Standing waves on quantum graphs: variational methods and the period function

Dmitry Pelinovsky,
Department of Mathematics, McMaster University http://dmpeli.math.mcmaster.ca

Collaborators:
Gregory Berkolaiko, Texas A \& M University, USA Adilbek Kairzhan, University of Toronto, Canada Robert Marangell, University of Sydney, Australia Jeremy Marzuola, University of North Carolina, USA Diego Noja, Universitá di Milano Bicocca, Italy

QGraph 2020, Stockholm University, December 8-9, 2020

Background: Nonlinear Schrödinger equation

In many problems (BECs, photonics, optics), wave dynamics is modeled with the (focusing) nonlinear Schrödinger equation

$$
i u_{t}=-u_{x x}+V(x) u-|u|^{2 p} u
$$

where $p>0$ is nonlinearity power, $V(x): \mathbb{R} \mapsto \mathbb{R}$ is the trapping potential.

- Single-well potentials such as $V_{0}(x)=-\operatorname{sech}^{2}(x)$.
- Double-well potentials such as

$$
V(x ; s)=\frac{1}{2}\left(V_{0}(x-s)+V_{0}(x+s)\right), \quad s \geq 0 .
$$

- Periodic potentials

$$
V(x+L)=V(x), \quad L>0
$$

such as $V(x)=\sin ^{2}(x)$.

Nonlinear Schrödinger equation on metric graphs

> A metric graph $\Gamma=\{E, V\}$ is given by a set of edges E and vertices V, with a metric structure on each edge.

Nonlinear Schrödinger equation on a graph Γ :

$$
i \Psi_{t}=-\Delta \Psi-|\Psi|^{2 p} \Psi, \quad x \in \Gamma
$$

where Δ is the graph Laplacian and $\Psi(t, x)$ is defined componentwise on edges subject to Neumann-Kirchhoff boundary conditions at vertices:

$$
\begin{cases}\Psi(v) \text { is continuous } & \text { for every } v \in V \\ \sum_{e \sim v} \partial \Psi_{e}(v)=0, & \text { for every } v \in V\end{cases}
$$

where $e \sim v$ denotes all edges $e \in E$ adjacent to the vertex $v \in V$.

Example: a star graph

A star graph is the union of N half-lines connected at a single vertex. For $N=2$, the graph is the line \mathbb{R}. For $N=3$, the graph is a Y-junction.

Function spaces are defined componentwise:

$$
L^{2}(\Gamma)=L^{2}\left(\mathbb{R}^{-}\right) \oplus \underbrace{L^{2}\left(\mathbb{R}^{+}\right) \oplus \cdots \oplus L^{2}\left(\mathbb{R}^{+}\right)}_{(\mathbb{N}-1) \text { elements }},
$$

subject to the Neumann-Kirchhoff conditions at a single vertex:

$$
\begin{aligned}
H_{\Gamma}^{1} & :=\left\{\Psi \in H^{1}(\Gamma): \quad \psi_{1}(0)=\psi_{2}(0)=\cdots=\psi_{N}(0)\right\} \\
H_{\Gamma}^{2} & :=\left\{\Psi \in H^{2}(\Gamma) \cap H_{\Gamma}^{1}: \quad \psi_{1}^{\prime}(0)=\sum_{j=2}^{N} \psi_{j}^{\prime}(0)\right\},
\end{aligned}
$$

NLS on the metric graph Γ

The Cauchy problem for the NLS flow:

$$
\left\{\begin{array}{l}
i \Psi_{t}=-\Delta \Psi-|\Psi|^{2 p} \Psi, \\
\left.\Psi\right|_{t=0}=\Psi_{0} .
\end{array}\right.
$$

Lemma. The Cauchy problem is locally well-posed for either $\Psi_{0} \in H_{\Gamma}^{1}$ or for $\Psi_{0} \in H_{\Gamma}^{2}$. Moreover, the mass

$$
Q(\Psi)=\|\Psi\|_{L^{2}(\Gamma)}^{2}
$$

and the energy

$$
E(\Psi)=\|\nabla \Psi\|_{L^{2}(\Gamma)}^{2}-\frac{1}{p+1}\|\Psi\|_{L^{p p+2}(\Gamma)}^{2 p+2},
$$

are constants in time for $\Psi \in C\left(\mathbb{R}, H_{\Gamma}^{1}\right)$.

Ground state

Ground state is a standing wave of smallest energy E at fixed mass Q,

$$
\mathcal{E}_{\mu}=\inf \left\{E(u): \quad u \in H_{\Gamma}^{1}, \quad Q(u)=\mu\right\} .
$$

All standing waves satisfy the Euler-Lagrange equation:

$$
-\Delta \Phi-|\Phi|^{2 p} \Phi=\omega \Phi
$$

where the Lagrange multiplier ω defines $\Psi(t, x)=\Phi(x) e^{-i \omega t}$.

Ground state

Ground state is a standing wave of smallest energy E at fixed mass Q,

$$
\mathcal{E}_{\mu}=\inf \left\{E(u): \quad u \in H_{\Gamma}^{1}, \quad Q(u)=\mu\right\} .
$$

All standing waves satisfy the Euler-Lagrange equation:

$$
-\Delta \Phi-|\Phi|^{2 p} \Phi=\omega \Phi
$$

where the Lagrange multiplier ω defines $\Psi(t, x)=\Phi(x) e^{-i \omega t}$.
For $p \in(0,2)$, infimum \mathcal{E}_{μ} exists for every $\mu>0$ thanks to
Gagliardo-Nirenberg inequality:

$$
\|\Psi\|_{L^{2 p+2}(\Gamma)}^{2 p+2} \leq C_{\Gamma, p}\|\nabla \Psi\|_{L^{2}(\Gamma)}^{p}\|\Psi\|_{L^{2}(\Gamma)}^{p+2},
$$

where $C_{\Gamma, p}>0$ depends on Γ and p only.
Theorem. (Adami-Serra-Tilli, 2015) If Γ is unbounded and contains at least one half-line, then for $p \in(0,2)$,

$$
\min _{u \in H^{1}\left(\mathbb{R}^{+}\right)} E\left(u ; \mathbb{R}^{+}\right) \leq \mathcal{E}_{\mu} \leq \min _{u \in H^{1}(\mathbb{R})} E(u ; \mathbb{R}) \quad \text { for fixed } \mu,
$$

Infimum may not be attained by any of the standing waves Φ,

Ground state in the subcritical case $p \in(0,2)$

Theorem. (Adami-Serra-Tilli, 2016) If Γ consists of only one half-line, then

$$
\mathcal{E}_{\mu}<\min _{u \in H^{1}(\mathbb{R})} E(u ; \mathbb{R})
$$

and the infimum is attained for every $\mu>0$.

Ground state in the subcritical case $p \in(0,2)$

Theorem. (Adami-Serra-Tilli, 2016) If Γ consists of only one half-line, then

$$
\mathcal{E}_{\mu}<\min _{u \in H^{1}(\mathbb{R})} E(u ; \mathbb{R})
$$

and the infimum is attained for every $\mu>0$.

If Γ consists of more than two half-lines and is connective to infinity, then

$$
\mathcal{E}_{\mu}=\min _{u \in H^{1}(\mathbb{R})} E(u ; \mathbb{R})
$$

and the infimum is not attained because a minimizing sequence escapes to infinity along an unbounded edge.

Ground state in the critical case $p=2$

Recall the fixed mass

$$
Q(\Psi)=\|\Psi\|_{L^{2}(\Gamma)}^{2}=\mu
$$

and the energy

$$
E(\Psi)=\|\nabla \Psi\|_{L^{2}(\Gamma)}^{2}-\|\Psi\|_{L^{6}(\Gamma)}^{6}
$$

Gagliardo-Nirenberg inequality is now

$$
\|\Psi\|_{L^{6}(\Gamma)}^{6} \leq C_{\Gamma}\|\nabla \Psi\|_{L^{2}(\Gamma)}^{2}\|\Psi\|_{L^{2}(\Gamma)}^{4}=C_{\Gamma} \mu^{2}\|\nabla \Psi\|_{L^{2}(\Gamma)}^{2}
$$

Theorem. (Adami-Serra-Tilli, 2017) If Γ consists of only one half-line, then the ground state is attained if and only if $\mu \in\left(\mu_{\mathbb{R}^{+}}, \mu_{\mathbb{R}}\right]$, where $\mu_{\mathbb{R}}$ is the fixed mass of the NLS soliton and $\mu_{\mathbb{R}^{+}}$is the fixed mass of the half-soliton. Moreover,

$$
\mathcal{E}_{\mu}=\left\{\begin{array}{cl}
0, & \mu \in\left[0, \mu_{\mathbb{R}^{+}}\right], \\
<0, & \mu \in\left(\mu_{\mathbb{R}^{+}}, \mu_{\mathbb{R}}\right], \\
-\infty, & \mu \in\left(\mu_{\mathbb{R}}, \infty\right) .
\end{array}\right.
$$

Uniqueness is proven for almost all μ (Dovetta-Serra-Tilli, 2020).

Main goal

Recall the standing wave solutions $\Psi(t, x)=\Phi(x) e^{-i \omega t}$ with

$$
-\Delta \Phi-3|\Phi|^{4} \Phi=\omega \Phi
$$

Main question: What is the range of frequencies ω for the ground states?
For the tadpole graph, the answer is suggested by the following figure:

New variational formulation

We explore the following constrained minimization problem:

$$
\mathcal{B}(\omega)=\inf _{u \in H_{\Gamma}^{1}}\left\{B_{\omega}(u): \quad\|u\|_{L^{6}(\Gamma)}=1\right\}, \quad \omega<0,
$$

where

$$
B_{\omega}(u):=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2} .
$$

It generates the same Euler-Lagrange equation

$$
-\Delta \Phi-3|\Phi|^{4} \Phi=\omega \Phi
$$

after the Lagrange multiplier is scaled out by a simple transformation.

Theorem (Noja-Pelinovsky, Calc Var PDE, 2020)

For every $\omega<0$, there exists a global minimizer $\Psi(\cdot, \omega) \in H_{\Gamma}^{1}$ which yields a strong solution $\Phi(\cdot, \omega) \in H_{\Gamma}^{2}$ to the stationary NLS equation. The standing wave Φ is real up to the phase rotation, positive up to the sign choice, symmetric on $[-L, L]$ and monotonically decreasing on $[0, L]$ and $[0, \infty)$.

- $B_{\omega}(u)=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2}$ is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.
- $B_{\omega}(u)=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2}$ is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.
- Constraint $\|u\|_{L^{6}(\Gamma)}=1$ ensures that $\mathcal{B}(\omega)=\inf _{u \in H_{\Gamma}^{1}}\left\{B_{\omega}(u)\right\}>0$ due to Sobolev's embedding $\|u\|_{L^{6}} \leq C\|u\|_{H^{1}}$.
- $B_{\omega}(u)=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2}$ is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.
- Constraint $\|u\|_{L^{6}(\Gamma)}=1$ ensures that $\mathcal{B}(\omega)=\inf _{u \in H_{\Gamma}^{1}}\left\{B_{\omega}(u)\right\}>0$ due to Sobolev's embedding $\|u\|_{L^{6}} \leq C\|u\|_{H^{1}}$.
- A minimizing sequence $\left\{u_{n}\right\}_{n}$ in $H^{1}(\Gamma)$ satisfying the constraint $\left\|u_{n}\right\|_{L^{6}}=1$ such that $B_{\omega}\left(u_{n}\right) \rightarrow \mathcal{B}(\omega)$ has a weak limit u_{*}. By Fatou's lemma, $0 \leq\left\|u_{*}\right\|_{L^{6}} \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{6}}=1$. Let $\gamma:=\left\|u_{*}\right\|_{L^{6}}$.
- $B_{\omega}(u)=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2}$ is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.
- Constraint $\|u\|_{L^{6}(\Gamma)}=1$ ensures that $\mathcal{B}(\omega)=\inf _{u \in H_{\Gamma}^{1}}\left\{B_{\omega}(u)\right\}>0$ due to Sobolev's embedding $\|u\|_{L^{6}} \leq C\|u\|_{H^{1}}$.
- A minimizing sequence $\left\{u_{n}\right\}_{n}$ in $H^{1}(\Gamma)$ satisfying the constraint $\left\|u_{n}\right\|_{L^{6}}=1$ such that $B_{\omega}\left(u_{n}\right) \rightarrow \mathcal{B}(\omega)$ has a weak limit u_{*}. By Fatou's lemma, $0 \leq\left\|u_{*}\right\|_{L^{6}} \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{6}}=1$. Let $\gamma:=\left\|u_{*}\right\|_{L^{6}}$.
- If $\gamma \in(0,1)$, the minimizing sequence splits. This can be ruled out.
- $B_{\omega}(u)=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2}$ is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.
- Constraint $\|u\|_{L^{6}(\Gamma)}=1$ ensures that $\mathcal{B}(\omega)=\inf _{u \in H_{\Gamma}^{1}}\left\{B_{\omega}(u)\right\}>0$ due to Sobolev's embedding $\|u\|_{L^{6}} \leq C\|u\|_{H^{1}}$.
- A minimizing sequence $\left\{u_{n}\right\}_{n}$ in $H^{1}(\Gamma)$ satisfying the constraint $\left\|u_{n}\right\|_{L^{6}}=1$ such that $B_{\omega}\left(u_{n}\right) \rightarrow \mathcal{B}(\omega)$ has a weak limit u_{*}. By Fatou's lemma, $0 \leq\left\|u_{*}\right\|_{L^{6}} \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{6}}=1$. Let $\gamma:=\left\|u_{*}\right\|_{L^{6}}$.
- If $\gamma \in(0,1)$, the minimizing sequence splits. This can be ruled out.
- If $\gamma=0$, the minimizing sequence vanishes. It would mean that $\mathcal{B}(\omega)=\min _{u \in H^{1}(\mathbb{R})} B_{\omega}(u ; \mathbb{R})$. This is ruled out by an example of $u_{0} \in H_{\Gamma}^{1}$ such that $\left\|u_{0}\right\|_{L^{6}}=1$ and $B_{\omega}\left(u_{0}\right)<\min _{u \in H^{1}(\mathbb{R})} B_{\omega}(u ; \mathbb{R})$.
- $B_{\omega}(u)=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2}$ is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.
- Constraint $\|u\|_{L^{6}(\Gamma)}=1$ ensures that $\mathcal{B}(\omega)=\inf _{u \in H_{\Gamma}^{1}}\left\{B_{\omega}(u)\right\}>0$ due to Sobolev's embedding $\|u\|_{L^{6}} \leq C\|u\|_{H^{1}}$.
- A minimizing sequence $\left\{u_{n}\right\}_{n}$ in $H^{1}(\Gamma)$ satisfying the constraint $\left\|u_{n}\right\|_{L^{6}}=1$ such that $B_{\omega}\left(u_{n}\right) \rightarrow \mathcal{B}(\omega)$ has a weak limit u_{*}. By Fatou's lemma, $0 \leq\left\|u_{*}\right\|_{L^{6}} \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{6}}=1$. Let $\gamma:=\left\|u_{*}\right\|_{L^{6}}$.
- If $\gamma \in(0,1)$, the minimizing sequence splits. This can be ruled out.
- If $\gamma=0$, the minimizing sequence vanishes. It would mean that $\mathcal{B}(\omega)=\min _{u \in H^{1}(\mathbb{R})} B_{\omega}(u ; \mathbb{R})$. This is ruled out by an example of $u_{0} \in H_{\Gamma}^{1}$ such that $\left\|u_{0}\right\|_{L^{6}}=1$ and $B_{\omega}\left(u_{0}\right)<\min _{u \in H^{1}(\mathbb{R})} B_{\omega}(u ; \mathbb{R})$.
- Hence, $\gamma=1$ and u_{*} is a strong limit of $\left\{u_{n}\right\}_{n}$ (minimizer).
- $B_{\omega}(u)=\|\nabla u\|_{L^{2}(\Gamma)}^{2}+|\omega|\|u\|_{L^{2}(\Gamma)}^{2}$ is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.
- Constraint $\|u\|_{L^{6}(\Gamma)}=1$ ensures that $\mathcal{B}(\omega)=\inf _{u \in H_{\Gamma}^{1}}\left\{B_{\omega}(u)\right\}>0$ due to Sobolev's embedding $\|u\|_{L^{6}} \leq C\|u\|_{H^{1}}$.
- A minimizing sequence $\left\{u_{n}\right\}_{n}$ in $H^{1}(\Gamma)$ satisfying the constraint $\left\|u_{n}\right\|_{L^{6}}=1$ such that $B_{\omega}\left(u_{n}\right) \rightarrow \mathcal{B}(\omega)$ has a weak limit u_{*}. By Fatou's lemma, $0 \leq\left\|u_{*}\right\|_{L^{6}} \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{6}}=1$. Let $\gamma:=\left\|u_{*}\right\|_{L^{6}}$.
- If $\gamma \in(0,1)$, the minimizing sequence splits. This can be ruled out.
- If $\gamma=0$, the minimizing sequence vanishes. It would mean that $\mathcal{B}(\omega)=\min _{u \in H^{1}(\mathbb{R})} B_{\omega}(u ; \mathbb{R})$. This is ruled out by an example of $u_{0} \in H_{\Gamma}^{1}$ such that $\left\|u_{0}\right\|_{L^{6}}=1$ and $B_{\omega}\left(u_{0}\right)<\min _{u \in H^{1}(\mathbb{R})} B_{\omega}(u ; \mathbb{R})$.
- Hence, $\gamma=1$ and u_{*} is a strong limit of $\left\{u_{n}\right\}_{n}$ (minimizer).
- Symmetry of u_{*} follows from the Polya-Szegö inequality on graphs.

The standing wave solutions $\Psi(t, x)=\Phi(x) e^{-i \omega t}$ with

$$
-\Delta \Phi-3|\Phi|^{4} \Phi=\omega \Phi
$$

Dynamical formulation

Consider the stationary NLS equation

$$
-\Delta \Phi-3|\Phi|^{4} \Phi=\omega \Phi
$$

and split $\Phi=(u, v)$ on the tadpole graph.

Use the scaling transformation $\omega=-\varepsilon^{4}$ and

$$
\begin{cases}u(x)=\varepsilon U\left(\varepsilon^{2} x\right), & x \in[-L, L], \\ v(x)=\varepsilon V\left(\varepsilon^{2} x\right), & x \in[0, \infty) .\end{cases}
$$

Then, we obtain the boundary-value problem:

$$
\begin{cases}-U^{\prime \prime}+U-3 U^{5}=0, & z \in\left(-L \varepsilon^{2}, L \varepsilon^{2}\right), \\ -V^{\prime \prime}+V-3 V^{5}=0, & z \in(0, \infty), \\ U\left(L \varepsilon^{2}\right)=U\left(-L \varepsilon^{2}\right)=V(0), & \\ U^{\prime}\left(L \varepsilon^{2}\right)-U^{\prime}\left(-L \varepsilon^{2}\right)=V^{\prime}(0) . & \end{cases}
$$

Orbits of $-U^{\prime \prime}+U-3 U^{5}=0$ are level curves of the energy function

$$
E\left(U, U^{\prime}\right)=\left(U^{\prime}\right)^{2}-U^{2}+U^{6} .
$$

The solution in the tail $V \in H^{2}(0, \infty)$ is a part of the homoclinic orbit.

Figure: Representation of the solutions on the phase plane $\left(U, U^{\prime}\right)$.

For the boundary-value problem,

$$
\begin{cases}-U^{\prime \prime}+U-3 U^{5}=0, & z \in\left(-L \varepsilon^{2}, L \varepsilon^{2}\right) \\ -V^{\prime \prime}+V-3 V^{5}=0, & z \in(0, \infty) \\ U\left(L \varepsilon^{2}\right)=U\left(-L \varepsilon^{2}\right)=V(0), & \\ U^{\prime}\left(L \varepsilon^{2}\right)-U^{\prime}\left(-L \varepsilon^{2}\right)=V^{\prime}(0), & \end{cases}
$$

the solution in the tail is determined uniquely

$$
V(z)=\varphi(z+a), \quad \text { where } \varphi(z):=\operatorname{sech}^{1 / 2}(2 z) \text { is the soliton, }
$$

up to the parameter $U_{0}=V(0)=\varphi(a) \in(0,1)$, equivalently, by $a>0$.

For the boundary-value problem,

$$
\begin{cases}-U^{\prime \prime}+U-3 U^{5}=0, & z \in\left(-L \varepsilon^{2}, L \varepsilon^{2}\right), \\ -V^{\prime \prime}+V-3 V^{5}=0, & z \in(0, \infty) \\ U\left(L \varepsilon^{2}\right)=U\left(-L \varepsilon^{2}\right)=V(0), & \\ U^{\prime}\left(L \varepsilon^{2}\right)-U^{\prime}\left(-L \varepsilon^{2}\right)=V^{\prime}(0), & \end{cases}
$$

the solution in the tail is determined uniquely

$$
V(z)=\varphi(z+a), \quad \text { where } \varphi(z):=\operatorname{sech}^{1 / 2}(2 z) \text { is the soliton, }
$$

up to the parameter $U_{0}=V(0)=\varphi(a) \in(0,1)$, equivalently, by $a>0$.

- $V^{\prime}(0)$ is determined uniquely from U_{0}.
- This determines uniquely $U\left(L \varepsilon^{2}\right)=U_{0}$ and $U^{\prime}\left(L \varepsilon^{2}\right)=\frac{1}{2} V^{\prime}(0)$, hence the energy level E_{0}.
- The existence problem then reduces to the study of the period function

$$
L \varepsilon^{2}=T\left(U_{0}\right):=\int_{U_{0}}^{U_{+}} \frac{d u}{\sqrt{E_{0}+u^{2}-u^{6}}},
$$

where U_{+}is the right turning point from $E_{0}+U_{+}^{2}-U_{+}^{6}=0$.

Main result

Lemma (Noja-Pelinovsky, Calc Var PDE, 2020)

For every $U_{0} \in(0,1)$ there exists a unique value of $\varepsilon>0$ for which there exists a unique solution $U \in C^{2}\left(0, L \varepsilon^{2}\right)$ to the boundary-value problem such that U is monotonically decreasing on $\left[0, L \varepsilon^{2}\right]$. Moreover, the map $(0,1) \ni U_{0} \mapsto \varepsilon\left(U_{0}\right) \in(0, \infty)$ is C^{1}, onto, and monotonically decreasing.

From the period function

$$
L \varepsilon^{2}=T\left(U_{0}\right):=\int_{U_{0}}^{U_{+}} \frac{d u}{\sqrt{E_{0}+u^{2}-u^{6}}},
$$

we only need to prove that $T^{\prime}\left(U_{0}\right)<0$, where U_{+}and E_{0} depend on U_{0}.

Main tool : potential function on the plane

If $W(u, v)$ is a C^{1} function in an open region of \mathbb{R}^{2}, then the differential of W is defined by

$$
d W(u, v)=\frac{\partial W}{\partial u} d u+\frac{\partial W}{\partial v} d v
$$

and the line integral of $d W(u, v)$ along any C^{1} contour γ connecting two points (u_{0}, v_{0}) and (u_{1}, v_{1}) does not depend on γ and is evaluated as

$$
\int_{\gamma} d W(u, v)=W\left(u_{1}, v_{1}\right)-W\left(u_{0}, v_{0}\right)
$$

The period function can be expressed as

$$
T\left(U_{0}\right):=\int_{U_{0}}^{U_{+}} \frac{d u}{v}, \quad v:=\sqrt{E_{0}+u^{2}-u^{6}}
$$

so that with $A(u)=u^{2}-u^{6}$,

$$
\left[E_{0}+A\left(u_{*}\right)\right] T\left(U_{0}\right)=\int_{U_{0}}^{U_{+}} v d u-\int_{U_{0}}^{U_{+}} \frac{A(u)-A\left(u_{*}\right)}{v} d u
$$

where $u_{*}=\max _{u \in[0,1]} A(u)$ and $E_{0}+A\left(u_{*}\right)>0$.
Using

$$
\begin{array}{r}
d\left(\frac{2 v\left[A(u)-A\left(u_{*}\right)\right]}{A^{\prime}(u)}\right)=2\left[1-\frac{A^{\prime \prime}(u)\left[A(u)-A\left(U_{*}\right)\right]}{\left[A^{\prime}(u)\right]^{2}}\right] v d u \\
+\frac{2\left[A(u)-A\left(u_{*}\right)\right]}{A^{\prime}(u)} d v
\end{array}
$$

we eliminate the singular term in $T\left(U_{0}\right)$:

$$
\frac{2\left[A(u)-A\left(u_{*}\right)\right]}{A^{\prime}(u)} d v=\frac{A(u)-A\left(u_{*}\right)}{v} d u .
$$

Characterization of the ground state

The ground state $\Psi(\cdot, \omega) \in H_{\Gamma}^{1}$ of the stationary NLS equation

$$
-\Delta \Phi-3|\Phi|^{4} \Phi=\omega \Phi
$$

is represented dynamically as a family of orbits with parameter $U_{0} \in(0,1)$ such that $(0,1) \ni U_{0} \mapsto \omega=-\varepsilon^{4} \in(-\infty, 0)$ is one-to-one and onto.

Consider the linearized operator

$$
\mathcal{L}=-\Delta-15 \Phi^{4}-\omega .
$$

Then,

$$
\langle\mathcal{L} \Psi, \Psi\rangle_{L^{2}(\Gamma)}=-12\|\Psi\|_{L^{6}(\Gamma)}^{6}<0,
$$

hence \mathcal{L} has exactly one simple negative eigenvalue.
(Morse index $n(\mathcal{L})=1$.)
Moreover, $\operatorname{Ker}(\mathcal{L})=\{0\}$ follows from the same dynamical representation.
It remains to consider the mass $\mu(\omega)=\|\Psi(\cdot, \omega)\|_{L^{2}(\Gamma)}^{2}$ relatively to $\mu_{\mathbb{R}_{+}}, \mu_{\mathbb{R}}$.

Theorem (Noja-Pelinovsky, Calc Var PDE, 2020)

The mapping $\omega \mapsto \mu(\omega)=Q(\Phi(\cdot, \omega))$ is C^{1} for every $\omega<0$ and satisfies

$$
\mu^{\prime}(\omega)>0 \text { for } \omega \in\left(-\infty, \omega_{1}\right) \text { and } \mu^{\prime}(\omega)<0 \text { for } \omega \in\left(\omega_{1}, 0\right)
$$

and
$\mu(\omega) \notin\left(\mu_{\mathbb{R}^{+}}, \mu_{\mathbb{R}}\right]$ for $\omega \in\left(-\infty, \omega_{0}\right)$ and $\mu(\omega) \in\left(\mu_{\mathbb{R}^{+}}, \mu_{\mathbb{R}}\right]$ for $\omega \in\left[\omega_{0}, 0\right)$.

Extension: flower graph with N loops

Theorem (Kairzhan-Marangell-Pelinovsky-Xiao, JDE, 2021)
For every $\omega<0$, there exists only one positive symmetric state $\Phi \in H_{\Gamma}^{2}$ which satisfies the stationary NLS equation (cubic case). Moreover,

Extension: flower graph with N loops

Theorem (Kairzhan-Marangell-Pelinovsky-Xiao, JDE, 2021)
For every $\omega<0$, there exists only one positive symmetric state $\Phi \in H_{\Gamma}^{2}$ which satisfies the stationary NLS equation (cubic case). Moreover,

- The map $(-\infty, 0) \ni \omega \mapsto \Phi(\cdot, \omega) \in H_{\Gamma}^{2}$ is C^{1} and the map $(-\infty, 0) \ni \omega \mapsto \mu(\omega) \in(0, \infty)$ is one-to-one, onto, and decreasing.

Extension: flower graph with N loops

Theorem (Kairzhan-Marangell-Pelinovsky-Xiao, JDE, 2021)
For every $\omega<0$, there exists only one positive symmetric state $\Phi \in H_{\Gamma}^{2}$ which satisfies the stationary NLS equation (cubic case). Moreover,

- The map $(-\infty, 0) \ni \omega \mapsto \Phi(\cdot, \omega) \in H_{\Gamma}^{2}$ is C^{1} and the map $(-\infty, 0) \ni \omega \mapsto \mu(\omega) \in(0, \infty)$ is one-to-one, onto, and decreasing.
- There exists $\omega_{*} \in(-\infty, 0)$ such that $\operatorname{dim} \operatorname{Ker}(\mathcal{L})=N-1$ for $\omega=\omega_{*}$. Morse index $n(\mathcal{L})=N$ for $\omega \in\left(-\infty, \omega_{*}\right) ; n(\mathcal{L})=1$ for $\omega \in\left[\omega_{*}, 0\right)$.

Figure: The bifurcation diagram of positive states on the parameter plane (ω, μ) for $N=2$ (left) and $N=3$ (right).

- Blue line is the positive symmetric state Φ.
- Red line is the positive state with one component having larger amplitude than the other components.
- Green line (for $N=3$) is the positive state with two components having larger amplitudes than the third one.

Dynamical characterization: symmetric state

Recall the period function

$$
L \varepsilon=T\left(U_{0}\right):=\int_{U_{0}}^{U_{+}} \frac{d u}{\sqrt{E_{0}+u^{2}-u^{4}}}
$$

Figure: Geometric construction of the positive symmetric state on the phase plane.

Dynamical characterization: bifurcating states

If $U_{0}>U_{*}$, where $\left(U_{*}, 0\right)$ is the center point, the symmetric state splits into bifurcating states. Here $N=3$ and the left figure corresponds to the state with one large component and the right figure corresponds to the state with two large components.

Dynamical characterization: bifurcating states

If $U_{0}<U_{*}$, where $\left(U_{*}, 0\right)$ is the center point, then the smaller components flip. This can be characterized with two period functions
$T_{+}\left(U_{0}, V_{0}\right):=\int_{U_{0}}^{U_{+}} \frac{d u}{\sqrt{E_{0}+u^{2}-u^{4}}}, \quad T_{-}\left(U_{0}, V_{0}\right):=\int_{U_{-}}^{U_{0}} \frac{d u}{\sqrt{E_{0}+u^{2}-u^{4}}}$,
where the turning points $U_{ \pm}$solves $E_{0}+U_{ \pm}^{2}-U_{ \pm}^{4}=0$ and $\left(U_{0}, V_{0}\right)$ determines the energy level $E_{0}=V_{0}^{2}-U_{0}^{2}+U_{0}^{4}$.

Summary

Dynamical construction of positive stationary states is based on:

- Periodic and homoclinic orbits on the phase plane connected together according to the Neumann-Kirchhoff boundary conditions;
- Parameterization is provided from the period function;
- Characterization of the Morse index and local stability properties follow from analysis of the period function.

Summary

Dynamical construction of positive stationary states is based on:

- Periodic and homoclinic orbits on the phase plane connected together according to the Neumann-Kirchhoff boundary conditions;
- Parameterization is provided from the period function;
- Characterization of the Morse index and local stability properties follow from analysis of the period function.

Further problems:

- Extensions to general graphs in the limit of large mass;
- Understanding the global variational properties of the ground state.

Summary

Dynamical construction of positive stationary states is based on:

- Periodic and homoclinic orbits on the phase plane connected together according to the Neumann-Kirchhoff boundary conditions;
- Parameterization is provided from the period function;
- Characterization of the Morse index and local stability properties follow from analysis of the period function.

Further problems:

- Extensions to general graphs in the limit of large mass;
- Understanding the global variational properties of the ground state.

