Standing waves on quantum graphs: variational methods and the period function

Dmitry Pelinovsky,

Department of Mathematics, McMaster University http://dmpeli.math.mcmaster.ca

Collaborators:

Gregory Berkolaiko, Texas A & M University, USA <u>Adilbek Kairzhan</u>, University of Toronto, Canada <u>Robert Marangell</u>, University of Sydney, Australia Jeremy Marzuola, University of North Carolina, USA Diego Noja, Universitá di Milano Bicocca, Italy

QGraph 2020, Stockholm University, December 8-9, 2020

Background: Nonlinear Schrödinger equation

In many problems (BECs, photonics, optics), wave dynamics is modeled with the (focusing) nonlinear Schrödinger equation

$$iu_t = -u_{xx} + V(x)u - |u|^{2p}u,$$

where p > 0 is nonlinearity power, $V(x) : \mathbb{R} \mapsto \mathbb{R}$ is the trapping potential.

Single-well potentials such as $V_0(x) = -\operatorname{sech}^2(x)$.

Double-well potentials such as

$$V(x;s) = \frac{1}{2} \left(V_0(x-s) + V_0(x+s) \right), \quad s \ge 0.$$

Periodic potentials

$$V(x+L) = V(x), \quad L > 0,$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

such as $V(x) = \sin^2(x)$.

Nonlinear Schrödinger equation on metric graphs

A metric graph $\Gamma = \{E, V\}$ is given by a set of edges *E* and vertices *V*, with a metric structure on each edge.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Nonlinear Schrödinger equation on a graph Γ :

$$i\Psi_t = -\Delta \Psi - |\Psi|^{2p} \Psi, \quad x \in \Gamma,$$

where Δ is the graph Laplacian and $\Psi(t, x)$ is defined componentwise on edges subject to Neumann–Kirchhoff boundary conditions at vertices:

$$\begin{cases} \Psi(v) \text{ is continuous} & \text{ for every } v \in V, \\ \sum_{e \sim v} \partial \Psi_e(v) = 0, & \text{ for every } v \in V, \end{cases}$$

where $e \sim v$ denotes all edges $e \in E$ adjacent to the vertex $v \in V$.

Example: a star graph

A star graph is the union of *N* half-lines connected at a single vertex. For N = 2, the graph is the line \mathbb{R} . For N = 3, the graph is a *Y*-junction.

Function spaces are defined componentwise:

$$L^{2}(\Gamma) = L^{2}(\mathbb{R}^{-}) \oplus \underbrace{L^{2}(\mathbb{R}^{+}) \oplus \cdots \oplus L^{2}(\mathbb{R}^{+})}_{(\text{N-1}) \text{ elements}},$$

subject to the Neumann-Kirchhoff conditions at a single vertex:

NLS on the metric graph Γ

The Cauchy problem for the NLS flow:

$$\begin{cases} i\Psi_t = -\Delta \Psi - |\Psi|^{2p}\Psi, \\ \Psi|_{t=0} = \Psi_0. \end{cases}$$

Lemma. The Cauchy problem is locally well-posed for either $\Psi_0 \in H^1_{\Gamma}$ or for $\Psi_0 \in H^2_{\Gamma}$. Moreover, the mass

$$Q(\Psi) = \|\Psi\|_{L^2(\Gamma)}^2$$

and the energy

$$E(\Psi) = \|\nabla\Psi\|_{L^{2}(\Gamma)}^{2} - \frac{1}{p+1} \|\Psi\|_{L^{2p+2}(\Gamma)}^{2p+2},$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

are constants in time for $\Psi \in C(\mathbb{R}, H^1_{\Gamma})$.

Ground state

Ground state is a standing wave of smallest energy *E* at fixed mass *Q*,

$$\mathcal{E}_{\mu} = \inf \{ E(u) : u \in H^1_{\Gamma}, Q(u) = \mu \}.$$

All standing waves satisfy the Euler-Lagrange equation:

$$-\Delta\Phi - |\Phi|^{2p}\Phi = \omega\Phi,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the Lagrange multiplier ω defines $\Psi(t, x) = \Phi(x)e^{-i\omega t}$.

Ground state

Ground state is a standing wave of smallest energy E at fixed mass Q,

$$\mathcal{E}_{\mu} = \inf \{ E(u) : u \in H^1_{\Gamma}, Q(u) = \mu \}.$$

All standing waves satisfy the Euler–Lagrange equation:

$$-\Delta\Phi - |\Phi|^{2p}\Phi = \omega\Phi,$$

where the Lagrange multiplier ω defines $\Psi(t, x) = \Phi(x)e^{-i\omega t}$.

For $p \in (0, 2)$, infimum \mathcal{E}_{μ} exists for every $\mu > 0$ thanks to Gagliardo–Nirenberg inequality:

$$\|\Psi\|_{L^{2p+2}(\Gamma)}^{2p+2} \le C_{\Gamma,p} \|\nabla\Psi\|_{L^{2}(\Gamma)}^{p} \|\Psi\|_{L^{2}(\Gamma)}^{p+2},$$

where $C_{\Gamma,p} > 0$ depends on Γ and p only.

Theorem. (Adami–Serra–Tilli, 2015) If Γ is unbounded and contains at least one half-line, then for $p \in (0, 2)$,

$$\min_{u \in H^1(\mathbb{R}^+)} E(u; \mathbb{R}^+) \le \mathcal{E}_{\mu} \le \min_{u \in H^1(\mathbb{R})} E(u; \mathbb{R}) \quad \text{for fixed } \mu,$$

Infimum may not be attained by any of the standing waves Φ , Ξ , Ξ , $\Theta \in \mathbb{R}^{2}$

Ground state in the subcritical case $p \in (0, 2)$

Theorem. (Adami–Serra–Tilli, 2016) If Γ consists of only one half-line, then

 $\mathcal{E}_{\mu} < \min_{u \in H^1(\mathbb{R})} E(u; \mathbb{R})$

and the infimum is attained for every $\mu > 0$.

Ground state in the subcritical case $p \in (0, 2)$

Theorem. (Adami–Serra–Tilli, 2016) If Γ consists of only one half-line, then

 $\mathcal{E}_{\mu} < \min_{u \in H^1(\mathbb{R})} E(u; \mathbb{R})$

and the infimum is attained for every $\mu > 0$.

If Γ consists of more than two half-lines and is *connective to infinity*, then

$$\mathcal{E}_{\mu} = \min_{u \in H^1(\mathbb{R})} E(u; \mathbb{R})$$

and the infimum is not attained because a minimizing sequence escapes to infinity along an unbounded edge.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Ground state in the critical case p = 2

Recall the fixed mass

$$Q(\Psi) = \|\Psi\|_{L^2(\Gamma)}^2 = \mu$$

and the energy

$$E(\Psi) = \|\nabla\Psi\|_{L^{2}(\Gamma)}^{2} - \|\Psi\|_{L^{6}(\Gamma)}^{6}$$

Gagliardo-Nirenberg inequality is now

$$\|\Psi\|_{L^{6}(\Gamma)}^{6} \leq C_{\Gamma} \|\nabla\Psi\|_{L^{2}(\Gamma)}^{2} \|\Psi\|_{L^{2}(\Gamma)}^{4} = C_{\Gamma} \mu^{2} \|\nabla\Psi\|_{L^{2}(\Gamma)}^{2}$$

Theorem. (Adami–Serra–Tilli, 2017) If Γ consists of only one half-line, then the ground state is attained if and only if $\mu \in (\mu_{\mathbb{R}^+}, \mu_{\mathbb{R}}]$, where $\mu_{\mathbb{R}}$ is the fixed mass of the NLS soliton and $\mu_{\mathbb{R}^+}$ is the fixed mass of the half-soliton. Moreover,

$$\mathcal{E}_{\mu} = \left\{egin{array}{ll} 0, & \mu \in [0, \mu_{\mathbb{R}^+}], \ < 0, & \mu \in (\mu_{\mathbb{R}^+}, \mu_{\mathbb{R}}], \ -\infty, & \mu \in (\mu_{\mathbb{R}}, \infty). \end{array}
ight.$$

Uniqueness is proven for almost all μ (Dovetta-Serra-Tilli, 2020).

Main goal

Recall the standing wave solutions $\Psi(t, x) = \Phi(x)e^{-i\omega t}$ with

$$-\Delta\Phi - 3|\Phi|^4\Phi = \omega\Phi.$$

Main question: What is the range of frequencies ω for the ground states? For the tadpole graph, the answer is suggested by the following figure:

イロト 人間 とくほ とくほ とう

-

New variational formulation

We explore the following constrained minimization problem:

$$\mathcal{B}(\omega) = \inf_{u \in H^1_\Gamma} \left\{ B_\omega(u) : \quad \|u\|_{L^6(\Gamma)} = 1
ight\}, \quad \omega < 0,$$

where

$$B_{\omega}(u) := \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2}.$$

It generates the same Euler-Lagrange equation

$$-\Delta\Phi - 3|\Phi|^4\Phi = \omega\Phi$$

after the Lagrange multiplier is scaled out by a simple transformation.

Theorem (Noja–Pelinovsky, Calc Var PDE, 2020)

For every $\omega < 0$, there exists a global minimizer $\Psi(\cdot, \omega) \in H^1_{\Gamma}$ which yields a strong solution $\Phi(\cdot, \omega) \in H^2_{\Gamma}$ to the stationary NLS equation. The standing wave Φ is real up to the phase rotation, positive up to the sign choice, symmetric on [-L, L] and monotonically decreasing on [0, L] and $[0, \infty)$.

•
$$B_{\omega}(u) = \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2}$$
 is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•
$$B_{\omega}(u) = \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2}$$
 is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.

•
$$B_{\omega}(u) = \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2}$$
 is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.

• A minimizing sequence $\{u_n\}_n$ in $H^1(\Gamma)$ satisfying the constraint $||u_n||_{L^6} = 1$ such that $B_{\omega}(u_n) \to \mathcal{B}(\omega)$ has a weak limit u_* . By Fatou's lemma, $0 \le ||u_*||_{L^6} \le \lim_{n \to \infty} ||u_n||_{L^6} = 1$. Let $\gamma := ||u_*||_{L^6}$.

•
$$B_{\omega}(u) = \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2}$$
 is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.

• A minimizing sequence $\{u_n\}_n$ in $H^1(\Gamma)$ satisfying the constraint $\|u_n\|_{L^6} = 1$ such that $B_{\omega}(u_n) \to \mathcal{B}(\omega)$ has a weak limit u_* . By Fatou's lemma, $0 \le \|u_*\|_{L^6} \le \lim_{n \to \infty} \|u_n\|_{L^6} = 1$. Let $\gamma := \|u_*\|_{L^6}$.

• If $\gamma \in (0, 1)$, the minimizing sequence splits. This can be ruled out.

•
$$B_{\omega}(u) = \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2}$$
 is equivalent to $\|u\|_{H^{1}(\Gamma)}^{2}$.

- A minimizing sequence $\{u_n\}_n$ in $H^1(\Gamma)$ satisfying the constraint $\|u_n\|_{L^6} = 1$ such that $B_{\omega}(u_n) \to \mathcal{B}(\omega)$ has a weak limit u_* . By Fatou's lemma, $0 \le \|u_*\|_{L^6} \le \lim_{n \to \infty} \|u_n\|_{L^6} = 1$. Let $\gamma := \|u_*\|_{L^6}$.
- If $\gamma \in (0, 1)$, the minimizing sequence splits. This can be ruled out.
- If $\gamma = 0$, the minimizing sequence vanishes. It would mean that $\mathcal{B}(\omega) = \min_{u \in H^1(\mathbb{R})} B_{\omega}(u; \mathbb{R})$. This is ruled out by an example of $u_0 \in H^1_{\Gamma}$ such that $||u_0||_{L^6} = 1$ and $B_{\omega}(u_0) < \min_{u \in H^1(\mathbb{R})} B_{\omega}(u; \mathbb{R})$.

$$\blacktriangleright B_{\omega}(u) = \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2} \text{ is equivalent to } \|u\|_{H^{1}(\Gamma)}^{2}.$$

- A minimizing sequence $\{u_n\}_n$ in $H^1(\Gamma)$ satisfying the constraint $||u_n||_{L^6} = 1$ such that $B_{\omega}(u_n) \to \mathcal{B}(\omega)$ has a weak limit u_* . By Fatou's lemma, $0 \le ||u_*||_{L^6} \le \lim_{n \to \infty} ||u_n||_{L^6} = 1$. Let $\gamma := ||u_*||_{L^6}$.
- If $\gamma \in (0, 1)$, the minimizing sequence splits. This can be ruled out.
- If $\gamma = 0$, the minimizing sequence vanishes. It would mean that $\mathcal{B}(\omega) = \min_{u \in H^1(\mathbb{R})} B_{\omega}(u; \mathbb{R})$. This is ruled out by an example of $u_0 \in H^1_{\Gamma}$ such that $||u_0||_{L^6} = 1$ and $B_{\omega}(u_0) < \min_{u \in H^1(\mathbb{R})} B_{\omega}(u; \mathbb{R})$.

• Hence, $\gamma = 1$ and u_* is a strong limit of $\{u_n\}_n$ (minimizer).

$$\blacktriangleright B_{\omega}(u) = \|\nabla u\|_{L^{2}(\Gamma)}^{2} + |\omega| \|u\|_{L^{2}(\Gamma)}^{2} \text{ is equivalent to } \|u\|_{H^{1}(\Gamma)}^{2}.$$

- A minimizing sequence $\{u_n\}_n$ in $H^1(\Gamma)$ satisfying the constraint $\|u_n\|_{L^6} = 1$ such that $B_{\omega}(u_n) \to \mathcal{B}(\omega)$ has a weak limit u_* . By Fatou's lemma, $0 \le \|u_*\|_{L^6} \le \lim_{n \to \infty} \|u_n\|_{L^6} = 1$. Let $\gamma := \|u_*\|_{L^6}$.
- If $\gamma \in (0, 1)$, the minimizing sequence splits. This can be ruled out.
- If $\gamma = 0$, the minimizing sequence vanishes. It would mean that $\mathcal{B}(\omega) = \min_{u \in H^1(\mathbb{R})} B_{\omega}(u; \mathbb{R})$. This is ruled out by an example of $u_0 \in H^1_{\Gamma}$ such that $||u_0||_{L^6} = 1$ and $B_{\omega}(u_0) < \min_{u \in H^1(\mathbb{R})} B_{\omega}(u; \mathbb{R})$.

• Hence, $\gamma = 1$ and u_* is a strong limit of $\{u_n\}_n$ (minimizer).

Symmetry of u_* follows from the Polya–Szegö inequality on graphs.

The standing wave solutions $\Psi(t, x) = \Phi(x)e^{-i\omega t}$ with

$$-\Delta\Phi - 3|\Phi|^4\Phi = \omega\Phi.$$

Dynamical formulation

Consider the stationary NLS equation

$$-\Delta\Phi - 3|\Phi|^4\Phi = \omega\Phi$$

and split $\Phi = (u, v)$ on the tadpole graph.

Use the scaling transformation $\omega = -\varepsilon^4$ and

$$\begin{cases} u(x) = \varepsilon U(\varepsilon^2 x), & x \in [-L, L], \\ v(x) = \varepsilon V(\varepsilon^2 x), & x \in [0, \infty). \end{cases}$$

Then, we obtain the boundary-value problem:

$$\begin{cases} -U'' + U - 3U^5 = 0, & z \in (-L\varepsilon^2, L\varepsilon^2), \\ -V'' + V - 3V^5 = 0, & z \in (0, \infty), \\ U(L\varepsilon^2) = U(-L\varepsilon^2) = V(0), \\ U'(L\varepsilon^2) - U'(-L\varepsilon^2) = V'(0). \end{cases}$$

э.

Orbits of $-U'' + U - 3U^5 = 0$ are level curves of the energy function $E(U, U') = (U')^2 - U^2 + U^6.$

The solution in the tail $V \in H^2(0,\infty)$ is a part of the homoclinic orbit.

Figure: Representation of the solutions on the phase plane (U, U').

For the boundary-value problem,

$$\begin{cases} -U'' + U - 3U^5 = 0, & z \in (-L\varepsilon^2, L\varepsilon^2), \\ -V'' + V - 3V^5 = 0, & z \in (0, \infty), \\ U(L\varepsilon^2) = U(-L\varepsilon^2) = V(0), \\ U'(L\varepsilon^2) - U'(-L\varepsilon^2) = V'(0), \end{cases}$$

the solution in the tail is determined uniquely

$$V(z) = \varphi(z+a)$$
, where $\varphi(z) := \operatorname{sech}^{1/2}(2z)$ is the soliton,

- コン・4回シュービン・4回シューレー

up to the parameter $U_0 = V(0) = \varphi(a) \in (0, 1)$, equivalently, by a > 0.

For the boundary-value problem,

$$\left\{ \begin{array}{ll} -U'' + U - 3U^5 = 0, & z \in (-L\varepsilon^2, L\varepsilon^2), \\ -V'' + V - 3V^5 = 0, & z \in (0, \infty), \\ U(L\varepsilon^2) = U(-L\varepsilon^2) = V(0), \\ U'(L\varepsilon^2) - U'(-L\varepsilon^2) = V'(0), \end{array} \right.$$

the solution in the tail is determined uniquely

 $V(z) = \varphi(z+a)$, where $\varphi(z) := \operatorname{sech}^{1/2}(2z)$ is the soliton,

up to the parameter $U_0 = V(0) = \varphi(a) \in (0, 1)$, equivalently, by a > 0.

- V'(0) is determined uniquely from U_0 .
- ► This determines uniquely $U(L\varepsilon^2) = U_0$ and $U'(L\varepsilon^2) = \frac{1}{2}V'(0)$, hence the energy level E_0 .
- The existence problem then reduces to the study of the period function

$$L\varepsilon^{2} = T(U_{0}) := \int_{U_{0}}^{U_{+}} \frac{du}{\sqrt{E_{0} + u^{2} - u^{6}}},$$

where U_+ is the right turning point from $E_0 + U_+^2 - U_+^6 = 0$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Main result

Lemma (Noja–Pelinovsky, Calc Var PDE, 2020)

For every $U_0 \in (0, 1)$ there exists a unique value of $\varepsilon > 0$ for which there exists a unique solution $U \in C^2(0, L\varepsilon^2)$ to the boundary-value problem such that U is monotonically decreasing on $[0, L\varepsilon^2]$. Moreover, the map $(0, 1) \ni U_0 \mapsto \varepsilon(U_0) \in (0, \infty)$ is C^1 , onto, and monotonically decreasing.

From the period function

$$L\varepsilon^2 = T(U_0) := \int_{U_0}^{U_+} \frac{du}{\sqrt{E_0 + u^2 - u^6}},$$

we only need to prove that $T'(U_0) < 0$, where U_+ and E_0 depend on U_0 .

Main tool : potential function on the plane

If W(u, v) is a C^1 function in an open region of \mathbb{R}^2 , then the differential of W is defined by

$$dW(u,v) = \frac{\partial W}{\partial u}du + \frac{\partial W}{\partial v}dv$$

and the line integral of dW(u, v) along any C^1 contour γ connecting two points (u_0, v_0) and (u_1, v_1) does not depend on γ and is evaluated as

$$\int_{\gamma} dW(u, v) = W(u_1, v_1) - W(u_0, v_0).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The period function can be expressed as

$$T(U_0) := \int_{U_0}^{U_+} \frac{du}{v}, \quad v := \sqrt{E_0 + u^2 - u^6}.$$

so that with $A(u) = u^2 - u^6$,

$$[E_0 + A(u_*)]T(U_0) = \int_{U_0}^{U_+} v du - \int_{U_0}^{U_+} \frac{A(u) - A(u_*)}{v} du,$$

where $u_* = \max_{u \in [0,1]} A(u)$ and $E_0 + A(u_*) > 0$.

Using

$$d\left(\frac{2v[A(u) - A(u_*)]}{A'(u)}\right) = 2\left[1 - \frac{A''(u)[A(u) - A(U_*)]}{[A'(u)]^2}\right]vdu + \frac{2[A(u) - A(u_*)]}{A'(u)}dv$$

we eliminate the singular term in $T(U_0)$:

$$\frac{2[A(u) - A(u_*)]}{A'(u)}dv = \frac{A(u) - A(u_*)}{v}du.$$

Characterization of the ground state

The ground state $\Psi(\cdot, \omega) \in H^1_{\Gamma}$ of the stationary NLS equation

$$-\Delta\Phi - 3|\Phi|^4\Phi = \omega\Phi$$

is represented dynamically as a family of orbits with parameter $U_0 \in (0, 1)$ such that $(0, 1) \ni U_0 \mapsto \omega = -\varepsilon^4 \in (-\infty, 0)$ is one-to-one and onto.

Consider the linearized operator

$$\mathcal{L} = -\Delta - 15\Phi^4 - \omega.$$

Then,

$$\langle \mathcal{L}\Psi,\Psi\rangle_{L^2(\Gamma)}=-12\|\Psi\|_{L^6(\Gamma)}^6<0,$$

hence \mathcal{L} has exactly one simple negative eigenvalue. (Morse index $n(\mathcal{L}) = 1$.) Moreover, Ker $(\mathcal{L}) = \{0\}$ follows from the same dynamical representation.

It remains to consider the mass $\mu(\omega) = \|\Psi(\cdot, \omega)\|_{L^2(\Gamma)}^2$ relatively to $\mu_{\mathbb{R}_+}, \mu_{\mathbb{R}}$.

Theorem (Noja–Pelinovsky, Calc Var PDE, 2020) The mapping $\omega \mapsto \mu(\omega) = Q(\Phi(\cdot, \omega))$ is C^1 for every $\omega < 0$ and satisfies $\mu'(\omega) > 0$ for $\omega \in (-\infty, \omega_1)$ and $\mu'(\omega) < 0$ for $\omega \in (\omega_1, 0)$

and

 $\mu(\omega)\notin (\mu_{\mathbb{R}^+},\mu_{\mathbb{R}}] \ \text{ for } \ \omega\in (-\infty,\omega_0) \quad \text{and} \quad \mu(\omega)\in (\mu_{\mathbb{R}^+},\mu_{\mathbb{R}}] \ \text{ for } \ \omega\in [\omega_0,0).$

Extension: flower graph with N loops

Theorem (Kairzhan–Marangell–Pelinovsky–Xiao, JDE, 2021) For every $\omega < 0$, there exists only one positive symmetric state $\Phi \in H^2_{\Gamma}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

which satisfies the stationary NLS equation (cubic case). Moreover,

Extension: flower graph with N loops

Theorem (Kairzhan–Marangell–Pelinovsky–Xiao, JDE, 2021)

For every $\omega < 0$, there exists only one positive symmetric state $\Phi \in H^2_{\Gamma}$ which satisfies the stationary NLS equation (cubic case). Moreover,

The map $(-\infty, 0) \ni \omega \mapsto \Phi(\cdot, \omega) \in H^2_{\Gamma}$ is C^1 and the map $(-\infty, 0) \ni \omega \mapsto \mu(\omega) \in (0, \infty)$ is one-to-one, onto, and decreasing.

Extension: flower graph with N loops

Theorem (Kairzhan-Marangell-Pelinovsky-Xiao, JDE, 2021)

For every $\omega < 0$, there exists only one positive symmetric state $\Phi \in H^2_{\Gamma}$ which satisfies the stationary NLS equation (cubic case). Moreover,

- The map $(-\infty, 0) \ni \omega \mapsto \Phi(\cdot, \omega) \in H^2_{\Gamma}$ is C^1 and the map $(-\infty, 0) \ni \omega \mapsto \mu(\omega) \in (0, \infty)$ is one-to-one, onto, and decreasing.
- ► There exists $\omega_* \in (-\infty, 0)$ such that dimKer $(\mathcal{L}) = N 1$ for $\omega = \omega_*$. Morse index $n(\mathcal{L}) = N$ for $\omega \in (-\infty, \omega_*)$; $n(\mathcal{L}) = 1$ for $\omega \in [\omega_*, 0)$.

Figure: The bifurcation diagram of positive states on the parameter plane (ω, μ) for N = 2 (left) and N = 3 (right).

- Blue line is the positive symmetric state Φ .
- Red line is the positive state with one component having larger amplitude than the other components.
- ► Green line (for N = 3) is the positive state with two components having larger amplitudes than the third one.

Dynamical characterization: symmetric state

Recall the period function

$$L\varepsilon = T(U_0) := \int_{U_0}^{U_+} \frac{du}{\sqrt{E_0 + u^2 - u^4}},$$

Figure: Geometric construction of the positive symmetric state on the phase plane.

▲□▶▲□▶▲□▶▲□▶ ■ のへの

Dynamical characterization: bifurcating states

If $U_0 > U_*$, where $(U_*, 0)$ is the center point, the symmetric state splits into bifurcating states. Here N = 3 and the left figure corresponds to the state with one large component and the right figure corresponds to the state with two large components.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● ● ● ●

Dynamical characterization: bifurcating states

If $U_0 < U_*$, where $(U_*, 0)$ is the center point, then the smaller components flip. This can be characterized with two period functions

$$T_+(U_0,V_0) := \int_{U_0}^{U_+} \frac{du}{\sqrt{E_0 + u^2 - u^4}}, \quad T_-(U_0,V_0) := \int_{U_-}^{U_0} \frac{du}{\sqrt{E_0 + u^2 - u^4}},$$

where the turning points U_{\pm} solves $E_0 + U_{\pm}^2 - U_{\pm}^4 = 0$ and (U_0, V_0) determines the energy level $E_0 = V_0^2 - U_0^2 + U_0^4$.

Summary

Dynamical construction of positive stationary states is based on:

Periodic and homoclinic orbits on the phase plane connected together according to the Neumann-Kirchhoff boundary conditions;

- Parameterization is provided from the period function;
- Characterization of the Morse index and local stability properties follow from analysis of the period function.

Summary

Dynamical construction of positive stationary states is based on:

- Periodic and homoclinic orbits on the phase plane connected together according to the Neumann-Kirchhoff boundary conditions;
- Parameterization is provided from the period function;
- Characterization of the Morse index and local stability properties follow from analysis of the period function.

Further problems:

- Extensions to general graphs in the limit of large mass;
- Understanding the global variational properties of the ground state.

Summary

Dynamical construction of positive stationary states is based on:

- Periodic and homoclinic orbits on the phase plane connected together according to the Neumann-Kirchhoff boundary conditions;
- Parameterization is provided from the period function;
- Characterization of the Morse index and local stability properties follow from analysis of the period function.

Further problems:

- Extensions to general graphs in the limit of large mass;
- Understanding the global variational properties of the ground state.

Thank you! Questions ???