Ground states of the energy super-critical Gross-Pitaevskii equation with harmonic potential

$\frac{\text { Dmitry E Pelinovsky }}{\text { Joint work with Szymon Sobieszek (McMaster), }}$
Piotr Bizon and Filip Ficek (Krakow)

Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca

Gross-Pitaevskii equation

The Gross-Pitaevskii theory in \mathbb{R}^{d} with harmonic potential,

$$
i \partial_{t} w=-\Delta w+|x|^{2} w-|w|^{2 p} w
$$

admits two conserved quantities of mass and energy,

$$
M(w)=\int_{\mathbb{R}^{d}}|w|^{2} d x, \quad E(w)=\int_{\mathbb{R}^{d}}\left(|\nabla w|^{2}+|x|^{2}|w|^{2}-\frac{1}{p+1}|w|^{2 p+2}\right) d x .
$$

In the absence of harmonic potential, we adopt the following classification based on the scaling transformation:

$$
w(t, x) \mapsto w_{L}(t, x)=L^{\frac{1}{p}} w\left(L^{2} t, L x\right), \quad L>0,
$$

which yields $M\left(w_{L}\right)=L^{\frac{2}{p}-d} M(w)$ and $E\left(w_{L}\right)=L^{\frac{2}{p}+2-d} E(w)$.

Gross-Pitaevskii equation

The Gross-Pitaevskii theory in \mathbb{R}^{d} with harmonic potential,

$$
i \partial_{t} w=-\Delta w+|x|^{2} w-|w|^{2 p} w
$$

admits two conserved quantities of mass and energy,

$$
M(w)=\int_{\mathbb{R}^{d}}|w|^{2} d x, \quad E(w)=\int_{\mathbb{R}^{d}}\left(|\nabla w|^{2}+|x|^{2}|w|^{2}-\frac{1}{p+1}|w|^{2 p+2}\right) d x
$$

- Mass-subcritical case $(d p<2)$: global existence in H^{1}
- Mass-critical case $(d p=2)$: global existence for small L^{2} data and finite-time blow-up for large L^{2}
- Mass-supercritical case $(d p>2)$: global existence and scattering for $E(w)>0$ and finite-time blow-up for $E(w)<0$.

Gross-Pitaevskii equation

The Gross-Pitaevskii theory in \mathbb{R}^{d} with harmonic potential,

$$
i \partial_{t} w=-\Delta w+|x|^{2} w-|w|^{2 p} w
$$

admits two conserved quantities of mass and energy,

$$
M(w)=\int_{\mathbb{R}^{d}}|w|^{2} d x, \quad E(w)=\int_{\mathbb{R}^{d}}\left(|\nabla w|^{2}+|x|^{2}|w|^{2}-\frac{1}{p+1}|w|^{2 p+2}\right) d x
$$

- Energy-subcritical case: $(d-2) p<2$.
- Energy-critical case: $(d-2) p=2, d \geq 3$.
- Energy-supercritical case: $(d-2) p>2, d \geq 3$.

We only consider the case $p=1$ to simplify technical details so that $d=4$ is the energy-critical case.

Standing wave solutions (bound states)

Standing wave solutions $w(t, x)=e^{-i \lambda t} u(x)$ satisfy the stationary Gross-Pitaevskii equation with harmonic potential:

$$
-\Delta u+|x|^{2} u-|u|^{2} u=\lambda u
$$

Variationally, $u \in \mathcal{E}:=H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2,1}\left(\mathbb{R}^{d}\right) \cap L^{4}\left(\mathbb{R}^{d}\right)$ is a critical point of energy $E(u)$ subject to fixed mass $M(u), \lambda$ is Lagrange multiplier.

Among all bound states, we are only interested in the ground state with $u(x)$ satisfying:

- real and positive on \mathbb{R}^{d};
- radially symmetric in $|x|$;
- bounded and monotonically decreasing to zero.

Such solutions bifurcate from $\lambda=d$ to $\lambda \lesssim d$. No ground state solutions exist for $\lambda>d$.

Standing wave solutions (bound states)

Standing wave solutions $w(t, x)=e^{-i \lambda t} u(x)$ satisfy the stationary Gross-Pitaevskii equation with harmonic potential:

$$
-\Delta u+|x|^{2} u-|u|^{2} u=\lambda u
$$

Variationally, $u \in \mathcal{E}:=H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2,1}\left(\mathbb{R}^{d}\right) \cap L^{4}\left(\mathbb{R}^{d}\right)$ is a critical point of energy $E(u)$ subject to fixed mass $M(u), \lambda$ is Lagrange multiplier.

Energy-subcritical case $d \leq 3$:

- Existence for every $\lambda<d$ follows from variational theory due to compactness of embedding of $H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2,1}\left(\mathbb{R}^{d}\right)$ into $L^{4}\left(\mathbb{R}^{d}\right)$ (Kavian \& Weissler, 1994) (Fukuizumi, 2002)
- Uniqueness follows from ODE theory (Hirose \& Ohta, 2002) (Hirose \& Ohta, 2007)

Standing wave solutions (bound states)

Standing wave solutions $w(t, x)=e^{-i \lambda t} u(x)$ satisfy the stationary Gross-Pitaevskii equation with harmonic potential:

$$
-\Delta u+|x|^{2} u-|u|^{2} u=\lambda u
$$

Variationally, $u \in \mathcal{E}:=H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2,1}\left(\mathbb{R}^{d}\right) \cap L^{4}\left(\mathbb{R}^{d}\right)$ is a critical point of energy $E(u)$ subject to fixed mass $M(u), \lambda$ is Lagrange multiplier.

Energy-critical case $d=4$:

- No solution exists for $\lambda<0$ due to Pohozaev's identity
- Existence and uniqueness for some $\lambda \in(0, d)$ has been shown (Selem, 2011)
- It is still open if the solution exists as $\lambda \rightarrow 0$

Standing wave solutions (bound states)

Standing wave solutions $w(t, x)=e^{-i \lambda t} u(x)$ satisfy the stationary Gross-Pitaevskii equation with harmonic potential:

$$
-\Delta u+|x|^{2} u-|u|^{2} u=\lambda u
$$

Variationally, $u \in \mathcal{E}:=H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2,1}\left(\mathbb{R}^{d}\right) \cap L^{4}\left(\mathbb{R}^{d}\right)$ is a critical point of energy $E(u)$ subject to fixed mass $M(u), \lambda$ is Lagrange multiplier.

Energy-supercritical case $d \geq 5$:

- No solution exists for $\lambda<0$ due to Pohozaev's identity
- The solution exists in a subset of $\lambda \in(0, d)$ (Selem \& Kikuchi, 2012)
- The solution branch is connected to an unbounded solution $u_{\infty} \in \mathcal{E}, u_{\infty} \notin L^{\infty}$ for some $\lambda_{\infty} \in(0, d)$
(Selem \& Kikuchi \& Wei, 2013)

Shooting methods as a tool

The ground state is defined as a solution of the boundary-value problem for fixed $\lambda \in \mathbb{R}$:

$$
\left\{\begin{array}{l}
\mathfrak{u}^{\prime \prime}(r)+\frac{d-1}{r} \mathfrak{u}^{\prime}(r)-r^{2} \mathfrak{u}(r)+\lambda \mathfrak{u}(r)+\mathfrak{u}(r)^{3}=0, \quad r>0 \\
\mathfrak{u}(r)>0, \\
\lim _{r \rightarrow 0} \mathfrak{u}(r)<\infty, \quad \lim _{r \rightarrow \infty} \mathfrak{u}(r)=0
\end{array}\right.
$$

Solutions \mathfrak{u} may not exist or their number may depend on λ.
The shooting method (Joseph \& Lundgren, 1973) allows to find solutions \mathfrak{u} from the initial-value problem:

$$
\left\{\begin{array}{l}
f_{b}^{\prime \prime}(r)+\frac{d-1}{r} f_{b}^{\prime}(r)-r^{2} f_{b}(r)+\lambda f_{b}(r)+f_{b}(r)^{3}=0, \quad r>0, \\
f_{b}(0)=b, \quad f_{b}^{\prime}(0)=0,
\end{array}\right.
$$

where $b>0$ is fixed parameter. If $f_{b}(r)>0, f_{b}^{\prime}(r)<0$, and $f_{b}(r) \rightarrow 0$ as $r \rightarrow \infty$, then $\mathfrak{u}(r)=f_{b}(r)$ for some λ.

First result: existence

Theorem (BFPS, 2021)
Fix $d \geq 4$. For every $b>0$, there exists $\lambda \in(d-4, d)$, labeled as $\lambda(b)$, such that the unique classical solution $f_{b} \in C^{2}(0, \infty)$ to the initial-value problem with $\lambda=\lambda(b)$ is a solution $\mathfrak{u} \in \mathcal{E} \cap L^{\infty}$ to the boundary-value problem.

- Uniqueness of $\lambda(b)$ is an open problem.
- This result holds both for critical and supercritical cases.

First result: existence

Figure 1: Graph of λ as a function of b for the ground state \mathfrak{u} of the boundary-value problem for $d=5$ (left) and $d=13$ (right).

Ground state in the limit of $b \rightarrow \infty$?

The limiting singular solution $\mathfrak{u}_{\infty} \in \mathcal{E}, \mathfrak{u}_{\infty} \notin L^{\infty}$ is defined by

$$
\mathfrak{u}_{\infty}(r)=\frac{\sqrt{d-3}}{r}\left[1+\mathcal{O}\left(r^{2}\right)\right] \quad \text { as } \quad r \rightarrow 0 .
$$

Ground state in the limit of $b \rightarrow \infty$?

The limiting singular solution $\mathfrak{u}_{\infty} \in \mathcal{E}, \mathfrak{u}_{\infty} \notin L^{\infty}$ is defined by

$$
\mathfrak{u}_{\infty}(r)=\frac{\sqrt{d-3}}{r}\left[1+\mathcal{O}\left(r^{2}\right)\right] \quad \text { as } \quad r \rightarrow 0
$$

Theorem (Selem-Kikuchi-Wei, 2013)
Fix $d \geq 5$. There exists $\lambda \in(0, d)$, labeled as λ_{∞}, such that the limiting singular solution $u_{\infty} \in \mathcal{E}$ exists so that $\lambda(b) \rightarrow \lambda_{\infty}$ and

$$
\mathfrak{u}(b) \rightarrow \mathfrak{u}_{\infty} \quad \text { in } \mathcal{E} \quad \text { as } b \rightarrow \infty .
$$

- Uniqueness of λ_{∞} is an open problem.
- Details of convergence $\lambda(b) \rightarrow \lambda_{\infty}$ were not studied.

Second result: convergence

Theorem (BFPS, 2021)
Fix $d \geq 5$. Under some non-degeneracy assumptions, $\lambda(b)$ is uniquely defined near λ_{∞} for $b \gg 1$ and

- $\lambda(b)-\lambda_{\infty} \sim A_{\infty} b^{-\beta} \sin \left(\alpha \ln b+\delta_{\infty}\right)$ if $5 \leq d \leq 12$, for some $A_{\infty}>0, \delta_{\infty} \in(0,2 \pi), \alpha>0$, and $\beta>0$
- $\lambda(b)-\lambda_{\infty} \sim B_{\infty} b^{-\kappa}$ if $d \geq 13$ for some $B_{\infty} \neq 0$ and $\kappa>0$.

Second result: convergence

Theorem (BFPS, 2021)
Fix $d \geq 5$. Under some non-degeneracy assumptions, $\lambda(b)$ is uniquely defined near λ_{∞} for $b \gg 1$ and

- $\lambda(b)-\lambda_{\infty} \sim A_{\infty} b^{-\beta} \sin \left(\alpha \ln b+\delta_{\infty}\right)$ if $5 \leq d \leq 12$, for some $A_{\infty}>0, \delta_{\infty} \in(0,2 \pi), \alpha>0$, and $\beta>0$
- $\lambda(b)-\lambda_{\infty} \sim B_{\infty} b^{-\kappa}$ if $d \geq 13$ for some $B_{\infty} \neq 0$ and $\kappa>0$.

The oscillatory behavior has been studied for the stationary NLS equation in a ball with dynamical system methods.
(Budd, Norbury, 1987), (Budd, 1989), (Merle \& Peletier, 1991), (Dolbeault \& Flores, 2007)

Linearization and Morse index

- Linearization around the ground state \mathfrak{u} :

$$
\mathcal{L}_{b}:=-\frac{d^{2}}{d r^{2}}-\frac{d-1}{r} \frac{d}{d r}+r^{2}-\lambda(b)-3 \mathfrak{u}^{2}(r) .
$$

- Linearization around the singular solution \mathfrak{u}_{∞} :

$$
\mathcal{L}_{\infty}:=-\frac{d^{2}}{d r^{2}}-\frac{d-1}{r} \frac{d}{d r}+r^{2}-\lambda_{\infty}-3 \mathfrak{u}_{\infty}^{2}(r)
$$

Linearization and Morse index

- Linearization around the ground state \mathfrak{u} :

$$
\mathcal{L}_{b}:=-\frac{d^{2}}{d r^{2}}-\frac{d-1}{r} \frac{d}{d r}+r^{2}-\lambda(b)-3 \mathfrak{u}^{2}(r)
$$

- Linearization around the singular solution \mathfrak{u}_{∞} :

$$
\mathcal{L}_{\infty}:=-\frac{d^{2}}{d r^{2}}-\frac{d-1}{r} \frac{d}{d r}+r^{2}-\lambda_{\infty}-3 \mathfrak{u}_{\infty}^{2}(r)
$$

\mathcal{L}_{b} is well-defined in the form domain $\mathcal{E}:=H_{r}^{1} \cap L_{r}^{2,1}$. It is a self-adjoint Sturm-Liouville operator in L_{r}^{2} with a purely point spectrum.

Linearization and Morse index

- Linearization around the ground state \mathfrak{u} :

$$
\mathcal{L}_{b}:=-\frac{d^{2}}{d r^{2}}-\frac{d-1}{r} \frac{d}{d r}+r^{2}-\lambda(b)-3 \mathfrak{u}^{2}(r)
$$

- Linearization around the singular solution \mathfrak{u}_{∞} :

$$
\mathcal{L}_{\infty}:=-\frac{d^{2}}{d r^{2}}-\frac{d-1}{r} \frac{d}{d r}+r^{2}-\lambda_{\infty}-3 \mathfrak{u}_{\infty}^{2}(r)
$$

Stability of standing waves in the Gross-Pitaevskii equation:

- \mathfrak{u} is orbitally stable if \mathcal{L}_{b} has exactly one negative eigenvalue and the mapping $\lambda \mapsto\|\mathfrak{u}\|_{L^{2}}^{2}$ is decreasing.
- \mathfrak{u} is orbitally unstable if \mathcal{L}_{b} has two or more negative eigenvalues Note that $\left\langle\mathcal{L}_{b} \mathfrak{u}, \mathfrak{u}\right\rangle=-2\|\mathfrak{u}\|_{L_{r}^{4}}^{4}<0$, hence \mathcal{L}_{b} is not positive.

Oscillatory versus monotone convergence

Since

$$
\mathcal{L}_{b} \partial_{b} \mathfrak{u}=\lambda^{\prime}(b) \mathfrak{u}, \quad \partial_{b} \mathfrak{u} \in \mathcal{E}_{r},
$$

the number of negative eigenvalues of $\mathcal{L}_{b}: \mathcal{E} \mapsto \mathcal{E}^{*}$ change for every b for which $\lambda^{\prime}(b)=0$.

Third result: stability

Theorem (P \& Sobieszek, 2022)
For every $d \geq 13$, there exists $b_{0}>0$ such that the Morse index of $\mathcal{L}_{b}: \mathcal{E} \mapsto \mathcal{E}^{*}$ is finite and is independent of b for every $b \in\left(b_{0}, \infty\right)$. Moreover, it coincides with the Morse index of $\mathcal{L}_{\infty}: \mathcal{E} \mapsto \mathcal{E}^{*}$.

Third result: stability

Theorem (P \& Sobieszek, 2022)
For every $d \geq 13$, there exists $b_{0}>0$ such that the Morse index of $\mathcal{L}_{b}: \mathcal{E} \mapsto \mathcal{E}^{*}$ is finite and is independent of b for every $b \in\left(b_{0}, \infty\right)$. Moreover, it coincides with the Morse index of $\mathcal{L}_{\infty}: \mathcal{E} \mapsto \mathcal{E}^{*}$.

These approximations of $\mathcal{L}_{b} v=0$ suggest that the Morse index is one.

Third result: stability

Theorem (P \& Sobieszek, 2022)
For every $d \geq 13$, there exists $b_{0}>0$ such that the Morse index of $\mathcal{L}_{b}: \mathcal{E} \mapsto \mathcal{E}^{*}$ is finite and is independent of b for every $b \in\left(b_{0}, \infty\right)$. Moreover, it coincides with the Morse index of $\mathcal{L}_{\infty}: \mathcal{E} \mapsto \mathcal{E}^{*}$.

This graph suggests that the mapping $\lambda \mapsto\|\mathfrak{u}\|_{L^{2}}^{2}$ is decreasing.

Conclusion: the standing waves are stable for $d \geq 13$.

Emden-Fowler transformation

The initial-value problem,

$$
\left\{\begin{array}{l}
f_{b}^{\prime \prime}(r)+\frac{d-1}{r} f_{b}^{\prime}(r)-r^{2} f_{b}(r)+\lambda f_{b}(r)+f_{b}(r)^{3}=0, \quad r>0, \\
f_{b}(0)=b, \quad f_{b}^{\prime}(0)=0,
\end{array}\right.
$$

after the transformation

$$
r=e^{t}, \quad f(r)=\psi(t),
$$

becomes the invariant manifold problem:

$$
\begin{cases}\psi^{\prime \prime}(t)+(d-2) \psi^{\prime}(t)+e^{2 t}\left(\lambda+\psi(t)^{2}\right) \psi(t)-e^{4 t} \psi(t)=0, & t \in \mathbb{R}, \\ \psi(t) \rightarrow b, & t \rightarrow-\infty\end{cases}
$$

Emden-Fowler transformation

The initial-value problem,

$$
\left\{\begin{array}{l}
f_{b}^{\prime \prime}(r)+\frac{d-1}{r} f_{b}^{\prime}(r)-r^{2} f_{b}(r)+\lambda f_{b}(r)+f_{b}(r)^{3}=0, \quad r>0, \\
f_{b}(0)=b, \quad f_{b}^{\prime}(0)=0,
\end{array}\right.
$$

after the transformation

$$
r=e^{t}, \quad f(r)=\psi(t)
$$

becomes the invariant manifold problem:

$$
\begin{cases}\psi^{\prime \prime}(t)+(d-2) \psi^{\prime}(t)+e^{2 t}\left(\lambda+\psi(t)^{2}\right) \psi(t)-e^{4 t} \psi(t)=0, & t \in \mathbb{R}, \\ \psi(t) \rightarrow b, & t \rightarrow-\infty\end{cases}
$$

The solution is a fixed point of the integral operator $A(\psi)$ given by

$$
A(\psi)(t):=b+(d-2)^{-1} \int_{-\infty}^{t}\left[1-e^{-(d-2)\left(t-t^{\prime}\right)}\right]\left[e^{4 t^{\prime}} \psi-e^{2 t^{\prime}}\left(\lambda \psi+\psi^{3}\right)\right] d t^{\prime}
$$

Emden-Fowler transformation

The initial-value problem,

$$
\left\{\begin{array}{l}
f_{b}^{\prime \prime}(r)+\frac{d-1}{r} f_{b}^{\prime}(r)-r^{2} f_{b}(r)+\lambda f_{b}(r)+f_{b}(r)^{3}=0, \quad r>0, \\
f_{b}(0)=b, \quad f_{b}^{\prime}(0)=0,
\end{array}\right.
$$

after the transformation

$$
r=e^{t}, \quad f(r)=\psi(t),
$$

becomes the invariant manifold problem:

$$
\begin{cases}\psi^{\prime \prime}(t)+(d-2) \psi^{\prime}(t)+e^{2 t}\left(\lambda+\psi(t)^{2}\right) \psi(t)-e^{4 t} \psi(t)=0, & t \in \mathbb{R}, \\ \psi(t) \rightarrow b, & t \rightarrow-\infty\end{cases}
$$

There exists a unique solution $\psi \in C^{2}(\mathbb{R})$ such that

$$
\psi_{b}(t)=b-\left(\lambda b+b^{3}\right)(2 d)^{-1} e^{2 t}+\mathcal{O}\left(e^{4 t}\right), \quad \text { as } t \rightarrow-\infty
$$

Rigorously implemented shooting method

For the uniquely defined solution $\psi_{b}(t)=b+\mathcal{O}\left(e^{2 t}\right)$, we define the partition of $\mathbb{R}=I_{+} \cup I_{0} \cup I_{-}$for parameter λ :

$$
\begin{aligned}
I_{+} & :=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi\left(t_{0}\right)=0, \text { while } \psi(t)>0, \quad \psi^{\prime}(t)<0, \quad t<t_{0}\right\}, \\
I_{-} & :=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi^{\prime}\left(t_{0}\right)=0, \text { while } \psi(t)>0, \quad \psi^{\prime}(t)<0, \quad t<t_{0}\right\}, \\
I_{0} & :=\left\{\lambda \in \mathbb{R}: \psi(t)>0, \quad \psi^{\prime}(t)<0, \quad t \in \mathbb{R}\right\} .
\end{aligned}
$$

Rigorously implemented shooting method

For the uniquely defined solution $\psi_{b}(t)=b+\mathcal{O}\left(e^{2 t}\right)$, we define the partition of $\mathbb{R}=I_{+} \cup I_{0} \cup I_{-}$for parameter λ :
$I_{+}:=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi\left(t_{0}\right)=0\right.$, while $\left.\psi(t)>0, \psi^{\prime}(t)<0, t<t_{0}\right\}$,
$I_{-}:=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi^{\prime}\left(t_{0}\right)=0\right.$, while $\left.\psi(t)>0, \psi^{\prime}(t)<0, t<t_{0}\right\}$, $I_{0}:=\left\{\lambda \in \mathbb{R}: \psi(t)>0, \psi^{\prime}(t)<0, t \in \mathbb{R}\right\}$.

We have $I_{-} \cap I_{+}=\emptyset, I_{ \pm} \cap I_{0}=\emptyset$, and furthermore,

- $[d, \infty) \subset I_{+}$and I_{+}is open;

Rigorously implemented shooting method

For the uniquely defined solution $\psi_{b}(t)=b+\mathcal{O}\left(e^{2 t}\right)$, we define the partition of $\mathbb{R}=I_{+} \cup I_{0} \cup I_{-}$for parameter λ :
$I_{+}:=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi\left(t_{0}\right)=0\right.$, while $\left.\psi(t)>0, \psi^{\prime}(t)<0, t<t_{0}\right\}$,
$I_{-}:=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi^{\prime}\left(t_{0}\right)=0\right.$, while $\left.\psi(t)>0, \psi^{\prime}(t)<0, t<t_{0}\right\}$, $I_{0}:=\left\{\lambda \in \mathbb{R}: \psi(t)>0, \psi^{\prime}(t)<0, t \in \mathbb{R}\right\}$.

We have $I_{-} \cap I_{+}=\emptyset, I_{ \pm} \cap I_{0}=\emptyset$, and furthermore,

- $[d, \infty) \subset I_{+}$and I_{+}is open;
- $(-\infty, 0] \subset I_{-}$and I_{-}is open;

Rigorously implemented shooting method

For the uniquely defined solution $\psi_{b}(t)=b+\mathcal{O}\left(e^{2 t}\right)$, we define the partition of $\mathbb{R}=I_{+} \cup I_{0} \cup I_{-}$for parameter λ :
$I_{+}:=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi\left(t_{0}\right)=0\right.$, while $\left.\psi(t)>0, \psi^{\prime}(t)<0, t<t_{0}\right\}$,
$I_{-}:=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi^{\prime}\left(t_{0}\right)=0\right.$, while $\left.\psi(t)>0, \psi^{\prime}(t)<0, t<t_{0}\right\}$, $I_{0}:=\left\{\lambda \in \mathbb{R}: \psi(t)>0, \psi^{\prime}(t)<0, t \in \mathbb{R}\right\}$.

We have $I_{-} \cap I_{+}=\emptyset, I_{ \pm} \cap I_{0}=\emptyset$, and furthermore,

- $[d, \infty) \subset I_{+}$and I_{+}is open;
- $(-\infty, 0] \subset I_{-}$and I_{-}is open;
- $I_{0} \subset(0, d)$ is closed and if $\lambda(b) \in I_{0}$, then $\psi_{b}(t) \rightarrow 0$ as $t \rightarrow+\infty$ with the precise asymptotics:

$$
\psi_{b}(t) \sim c e^{\frac{\lambda-d}{2} t} e^{-\frac{1}{2} e^{2 t}}, \quad \text { as } \quad t \rightarrow+\infty,
$$

for some $c>0$.

Rigorously implemented shooting method

For the uniquely defined solution $\psi_{b}(t)=b+\mathcal{O}\left(e^{2 t}\right)$, we define the partition of $\mathbb{R}=I_{+} \cup I_{0} \cup I_{-}$for parameter λ :

$$
\begin{aligned}
I_{+} & :=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi\left(t_{0}\right)=0, \text { while } \psi(t)>0, \psi^{\prime}(t)<0, \quad t<t_{0}\right\}, \\
I_{-} & :=\left\{\lambda \in \mathbb{R}: \exists t_{0} \in \mathbb{R}: \psi^{\prime}\left(t_{0}\right)=0, \text { while } \psi(t)>0, \psi^{\prime}(t)<0, \quad t<t_{0}\right\}, \\
I_{0} & :=\left\{\lambda \in \mathbb{R}: \psi(t)>0, \quad \psi^{\prime}(t)<0, \quad t \in \mathbb{R}\right\} .
\end{aligned}
$$

Towards the proof of convergence as $b \rightarrow \infty$

Recall the limiting singular solution $\mathfrak{u}_{\infty} \in \mathcal{E}, \mathfrak{u}_{\infty} \notin L^{\infty}$ defined by

$$
\mathfrak{u}_{\infty}(r)=\frac{\sqrt{d-3}}{r}\left[1+\mathcal{O}\left(r^{2}\right)\right] \quad \text { as } \quad r \rightarrow 0
$$

The solution can be represented by $\mathfrak{u}(r)=r^{-1} F(r)$ with bounded F. Using Emden-Fowler transformation and $\psi(t)=e^{-t} \Psi(t)$, we obtain

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

Towards the proof of convergence as $b \rightarrow \infty$

Recall the limiting singular solution $\mathfrak{u}_{\infty} \in \mathcal{E}, \mathfrak{u}_{\infty} \notin L^{\infty}$ defined by

$$
\mathfrak{u}_{\infty}(r)=\frac{\sqrt{d-3}}{r}\left[1+\mathcal{O}\left(r^{2}\right)\right] \quad \text { as } \quad r \rightarrow 0 .
$$

The solution can be represented by $\mathfrak{u}(r)=r^{-1} F(r)$ with bounded F. Using Emden-Fowler transformation and $\psi(t)=e^{-t} \Psi(t)$, we obtain

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

The limiting singular solution corresponds to the solution with $\Psi_{\infty}(t)=\sqrt{d-3}+\mathcal{O}\left(e^{2 t}\right)$, as $t \rightarrow-\infty \quad$ and $\quad \Psi_{\infty}(t) \rightarrow 0$, as $t \rightarrow+\infty$, which exists for some $\lambda=\lambda_{\infty}$ (Selem-Kikuchi-Wei, 2013).

Towards the proof of convergence as $b \rightarrow \infty$

Recall the limiting singular solution $\mathfrak{u}_{\infty} \in \mathcal{E}, \mathfrak{u}_{\infty} \notin L^{\infty}$ defined by

$$
\mathfrak{u}_{\infty}(r)=\frac{\sqrt{d-3}}{r}\left[1+\mathcal{O}\left(r^{2}\right)\right] \quad \text { as } \quad r \rightarrow 0
$$

The solution can be represented by $\mathfrak{u}(r)=r^{-1} F(r)$ with bounded F. Using Emden-Fowler transformation and $\psi(t)=e^{-t} \Psi(t)$, we obtain

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

Two analytic family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0
$$

Two analytic family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

- The b-family $\Psi_{b}(t)=e^{t} \psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$

Two analytic family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

- The b-family $\Psi_{b}(t)=e^{t} \psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$
- The c-family $\Psi_{c}(t) \rightarrow 0$ as $t \rightarrow+\infty$ with

$$
\Psi_{c}(t) \sim c e^{\frac{\lambda-d+2}{2} t} t e^{-\frac{1}{2} e^{2 t}}, \quad \text { as } t \rightarrow+\infty .
$$

Two analytic family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

- The b-family $\Psi_{b}(t)=e^{t} \psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$
- The c-family $\Psi_{c}(t) \rightarrow 0$ as $t \rightarrow+\infty$ with

$$
\Psi_{c}(t) \sim c e^{\frac{\lambda-d+2}{2} t} e^{-\frac{1}{2} e^{2 t}}, \quad \text { as } t \rightarrow+\infty .
$$

- Their intersection for some $\lambda=\lambda(b)$ and $c=c(b)$:

$$
\Psi_{b}(t)=\Psi_{c(b)}(t)
$$

We want to prove: $\lambda(b) \rightarrow \lambda_{\infty}$ with some $c(b) \rightarrow c_{\infty}$ as $b \rightarrow+\infty$.

Two analytic family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

$$
d=5, \quad b=14000:
$$

Two analytic family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0 .
$$

$$
d=13, \quad b=14000:
$$

The b-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$ for the solution $\Psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.

The b-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Formal truncation gives

$$
\Theta^{\prime \prime}(t)+(d-4) \Theta^{\prime}(t)+(3-d) \Theta(t)+\Theta(t)^{3}=0
$$

with uniquely defined $\Theta(t)=e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.

The b-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Formal truncation gives

$$
\Theta^{\prime \prime}(t)+(d-4) \Theta^{\prime}(t)+(3-d) \Theta(t)+\Theta(t)^{3}=0
$$

with uniquely defined $\Theta(t)=e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Easy result for all large b :

$$
\sup _{t \in(-\infty, 0]}\left|\Psi_{b}(t-\log b)-\Theta(t)\right| \leq C_{0} b^{-2} .
$$

The b-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Formal truncation gives

$$
\Theta^{\prime \prime}(t)+(d-4) \Theta^{\prime}(t)+(3-d) \Theta(t)+\Theta(t)^{3}=0
$$

with uniquely defined $\Theta(t)=e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Harder result for every $T>0$ and $a \in(0,1)$:

$$
\sup _{t \in[0, T+a \log b]}\left|\Psi_{b}(t-\log b)-\Theta(t)\right| \leq C_{T, a} b^{-2(1-a)}
$$

The b-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Formal truncation gives

$$
\Theta^{\prime \prime}(t)+(d-4) \Theta^{\prime}(t)+(3-d) \Theta(t)+\Theta(t)^{3}=0
$$

with uniquely defined $\Theta(t)=e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
$\Theta(t) \rightarrow \sqrt{d-3}$ as $t \rightarrow+\infty$ since

- $(\sqrt{d-3}, 0)$ is a stable spiral point for $5 \leq d \leq 12$
- $(\sqrt{d-3}, 0)$ is a stable nodal point for $d \geq 13$.

The b-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Formal truncation gives

$$
\Theta^{\prime \prime}(t)+(d-4) \Theta^{\prime}(t)+(3-d) \Theta(t)+\Theta(t)^{3}=0
$$

with uniquely defined $\Theta(t)=e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.
Non-degeneracy assumption ($5 \leq d \leq 12$):

$$
\Theta(t)=\sqrt{d-3}+A_{0} e^{-\beta t} \sin \left(\alpha t+\delta_{0}\right)+\mathcal{O}\left(e^{-2 \beta t}\right) \quad \text { as } \quad t \rightarrow+\infty,
$$

where $A_{0} \neq 0$.

The b-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{b}(t)=b e^{t}+\mathcal{O}\left(e^{3 t}\right)$ as $t \rightarrow-\infty$.

The c-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{c}(t) \sim c e^{\frac{\lambda-d+2}{2} t} e^{-\frac{1}{2} e^{2 t}}$ as $t \rightarrow+\infty$.

The c-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{c}(t) \sim c e^{\frac{\lambda-d+2}{2} t} e^{-\frac{1}{2} e^{2 t}}$ as $t \rightarrow+\infty$.
Recall the limiting solution $\Psi_{\infty}(t) \rightarrow \sqrt{d-3}$ as $t \rightarrow-\infty$, which exists for $(\lambda, c)=\left(\lambda_{\infty}, c_{\infty}\right)$ and write

$$
\Psi_{c}=\Psi_{\infty}+\left(\lambda-\lambda_{\infty}\right) \Psi_{1}+\left(c-c_{\infty}\right) \Psi_{2}+\Sigma,
$$

for (λ, c) near $\left(\lambda_{\infty}, c_{\infty}\right)$.

The c-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{c}(t) \sim c e^{\frac{\lambda-d+2}{2} t} e^{-\frac{1}{2} e^{2 t}}$ as $t \rightarrow+\infty$.
Recall the limiting solution $\Psi_{\infty}(t) \rightarrow \sqrt{d-3}$ as $t \rightarrow-\infty$, which exists for $(\lambda, c)=\left(\lambda_{\infty}, c_{\infty}\right)$ and write

$$
\Psi_{c}=\Psi_{\infty}+\left(\lambda-\lambda_{\infty}\right) \Psi_{1}+\left(c-c_{\infty}\right) \Psi_{2}+\Sigma,
$$

for (λ, c) near $\left(\lambda_{\infty}, c_{\infty}\right)$.
Easy result for every $t \in(-\infty,(a-1) \log b+T]$:

$$
\left|\Psi_{1,2}(t)-A_{1,2} e^{-\beta t} \sin \left(\alpha t+\delta_{1,2}\right)\right| \leq C_{T, a} b^{-2(1-a)} e^{-\beta t}
$$

where $A_{1}, A_{2} \neq 0$ (non-degeneracy assumption).

The c-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{c}(t) \sim c e^{\frac{\lambda-d+2}{2} t} e^{-\frac{1}{2} e^{2 t}}$ as $t \rightarrow+\infty$.
Recall the limiting solution $\Psi_{\infty}(t) \rightarrow \sqrt{d-3}$ as $t \rightarrow-\infty$, which exists for $(\lambda, c)=\left(\lambda_{\infty}, c_{\infty}\right)$ and write

$$
\Psi_{c}=\Psi_{\infty}+\left(\lambda-\lambda_{\infty}\right) \Psi_{1}+\left(c-c_{\infty}\right) \Psi_{2}+\Sigma,
$$

for (λ, c) near $\left(\lambda_{\infty}, c_{\infty}\right)$.
Harder result for the remainder term for every $t \in[(a-1) \log b, 0]$:

$$
|\Sigma(t)| \leq C_{T, a} \epsilon^{2},
$$

as long as $\left(\lambda-\lambda_{\infty}\right)^{2}+\left(c-c_{\infty}\right)^{2} \leq \epsilon^{2} b^{-2 \beta(1-a)}$ with small $\epsilon>0$.

The c-family of solutions

Consider the differential equation

$$
\Psi^{\prime \prime}(t)+(d-4) \Psi^{\prime}(t)+(3-d) \Psi(t)+\Psi(t)^{3}+\lambda e^{2 t} \Psi(t)-e^{4 t} \Psi(t)=0,
$$

for the solution $\Psi_{c}(t) \sim c e^{\frac{\lambda-d+2}{2} t} e^{-\frac{1}{2} e^{2 t}}$ as $t \rightarrow+\infty$.

Intersection of the b-family and the c-family

We define $\lambda=\lambda(b)$ and $c=c(b)$ from

$$
\Psi_{b}(t)=\Psi_{c(b)}(t), \quad t \in \mathbb{R}
$$

We can use the two asymptotic representations for every $t \in[(a-1) \log b,(a-1) \log b+T]$ with arbitrary $T>0$.

Intersection of the b-family and the c-family

We define $\lambda=\lambda(b)$ and $c=c(b)$ from

$$
\Psi_{b}(t)=\Psi_{c(b)}(t), \quad t \in \mathbb{R}
$$

We can use the two asymptotic representations for every $t \in[(a-1) \log b,(a-1) \log b+T]$ with arbitrary $T>0$.

$$
\begin{aligned}
\Psi_{b}(T+(a-1) \log b) & =\Theta(T+a \log b)+\text { error } \\
& =\sqrt{d-3}+A_{0} b^{-a \beta} e^{-\beta T} \sin \left(\alpha T+\delta_{0}\right)+\text { error }
\end{aligned}
$$

Intersection of the b-family and the c-family

We define $\lambda=\lambda(b)$ and $c=c(b)$ from

$$
\Psi_{b}(t)=\Psi_{c(b)}(t), \quad t \in \mathbb{R}
$$

We can use the two asymptotic representations for every $t \in[(a-1) \log b,(a-1) \log b+T]$ with arbitrary $T>0$.

$$
\begin{aligned}
\Psi_{b}(T+(a-1) \log b)= & \Theta(T+a \log b)+\text { error } \\
= & \sqrt{d-3}+A_{0} b^{-a \beta} e^{-\beta T} \sin \left(\alpha T+\delta_{0}\right)+\text { error } \\
& \\
\Psi_{c}(T+(a-1) \log b)= & \Psi_{\infty}(T+(a-1) \log b)+\text { linear terms } \\
= & \sqrt{d-3}+A_{1}\left(\lambda-\lambda_{\infty}\right) b^{(1-a) \beta} e^{-\beta T} \sin \left(\alpha T+\delta_{1}\right) \\
& +A_{2}\left(c-c_{\infty}\right) b^{(1-a) \beta} e^{-\beta T} \sin \left(\alpha T+\delta_{1}\right)+\text { error }
\end{aligned}
$$

Intersection of the b-family and the c-family

We define $\lambda=\lambda(b)$ and $c=c(b)$ from

$$
\Psi_{b}(t)=\Psi_{c(b)}(t), \quad t \in \mathbb{R}
$$

We can use the two asymptotic representations for every $t \in[(a-1) \log b,(a-1) \log b+T]$ with arbitrary $T>0$.

Under the non-degeneracy assumption that $A_{0}, A_{1}, A_{2} \neq 0$ we obtain with the implicit function theorem,

$$
\lambda(b)-\lambda_{\infty}=A_{\infty} b^{-\beta} \sin \left(\alpha \log b+\delta_{\infty}\right)+\text { error }
$$

inside $\left|\lambda-\lambda_{\infty}\right| \leq \epsilon b^{-\beta(1-a)}$.

Intersection of the b-family and the c-family

We define $\lambda=\lambda(b)$ and $c=c(b)$ from

$$
\Psi_{b}(t)=\Psi_{c(b)}(t), \quad t \in \mathbb{R}
$$

We can use the two asymptotic representations for every $t \in[(a-1) \log b,(a-1) \log b+T]$ with arbitrary $T>0$.

Remarks

- Similar results but with monotone decay are obtained for $d \geq 13$.

Remarks

- Similar results but with monotone decay are obtained for $d \geq 13$.
- Derivative $\partial_{b} \Psi_{b}(t)$ is a solution of the linearized equation satisfying $\partial_{b} \Psi_{b}(t) \rightarrow 0$ as $t \rightarrow-\infty$.

Remarks

- Similar results but with monotone decay are obtained for $d \geq 13$.
- Derivative $\partial_{b} \Psi_{b}(t)$ is a solution of the linearized equation satisfying $\partial_{b} \Psi_{b}(t) \rightarrow 0$ as $t \rightarrow-\infty$.
- Derivative $\partial_{c} \Psi_{c}(t)$ is a solution of the linearized equation satisfying $\partial_{c} \Psi_{c}(t) \rightarrow 0$ as $t \rightarrow+\infty$.

Remarks

- Similar results but with monotone decay are obtained for $d \geq 13$.
- Derivative $\partial_{b} \Psi_{b}(t)$ is a solution of the linearized equation satisfying $\partial_{b} \Psi_{b}(t) \rightarrow 0$ as $t \rightarrow-\infty$.
- Derivative $\partial_{c} \Psi_{c}(t)$ is a solution of the linearized equation satisfying $\partial_{c} \Psi_{c}(t) \rightarrow 0$ as $t \rightarrow+\infty$.
- In the monotone case $d \geq 13$, under the non-degeneracy assumptions, we can show that if for $\lambda=\lambda(b)$,

$$
\Psi_{b}(t)=\Psi_{c(b)}(t), \quad t \in \mathbb{R}
$$

then there exists no $C \in \mathbb{R}$ such that

$$
\partial_{b} \Psi_{b}(t)=C \partial_{c} \Psi_{c(b)}(t), \quad t \in \mathbb{R} .
$$

Hence the linearized operator \mathcal{L}_{b} at \mathfrak{u}_{b} has no zero eigenvalues.

Future goals

- We have shown existence of $\lambda(b)$ and λ_{∞} but not uniqueness.
- No proof that if \mathcal{L}_{b} has a zero eigenvalue in L_{b}^{2}, then $\lambda^{\prime}(b)=0$.
- In the oscillatory case, the Morse index is expected to increase by one every time $\lambda(b)$ passes through the extremal point.
- The existence of $\lambda(b)$ has been shown in the energy critical case $d=4$ but we should prove that $\lambda(b) \rightarrow 0$ as $b \rightarrow \infty$ with the limiting singular solution being the algebraic soliton.

Future goals

- We have shown existence of $\lambda(b)$ and λ_{∞} but not uniqueness.
- No proof that if \mathcal{L}_{b} has a zero eigenvalue in L_{b}^{2}, then $\lambda^{\prime}(b)=0$.
- In the oscillatory case, the Morse index is expected to increase by one every time $\lambda(b)$ passes through the extremal point.
- The existence of $\lambda(b)$ has been shown in the energy critical case $d=4$ but we should prove that $\lambda(b) \rightarrow 0$ as $b \rightarrow \infty$ with the limiting singular solution being the algebraic soliton.

> Thank you! Questions???

