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1. Periodic waves and rogue waves

The focusing NLS equation

The focusing nonlinear Schrödinger (NLS) equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0

has been derived as the main model for modulating quasi-harmonic waves

εψ(ε(x − ct), ε2t)ei(k0x−ω0t) + εψ̄(ε(x − ct), ε2t)e−i(k0x−ω0t) + higher-order terms

from water wave equations, Maxwell equations, and the like.

ψ = eit is the constant-amplitude wave, ψ = sech(x)eit/2 is a solitary wave.
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1. Periodic waves and rogue waves

The rogue wave of the cubic NLS equation

The focusing nonlinear Schrödinger (NLS) equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0

admits the exact solution

ψ(x , t) =

[
1− 4(1 + 2it)

1 + 4x2 + 4t2

]
eit .

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.
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1. Periodic waves and rogue waves

Modulational instability of the constant-amplitude wave

The rogue wave solution is related to the modulational instability of the
constant-amplitude wave:

ψ(x , t) = eit
[
1 + (k2 + 2iΛ)eΛt+ikx + (k2 + 2iΛ̄)eΛ̄t−ikx

]
,

where k ∈ R is the wave number and Λ is given by

Λ2 = k2
(

1− 1
4

k2
)
.

The wave is unstable for k ∈ (0,2).
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1. Periodic waves and rogue waves

Other rogue waves - Akhmediev breathers (AB)

Spatially periodic homoclinic solution was constructed by N.N. Akhmediev,
V.M. Eleonsky, and N.E. Kulagin (1985):

ψ(x , t) = eit
[
1− 2(1− λ2) cosh(kλt) + ikλ sinh(kλt)

cosh(kλt)− λ cos(kx)

]
,

where k = 2
√

1− λ2 ∈ (0,2) and λ ∈ (0,1) is the only free parameter. There
is a unique solution for each spatial period L = 2π

k = π√
1−λ2

> π.
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1. Periodic waves and rogue waves

Other rogue waves - Kuznetsov-Ma breathers

Temporally periodic soliton was constructed by E. A. Kuznetsov (1977) and
Y.-C. Ma (1979):

ψ(x , t) =

[
1− 2(λ2 − 1) cos(βλt) + iβλ sin(βλt)

λ cosh(βx)− cos(βλt)

]
eit ,

where β = 2
√
λ2 − 1 and λ ∈ (1,∞) is the only free parameter. There is a

unique solution for each temporal period T = 2π
βλ = π

λ
√
λ2−1

> 0 with k = iβ.
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1. Periodic waves and rogue waves

Traveling periodic waves (elliptic background)

The focusing nonlinear Schrödinger (NLS) equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0

also admits the periodic solutions, e.g. the dnoidal and cnoidal waves:

ψdn(x , t) = dn(x ; k)ei(1−k2/2)t , ψcn(x , t) = kcn(x ; k)ei(k2−1/2)t ,

where k ∈ (0,1) is elliptic modulus.
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1. Periodic waves and rogue waves

Rogue wave on background of periodic waves

J. Chen, D. P., Proceedings A (2018)
J. Chen, D. P., R. White, Physica D (2020)
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1. Periodic waves and rogue waves

Experimental observations of rogue waves

The same rogue waves were observed in optics and hydrodynamics:
G. Xu, A. Chabchoub, D.P., B. Kibler, Physical Review Research (2020)
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1. Periodic waves and rogue waves

Double-periodic waves (elliptic background)

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):

ψ(x , t) = k
cn(t ; k)cn(

√
1 + kx ;κ) + i

√
1 + ksn(t ; k)dn(

√
1 + kx ;κ)√

1 + kdn(
√

1 + kx ;κ)− dn(t ; k)cn(
√

1 + kx ;κ)
eit ,

ψ(x , t) =
dn(t ; k)cn(

√
2x ;κ) + i

√
k(1 + k)sn(t ; k)

√
1 + k −

√
kcn(t ; k)cn(

√
2x ;κ)

eikt ,

where k ∈ (0,1) is elliptic modulus and κ ∈ (0,1) is determined by k .
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1. Periodic waves and rogue waves

Rogue wave on background of double-periodic waves

J. Chen, D. P., R. White, Phys. Rev. E (2019)
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2. Exact periodic and double-periodic solutions

NLS hierarchy

The focusing nonlinear Schrödinger (NLS) equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0

is a member of the NLS hierarchy

d
dtk

[
u
ū

]
= J∇Hk (u), ∇Hk+1(u) = R∇Hk (u),

where

J = i
[
0 −1
1 0

]
, R = i

[
∂x + 2ū∂−1

x u −2ū∂−1
x ū

2u∂−1
x u −∂x − 2u∂−1

x ū

]
,

Thus, we obtain

H0 =

∫
R
|u|2dx , H1 =

i
2

∫
R

(uūx − ux ū) dx ,

H2 =

∫
R

(
|ux |2 − |u|4

)
dx , H3 =

i
2

∫
R

[
ux ūxx − uxx ūx − 3|u|2(uūx − ux ū)

]
dx .
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2. Exact periodic and double-periodic solutions

Stationary Lax-Novikov equations

The stationary (Lax–Novikov) equations are given by

∇H1(u) + 2c∇H0(u) = 0,
∇H2(u) + 2c∇H1(u) + 4b∇H0(u) = 0,
∇H3(u) + 2c∇H2(u) + 4b∇H1(u) + 8a∇H0(u) = 0,

or explicitly,

u′(x) + 2icu = 0,

u′′(x) + 2|u|2u + 2icu′ + 4bu = 0,

u′′′(x) + 6|u|2u′ + 2ic(u′′ + 2|u|2u) + 4bu′ + 8iau = 0,

where c, b, a are constants.
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2. Exact periodic and double-periodic solutions

Solutions of stationary Lax-Novikov equations

In terms of the NLS equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0

the stationary Lax–Novikov equations

u′ + 2icu = 0,

u′′ + 2|u|2u + 2icu′ + 4bu = 0,

u′′′ + 6|u|2u′ + 2ic(u′′ + 2|u|2u) + 4bu′ + 8iau = 0,

generate the following solutions:
1 Constant-amplitude wave ψ(x , t) = Ae−2ic(x+ct)+iA2t ,
2 Traveling standing wave ψ(x , t) = u(x + ct)e−2ibt

3 Double-periodic wave ψ(x , t) = [q(x , t) + iβ(t)]eit+iα(t),
where q(x + L, t) = q(x , t + T ) = q(x , t), β(t + T ) = β(t), α(t + T ) = α(t).
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2. Exact periodic and double-periodic solutions

Characterization of u′′ + 2|u|2u + 2icu′ + 4bu = 0

Consider the Lax system of linear equations

ϕx = U(λ,u)ϕ, U(λ,u) =

(
λ u
−ū −λ

)
and

ϕt = V (λ,u)ϕ, V (λ,u) = i
(
λ2 + 1

2 |u|
2 1

2 ux + λu
1
2 ūx − λū −λ2 − 1

2 |u|
2

)
.

Fix λ = λ1 ∈ C with ϕ = (p1,q1) ∈ C2 and set u = p2
1 + q̄2

1 . The spectral
problem ϕx = U(λ,u)ϕ becomes the Hamiltonian system generated by

H = λ1p1q1 + λ̄1p̄1q̄1 +
1
2

(p2
1 + q̄2

1)(p̄2
1 + q2

1).

with additional constant F = i(p1q1 − p̄1q̄1).

(Cao–Geng, 1990) (Cao–Wu–Geng, 1999) (R.Zhou, 2009) (Chen–P, 2018)
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2. Exact periodic and double-periodic solutions

Second-order Lax–Novikov equation

By differentiating of the constraints between u and (p1,q1), we obtain

u = p2
1 + q̄2

1 ,

u′ + 2iFu = 2(λ1p2
1 − λ̄1q̄2

1),

u′′ + 2|u|2u + 2iFu′ − 4Hu = 4(λ2
1p2

1 + λ̄2
1q̄2

1),

which yields the second-order Lax–Novikov equation:

u′′ + 2|u|2u + 2icu′ + 4bu = 0,

where c := F + i(λ1 − λ̄1) and b := −H − iF (λ1 − λ̄1)− |λ1|2.

The second-order equation admits two conserved quantities:

i(u′ū − uū′)− 2c|u|2 = 4a,

|u′|2 + |u|4 + 4b|u|2 = 8d .
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for u′′ + 2|u|2u + 2icu′ + 4bu = 0

Further analysis show that admissible values of λ1 for the reduction
u = p2

1 + q̄2
1 appears to be roots of the characteristic polynomial P(λ) given by

P(λ) = λ4 + 2icλ3 + (2b − c2)λ2 + 2i(a + bc)λ+ b2 − 2ac + 2d ,

where constants (a,b, c,d) are the same as in the second-order Lax-Novikov
equation and its two conserved quantities:

u′′ + 2|u|2u + 2icu′ + 4bu = 0,

i(u′ū − uū′)− 2c|u|2 = 4a,

|u′|2 + |u|4 + 4b|u|2 = 8d .

Four roots exist due to properties of P(λ):

P(λ) = (λ− λ1)(λ+ λ̄1)(λ− λ2)(λ+ λ̄2).

D.Pelinovsky (McMaster University) Breather and rogue waves 17 / 32



2. Exact periodic and double-periodic solutions

Lax spectrum for the standing periodic waves

Two possible solutions for the standing periodic waves (a = c = 0):

u(x) = dn(x ; k), u(x) = kcn(x ; k).

Solutions are periodic with some period and the Lax spectrum of
ϕx = U(λ,u)ϕ coincides with the Floquet spectrum.
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Red dots show roots of P(λ), e.g., eigenvalues of the nonlinearization method.
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for the third-order equation

Solutions of the third-order Lax–Novikov equation

u′′′ + 6|u|2u′ + 2ic(u′′ + 2|u|2u) + 4bu′ + 8iau = 0

can be characterized similar (Chen-P-White, 2019) with the polynomial:

P(λ) = λ6 + 2icλ5 + (2b − c2)λ4 + 2i(a + bc)λ3 + (b2 − 2ac + 2d)λ2

+ 2i(e + ab + cd)λ+ f + 2bd − 2ce − a2.

where constants (a,b, c,d ,e, f ) are incorporated from the third-order
Lax-Novikov equation and its three conserved quantities.

Double-periodic solutons are obtained from solutions of the third-order
equation. Akhmediev and Kuznetsov–Ma breathers are degenerate cases
of such double-periodic solutions.
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2. Exact periodic and double-periodic solutions

Lax spectrum for the double-periodic solutions
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Red dots show roots of P(λ), eigenvalues of the nonlinearization method.
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3. Stability of standing periodic waves

Linearized NLS equation

Let ψ be a standing periodic wave solution of the NLS equation

i∂tψ + ∂2
xψ + |ψ|2ψ = 0.

Using ψ + χ in NLS with perturbation χ and neglecting χ2, χ3 yields the
linearized NLS equation

i∂tχ+ ∂2
xχ+ 2|ψ|2χ+ ψ2χ̄ = 0,

For the standing periodic waves, the variables can be separated:

ψ(x , t) = u(x + ct)e−2ibt , χ(x , t) = v(x + ct)e−2ibt+Λt .

The spectral parameter Λ is found from the condition that v(x) is bounded.
Since u(x + L) = u(x) is periodic, then by Floquet theory, v(x) = w(x)eiθx ,
where θ ∈ [−π/L, π/L] and w(x + L) = w(x).

If there exists Λ with Re(Λ) > 0 for some θ ∈ [−π/L, π/L], then the standing
periodic wave is unstable in the time evolution of the NLS equation. It is
modulationally unstable if the band with Re(Λ) > 0 intersects Λ = 0 as θ → 0.

D.Pelinovsky (McMaster University) Breather and rogue waves 21 / 32



3. Stability of standing periodic waves

Relation to squared eigenfunctions

Recall the linear Lax system:

ϕx = U(λ, ψ)ϕ, U(λ, ψ) =

(
λ ψ
−ψ̄ −λ

)
and

ϕt = V (λ, ψ)ϕ, V (λ, ψ) = i
(
λ2 + 1

2 |ψ|
2 1

2ψx + λψ
1
2 ψ̄x − λψ̄ −λ2 − 1

2 |ψ|
2

)
,

where ψ is a solution of the NLS equation.

If ϕ and φ are two linearly independent solutions of the Lax system, then

Pair I Pair II Pair III
χ = ϕ2

1 − ϕ̄2
2 χ = ϕ1φ1 − ϕ̄2φ̄2 χ = φ2

1 − φ̄2
2

χ = iϕ2
1 + iϕ̄2

2 χ = iϕ1φ1 + iϕ̄2φ̄2 χ = iφ2
1 + iφ̄2

2

are solutions of the linearized NLS equation.
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3. Stability of standing periodic waves

Relation to squared eigenfunctions

Theorem
Let λ belongs to the Lax spectrum so that

ϕ(x , t) = ξ(x + ct)e−2ibσ3t+Ωt

with ξ ∈ L∞(R). Then, Ω = ±i
√

P(λ), where P(λ) is the polynomial for the
second-order Lax–Novikov equation:

P(λ) = λ4 + 2icλ3 + (2b − c2)λ2 + 2i(a + bc)λ+ b2 − 2ac + 2d

Consequently, Λ = 2Ω = ±2i
√

P(λ).

The proof follows from separation of variables for

ξx = U(λ,u)ξ, U(λ,u) =

(
λ u
−ū −λ

)
Ωξ + cξx − 2ibσ3ξ = V (λ,u)ξ, V (λ,u) = i

(
λ2 + 1

2 |u|
2 1

2 ux + λu
1
2 ūx − λū −λ2 − 1

2 |u|
2

)
,
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3. Stability of standing periodic waves

Instability of the dnoidal periodic waves

u(x) = dn(x ; k), L = 2K (k).
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Figure: Left: Lax spectrum. Right: stability spectrum related by Λ = ±2i
√

P(λ).
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3. Stability of standing periodic waves

Instability of the cnoidal periodic waves

u(x) = kcn(x ; k), L = 4K (k).
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Figure: Left: Lax spectrum. Right: stability spectrum related by Λ = ±2i
√

P(λ).
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

For the double-periodic waves, the variables can not be separated:

ψ(x , t) = [q(x , t) + iβ(t)]eit+iα(t),

where q(x + L, t) = q(x , t + T ) = q(x , t), β(t + T ) = β(t), α(t + T ) = α(t).
Perturbation χ(x , t) to ψ(x , t) satisfies the linearized NLS equation

i∂tχ+ ∂2
xχ+ 2|ψ|2χ+ ψ2χ̄ = 0,

Due to periodicity both in x and t , Floquet theory yields solutions in the form

χ(x , t) = v(x , t)eit+iθx+Λt ,

where v(x + L, t) = v(x , t + T ) = v(x , t), θ ∈ [−π/L, π/L], and where Λ
defines stability (unique if Im(Λ) ∈ [−π/T , π/T ]).
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

Recall the linear Lax system

ϕx = U(λ, ψ)ϕ, U(λ, ψ) =

(
λ ψ
−ψ̄ −λ

)
and

ϕt = V (λ, ψ)ϕ, V (λ, ψ) = i
(
λ2 + 1

2 |ψ|
2 1

2ψx + λψ
1
2 ψ̄x − λψ̄ −λ2 − 1

2 |ψ|
2

)
,

where ψ is a solution of the NLS equation.

By the Floquet theory both with respect to x and t , we write

ϕ(x , t) = ξ(x , t)eiθx+tΩ,

ξ(x + L, t) = ξ(x , t + T ) = ξ(x , t), θ ∈ [−π/L, π/L], Im(Ω) ∈ [−π/T , π/T ].
λ is found from the Lax spectrum for ϕx = U(λ, ψ).
Ω is found from ϕt = V (λ, ψ)ϕ.

Open question: a relation between Ω and P(λ).
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4. Stability of double-periodic waves

Instabilities of the first solution

k = 0.85 (Pelinovsky, 2021):
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4. Stability of double-periodic waves

Instabilities of the second solution

k = 0.6 (Pelinovsky, 2021):
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4. Stability of double-periodic waves

Akhmediev breathers under periodic perturbation

A family of Akhmediev breathers with parameter λ ∈ (0,1):

ψ(x , t) = eit
[
1− 2(1− λ2) cosh(kλt) + ikλ sinh(kλt)

cosh(kλt)− λ cos(kx)

]
,

If the perturbation is periodic, the Lax and stability spectra are purely discrete.
There was an open question if the Akhmediev breather is linearly unstable.
P. Grinevich & P. Santini, Nonlinearity 34 (2021) 8331–8358
M. Haragus & D. Pelinovsky, J. Nonlinear Science 32 (2022) 66

Figure: Lax spectrum (left) and stability spectrum (right) of Akhmediev breather.
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5. Summary

Other examples of integrable Hamiltonian systems

Modified Korteweg–de Vries equation

∂tu + 6u2∂xu + ∂3
x u = 0

Dnoidal periodic waves are modulationally stable.
Cnoidal periodic waves are modulationally unstable.
J. Chen & D. Pelinovsky, Nonlinearity 31 (2018) 1955–1980

Sine–Gordon equation

∂2
t u − ∂2

x u + sin(u) = 0

Same conclusion.
D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

Derivative NLS equation

i∂tψ + ∂2
xψ + i∂x (|ψ|2ψ) = 0.

There exist modulationally stable periodic waves.
J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science 31 (2021) 58
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5. Summary

Summary

Standing periodic waves are solutions of the second-order Lax–Novikov
equation. Double-periodic waves are solutions of the third-order
Lax–Novikov equation. Akhmediev and Kuznetsov–Ma breathers are
particular cases of double-periodic solutions.

Standing periodic waves are spectrally (modulationally) unstable, their
instability is computed from separation of variables and Floquet theory.

Double-periodic waves are also linearly unstable, their instability is
computed from double Floquet theory (both in x and t).

Akhmediev and Kuznetsov–Ma breathers are also linearly unstable.

Many thanks for your attention!
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