathrm{q}, \mathrm{q}\rangle-\langle\mathrm{p}, \mathrm{q}\rangle\langle\Lambda \mathrm{p}, \mathrm{q}\rangle\right], \\
F_{3} & =\left\langle\Lambda^{3} \mathrm{p}, \mathrm{q}\right\rangle+\frac{1}{2}\left\langle\Lambda^{2} \mathrm{p}, \mathrm{p}\right\rangle\langle\mathrm{q}, \mathrm{q}\rangle+\frac{1}{2}\langle\Lambda \mathrm{p}, \mathrm{p}\rangle\langle\Lambda \mathrm{q}, \mathrm{q}\rangle+\frac{1}{2}\langle\mathrm{p}, \mathrm{p}\rangle\left\langle\Lambda^{2} \mathrm{q}, \mathrm{q}\right\rangle \\
& -\frac{1}{2}\langle\Lambda \mathrm{p}, \mathrm{q}\rangle^{2}-\langle\mathrm{p}, \mathrm{q}\rangle\left\langle\Lambda^{2} \mathrm{p}, \mathrm{q}\right\rangle,
\end{aligned}
$$

where $\mathrm{p}=\left(p_{1}, p_{2}, \bar{q}_{1}, \bar{q}_{2}\right)^{t}, \mathrm{q}=\left(q_{1}, q_{2},-\bar{p}_{1},-\bar{p}_{2}\right)^{t}, \Lambda:=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \bar{\equiv} \bar{\lambda}_{1},-\overline{\overline{\underline{\beta}}} \bar{\lambda}_{2}\right)$.

Fourth-order Lax-Novikov equation

By differentiating of the constraints between u and (p, q), we obtain

$$
\begin{aligned}
& u=\langle\mathrm{p}, \mathrm{p}\rangle, \\
& u^{\prime}+2 i F_{0} u=2\langle\Lambda \mathrm{p}, \mathrm{p}\rangle, \\
& u^{\prime \prime}+2|u|^{2} u+2 i F_{0} u^{\prime}-4 H u=4\left\langle\Lambda^{2} \mathrm{p}, \mathrm{p}\right\rangle, \\
& u^{\prime \prime \prime}+6|u|^{2} u^{\prime}+2 i F_{0}\left(u^{\prime \prime}+2|u|^{2} u\right)-4 H u^{\prime}+8 i K u=8\left\langle\Lambda^{3} \mathrm{p}, \mathrm{p}\right\rangle, \\
& u^{\prime \prime \prime \prime}+8|u|^{2} u^{\prime \prime}+2 u^{2} \bar{u}^{\prime \prime}+4 u\left|u^{\prime}\right|^{2}+6\left(u^{\prime}\right)^{2} \bar{u}+6|u|^{4} u \\
&+2 i F_{0}\left(u^{\prime \prime \prime}+6|u|^{2} u^{\prime}\right)-4 H\left(u^{\prime \prime}+2|u|^{2} u\right)+8 i K u^{\prime}-16 E u=16\left\langle\Lambda^{4} \mathrm{p}, \mathrm{p}\right\rangle,
\end{aligned}
$$

which yields the fourth-order Lax-Novikov equation:

$$
\begin{aligned}
& u^{\prime \prime \prime \prime}+8|u|^{2} u^{\prime \prime}+2 u^{2} \bar{u}^{\prime \prime}+4 u\left|u^{\prime}\right|^{2}+6\left(u^{\prime}\right)^{2} \bar{u}+6|u|^{4} u \\
& \quad+2 i c\left(u^{\prime \prime \prime}+6|u|^{2} u^{\prime}\right)+4 b\left(u^{\prime \prime}+2|u|^{2} u\right)+8 i a u^{\prime}+16 d u=0
\end{aligned}
$$

which is integrable with four conserved quantities. If u solves the second-order equation $u^{\prime \prime}+2|u|^{2} u+2 i c u^{\prime}+4 b u=0$, then the fourth-order equation is identically satisfied.

Integrability of the Hamiltonian system

The Hamiltonian system for $\left(p_{1}, p_{2}, q_{1}, q_{2}\right)$ is obtained from the Lax equation
$\frac{d}{d x} W(\lambda)=U(\lambda, u) W(\lambda)-W(\lambda) U(\lambda, u), \quad W(\lambda)=\left(\begin{array}{cc}W_{11}(\lambda) & W_{12}(\lambda) \\ \bar{W}_{12}(-\lambda) & -\bar{W}_{11}(-\lambda)\end{array}\right)$,
with

$$
W_{11}(\lambda)=1-\sum_{j=1}^{2}\left(\frac{p_{j} q_{j}}{\lambda-\lambda_{j}}-\frac{\bar{p}_{j} \bar{q}_{j}}{\lambda+\bar{\lambda}_{j}}\right), \quad W_{12}(\lambda)=\sum_{j=1}^{2}\left(\frac{p_{j}^{2}}{\lambda-\lambda_{j}}+\frac{\bar{q}_{j}^{2}}{\lambda+\bar{\lambda}_{j}}\right) .
$$

Due to relations between u and squared eigenfunctions, we have

$$
\begin{aligned}
& W_{11}(\lambda)=\frac{\lambda^{4}+i T_{1} \lambda^{3}+T_{2} \lambda^{2}+i T_{3} \lambda+T_{4}}{\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda+\bar{\lambda}_{1}\right)\left(\lambda+\bar{\lambda}_{2}\right)},\left\{\begin{array}{l}
T_{1}=c, \\
T_{2}=b+\frac{1}{2}|u|^{2}, \\
T_{3}=a+\frac{2}{2} c|u|^{2}-\frac{i}{4}\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right), \\
T_{4}=d+\frac{1}{2} b|u|^{2}+\frac{1}{4} c\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)+\frac{1}{8}(
\end{array}\right. \\
& W_{12}(\lambda)=\frac{S_{0} \lambda^{3}+S_{1} \lambda^{2}+S_{2} \lambda+S_{3}}{\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda+\bar{\lambda}_{1}\right)\left(\lambda+\bar{\lambda}_{2}\right)},\left\{\begin{array}{l}
S_{0}=u, \\
S_{1}=\frac{1}{2} u^{\prime}+i c u, \\
S_{2}=\frac{1}{4}\left(u^{\prime \prime}+2|u|^{2} u\right)+\frac{i}{2} c u^{\prime}+b u, \\
S_{3}=\frac{1}{8}\left(u^{\prime \prime \prime}+6|u|^{2} u^{\prime}\right)+\frac{i}{4} c\left(u^{\prime \prime}+2|u|^{2}\right.
\end{array}\right.
\end{aligned}
$$

Third-order Lax-Novikov equation

If $T_{4}=S_{3}=0$, then the fourth-order Lax-Novikov equation

$$
\begin{aligned}
u^{\prime \prime \prime \prime}+ & 8|u|^{2} u^{\prime \prime}+2 u^{2} \bar{u}^{\prime \prime}+4 u\left|u^{\prime}\right|^{2}+6\left(u^{\prime}\right)^{2} \bar{u}+6|u|^{4} u \\
& +2 i c\left(u^{\prime \prime \prime}+6|u|^{2} u^{\prime}\right)+4 b\left(u^{\prime \prime}+2|u|^{2} u\right)+8 i a u^{\prime}+16 d u=0,
\end{aligned}
$$

is satisfied by its reduction to the third-order Lax-Novikov equation

$$
u^{\prime \prime \prime}+6|u|^{2} u^{\prime}+2 i c\left(u^{\prime \prime}+2|u|^{2} u\right)+4 b u^{\prime}+8 i a u=0
$$

which is integrable with three conserved quantities:

$$
\begin{aligned}
d+\frac{1}{2} b|u|^{2}+\frac{i}{4} c\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)+\frac{1}{8}\left(u \bar{u}^{\prime \prime}+u^{\prime \prime} \bar{u}-\left|u^{\prime}\right|^{2}+3|u|^{4}\right) & =0, \\
2 e-a|u|^{2}-\frac{1}{4} c\left(\left|u^{\prime}\right|^{2}+|u|^{4}\right)+\frac{i}{8}\left(u^{\prime \prime} \bar{u}^{\prime}-u^{\prime} \bar{u}^{\prime \prime}\right) & =0,
\end{aligned}
$$

$f-\frac{i}{2} a\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)+\frac{1}{4} b\left(\left|u^{\prime}\right|^{2}+|u|^{4}\right)+\frac{1}{16}\left(\left.\left.\left|u^{\prime \prime}+2\right| u\right|^{2} u\right|^{2}-\left(u^{\prime} \bar{u}-u \bar{u}^{\prime}\right)^{2}\right)=0$.

Algebraic polynomial for the third-order equation

$\operatorname{det} W(\lambda)$ is constant in (x, t) and has simple poles at $\lambda_{1}, \lambda_{2},-\bar{\lambda}_{1}$, and $-\bar{\lambda}_{2}$:

$$
\operatorname{det}[W(\lambda)]=-\frac{\lambda^{2} P(\lambda)}{\left(\lambda-\lambda_{1}\right)^{2}\left(\lambda-\lambda_{2}\right)^{2}\left(\lambda+\bar{\lambda}_{1}\right)^{2}\left(\lambda+\bar{\lambda}_{2}\right)^{2}},
$$

with

$$
\begin{aligned}
P(\lambda) & =\lambda^{6}+2 i c \lambda^{5}+\left(2 b-c^{2}\right) \lambda^{4}+2 i(a+b c) \lambda^{3}+\left(b^{2}-2 a c+2 d\right) \lambda^{2} \\
& +2 i(e+a b+c d) \lambda+f+2 b d-2 c e-a^{2} .
\end{aligned}
$$

where constants (a, b, c, d, e, f) are incorporated from the third-order Lax-Novikov equation and its three conserved quantities.

Lax spectrum for the double-periodic waves

Two possible solutions for the double-periodic waves $(a=c=e=0)$:

$$
\begin{gathered}
\psi(x, t)=k \frac{\operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; k)+i \sqrt{1+k} \operatorname{sn}(t ; k) \operatorname{dn}(\sqrt{1+k} x ; k)}{\sqrt{1+k} \operatorname{dn}(\sqrt{1+k} x ; \kappa)-\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{1+k} x ; \kappa)} e^{i t}, \\
\psi(x, t)=\frac{\operatorname{dn}(t ; k) \operatorname{cn}(\sqrt{2} x ; k)+i \sqrt{k(1+k)} \operatorname{sn}(t ; k)}{\sqrt{1+k}-\sqrt{k} \operatorname{cn}(t ; k) \operatorname{cn}(\sqrt{2} x ; \kappa)} e^{i k t},
\end{gathered}
$$

where $k \in(0,1)$ is elliptic modulus and $\kappa \in(0,1)$ is determined by k.

Lax spectrum for the double-periodic waves

Solutions are periodic in x with some period and the Lax spectrum of $\varphi_{x}=U(\lambda, u) \varphi$ coincides with the Floquet spectrum.

Red dots show roots of $P(\lambda)$, eigenvalues of the nonlinearization method.

Linearized NLS equation

Let ψ be a standing periodic wave solution of the NLS equation

$$
i \psi_{t}+\frac{1}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

Let χ be a perturbation of ψ. In the linearized approximation, it satisfies the linearized NLS equation

$$
i \chi_{t}+\frac{1}{2} \chi_{x x}+2|\psi|^{2} \chi+\psi^{2} \bar{\chi}=0
$$

which is obtained from NLS after substituting $\psi+\chi$ to the NLS equation and neglecting χ^{2}, χ^{3}.

Spectral stability of standing waves

For the standing periodic waves, the variables can be separated:

$$
\psi(x, t)=u(x+c t) e^{-2 i b t}, \quad \chi(x, t)=v(x+c t) e^{-2 i b t+\Lambda t}
$$

where

$$
\frac{1}{2} u^{\prime \prime}+|u|^{2} u+i c u^{\prime}+2 b u=0
$$

and

$$
\Lambda v+\frac{1}{2} v^{\prime \prime}+2|u|^{2} v+u^{2} \bar{v}+i c v^{\prime}+2 b v=0
$$

The spectral parameter Λ is found from the condition that $v(x)$ is bounded.
Since $u(x+L)=u(x)$ is periodic, then by Floquet theory, $v(x)=w(x) e^{i \theta x}$, where $\theta \in[-\pi / L, \pi / L]$ and $w(x+L)=w(x)$.

If there exists Λ with $\operatorname{Re}(\Lambda)>0$ for some $\theta \in[-\pi / L, \pi / L]$, then the standing periodic wave is unstable in the time evolution of the NLS equation. It is modulationally unstable if the band with $\operatorname{Re}(\Lambda)>0$ intersects $\Lambda=0$ as $\theta \rightarrow 0$.

Relation to squared eigenfunctions

Recall the linear Lax system:

$$
\varphi_{x}=U(\lambda, \psi) \varphi, \quad U(\lambda, \psi)=\left(\begin{array}{cc}
\lambda & \psi \\
-\bar{\psi} & -\lambda
\end{array}\right)
$$

and

$$
\varphi_{t}=V(\lambda, \psi) \varphi, \quad V(\lambda, \psi)=i\left(\begin{array}{cc}
\lambda^{2}+\frac{1}{2}|\psi|^{2} & \frac{1}{2} \psi_{x}+\lambda \psi \\
\frac{1}{2} \bar{\psi}_{x}-\lambda \bar{\psi} & -\lambda^{2}-\frac{1}{2}|\psi|^{2}
\end{array}\right),
$$

where ψ is a solution of the NLS equation.
If φ and ϕ are two linearly independent solutions of the Lax system, then

Pair I	Pair II	Pair III
$\chi=\varphi_{1}^{2}-\bar{\varphi}_{2}^{2}$	$\chi=\varphi_{1} \phi_{1}-\bar{\varphi}_{2} \phi_{2}$	$\chi=\phi_{1}^{2}-\phi_{2}^{2}$
$\chi=i \varphi_{1}^{2}+i \bar{\varphi}_{2}^{2}$	$\chi=i \varphi_{1} \phi_{1}+i \bar{\varphi}_{2} \bar{\phi}_{2}$	$\chi=i \phi_{1}^{2}+i \phi_{2}^{2}$

are solutions of the linearized NLS equation.

Relation to squared eigenfunctions

Theorem

Let λ belongs to the Lax spectrum so that

$$
\varphi(x, t)=\xi(x+c t) e^{-2 i b \sigma_{3} t+\Omega t}
$$

with $\xi \in L^{\infty}(\mathbb{R})$. Then, $\Omega= \pm i \sqrt{P(\lambda)}$, where $P(\lambda)$ is the polynomial for the second-order Lax-Novikov equation:

$$
P(\lambda)=\lambda^{4}+2 i c \lambda^{3}+\left(2 b-c^{2}\right) \lambda^{2}+2 i(a+b c) \lambda+b^{2}-2 a c+2 d
$$

Consequently, $\Lambda=2 \Omega= \pm 2 i \sqrt{P(\lambda)}$.
The proof follows from separation of variables for

$$
\begin{array}{cc}
\xi_{x}=U(\lambda, u) \xi, & U(\lambda, u)=\left(\begin{array}{cc}
\lambda & u \\
-\bar{u} & -\lambda
\end{array}\right) \\
\Omega \xi+c \xi_{x}-2 i b \sigma_{3} \xi=V(\lambda, u) \xi, & V(\lambda, u)=i\left(\begin{array}{cc}
\lambda^{2}+\frac{1}{2}|u|^{2} & \frac{1}{2} u_{x}+\lambda u \\
\frac{1}{2} \bar{u}_{x}-\lambda \bar{u} & -\lambda^{2}-\frac{1}{2}|u|^{2}
\end{array}\right),
\end{array}
$$

Instability of the dnoidal periodic waves

$$
u(x)=\operatorname{dn}(x ; k), \quad L=2 K(k) .
$$

Figure: Left: Lax spectrum. Right: stability spectrum related by $\Lambda= \pm 2 i \sqrt{P(\lambda)}$.

Instability of the cnoidal periodic waves

$$
u(x)=k \operatorname{cn}(x ; k), \quad L=4 K(k)
$$

Figure: Left: Lax spectrum. Right: stability spectrum related by $\Lambda= \pm 2 i \sqrt{P(\lambda)}$.

Spectral stability of double-periodic waves

For the double-periodic waves, the variables can not be separated:

$$
\psi(x, t)=[q(x, t)+i \delta(t)] e^{i t+i \alpha(t)}
$$

where $q(x+L, t)=q(x, t+T)=q(x, t), \delta(t+T)=\delta(t), \alpha(t+T)=\alpha(t)$. Perturbation $\chi(x, t)$ to $\psi(x, t)$ satisfies the linearized NLS equation

$$
i \chi_{t}+\frac{1}{2} \chi_{x x}+2|\psi|^{2} \chi+\psi^{2} \bar{\chi}=0
$$

Due to periodicity, we can think of the Floquet theory both with respect to x and t to represent the perturbation in the form

$$
\chi(x, t)=v(x, t) e^{i t+i \theta x+\Lambda t}
$$

where $v(x+L, t)=v(x, t+T)=v(x, t), \theta \in[-\pi / L, \pi / L]$, and Λ is somehow defined (unique if $\operatorname{Im}(\Lambda) \in[-\pi / T, \pi / T]$).

Spectral stability of double-periodic waves

Recall the linear Lax system

$$
\varphi_{x}=U(\lambda, \psi) \varphi, \quad U(\lambda, \psi)=\left(\begin{array}{cc}
\lambda & \psi \\
-\bar{\psi} & -\lambda
\end{array}\right)
$$

and

$$
\varphi_{t}=V(\lambda, \psi) \varphi, \quad V(\lambda, \psi)=i\left(\begin{array}{cc}
\lambda^{2}+\frac{1}{2}|\psi|^{2} & \frac{1}{2} \psi_{x}+\lambda \psi \\
\frac{1}{2} \bar{\psi}_{x}-\lambda \bar{\psi} & -\lambda^{2}-\frac{1}{2}|\psi|^{2}
\end{array}\right)
$$

where ψ is a solution of the NLS equation.
By the Floquet theory both with respect to x and t, we write

$$
\varphi(x, t)=\xi(x, t) e^{i \theta x+t \Omega}
$$

$\xi(x+L, t)=\xi(x, t+T)=\xi(x, t), \theta \in[-\pi / L, \pi / L], \operatorname{Im}(\Omega) \in[-\pi / T, \pi / T]$.

- λ is found from the Lax spectrum for $\varphi_{x}=U(\lambda, \psi)$.
- Ω is found from $\varphi_{t}=V(\lambda, \psi) \varphi$.

Is there a relation between Ω and $P(\lambda)$ for the double-periodic solution ψ ?

Instabilities of the first solution

$$
k=0.85 \text { (Pelinovsky, 2021): }
$$

Left: Lax spectrum. Right: stability spectrum.

Instabilities of the second solution

$k=0.6$ (Pelinovsky, 2021):

Left: Lax spectrum. Right: stability spectrum.

Instabilities of the second solution

$$
k=0.9 \text { (Pelinovsky, 2021): }
$$

Left: Lax spectrum. Right: stability spectrum.

Akhmediev breathers

In the limit $k \rightarrow 1$ both families converge to a particular example of the Akhmediev breather (AB):

$$
\psi(x, t)=\frac{\cos (\sqrt{2} x)+i \sqrt{2} \sinh (t)}{\sqrt{2} \cosh (t)-\cos (\sqrt{2} t)} e^{i t}
$$

Akhmediev breathers under periodic perturbation

A family of Akhmediev breathers with parameter $\lambda \in(0,1)$:

$$
\psi(x, t)=e^{i t}\left[1-\frac{2\left(1-\lambda^{2}\right) \cosh (k \lambda t)+i k \lambda \sinh (k \lambda t)}{\cosh (k \lambda t)-\lambda \cos (k x)}\right],
$$

If the perturbation is periodic, the Lax and stability spectra are purely discrete. There was an open question if the Akhmediev breather is linearly unstable.
P. Grinevich \& P. Santini, Nonlinearity 34 (2021) 8331-8358
M. Haragus \& D. Pelinovsky, J. Nonlinear Science 32 (2022) 66

Figure: Lax spectrum (left) and stability spectrum (right) of Akhmediev breather.

Other examples of integrable Hamiltonian systems

- Modified Korteweg-de Vries equation

$$
u_{t}+6 u^{2} u_{x}+u_{x x x}=0
$$

Dnoidal periodic waves are modulationally stable.
Cnoidal periodic waves are modulationally unstable.
J. Chen \& D. Pelinovsky, Nonlinearity 31 (2018) 1955-1980

- Sine-Gordon equation

$$
u_{t t}-u_{x x}+\sin (u)=0
$$

Same conclusion.
D. Pelinovsky \& R. White, Proceedings A 476 (2020) 20200490

- Derivative NLS equation

$$
i \psi_{t}+\psi_{x x}+i\left(|\psi|^{2} \psi\right)_{x}=0
$$

There exist modulationally stable periodic waves.
J. Chen, D. Pelinovsky, \& J. Upsal, J. Nonlinear Science 31 (2021) 58

Summary

- Standing periodic waves are solutions of the second-order Lax-Novikov equation. Double-periodic waves are solutions of the third-order Lax-Novikov equation. Akhmediev and Kuznetsov-Ma breathers are particular cases of double-periodic solutions.
- Standing periodic waves are spectrally (modulationally) unstable, their instability is computed from separation of variables and Floquet theory.
- Double-periodic waves are also linearly unstable, their instability is computed from double Floquet theory (both in x and t).
- Breathers are also linearly unstable.

Many thanks for your attention!

