Variational characterization of periodic waves in the fractional KdV equation

Dmitry E Pelinovsky
Joint work with Uyen Le (McMaster) and Fábio Natali (Maringá)

Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$
u_{t}+2 u u_{x}=(-\Delta)^{\alpha / 2} u_{x}
$$

where the fractional Laplacian $(-\Delta)^{\alpha / 2}$ is defined by

$$
\left(-\widehat{\Delta)^{\alpha / 2}} u(\xi)=|\xi|^{\alpha} \hat{u}(\xi), \quad \xi \in \mathbb{R}\right.
$$

Integrable cases: Benjamin-Ono equation ($\alpha=1$) and KdV equation $(\alpha=2)$.

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$
u_{t}+2 u u_{x}=(-\Delta)^{\alpha / 2} u_{x}
$$

where the fractional Laplacian $(-\Delta)^{\alpha / 2}$ is defined by

$$
\left(\widehat{-\Delta)^{\alpha / 2}} u(\xi)=|\xi|^{\alpha} \hat{u}(\xi), \quad \xi \in \mathbb{R}\right.
$$

Integrable cases: Benjamin-Ono equation ($\alpha=1$) and KdV equation $(\alpha=2)$.

Here we consider 2π-periodic solutions on $\mathbb{T}:=[-\pi, \pi]$, so that $\xi \in \mathbb{Z}$.
(1) New variational formulation for travelling periodic waves.
(2) Positivity of periodic travelling wave profiles.
(Convergence of Petviashvili's method for fixed-point iterations

Background

- Well-posedness in Sobolev spaces:
- F. Linares, D. Pilod, J.C. Saut (2014)
- L. Molinet, D. Pilod, S. Vento (2018)
- Existence and modulation stability of periodic waves by using
- pertubative methods for $\alpha>\frac{1}{2}$ in M. Johnson (2013),
- variational methods for $\alpha>\frac{1}{3}$ in V.Hur, M. Johnson (2015)
- fixed-point methods in H. Chen (2004) and H. Chen, J. Bona (2013)
- Existence and stability of solitary waves in J. Angulo (2018):
- stable for $\frac{1}{2}<\alpha \leq 2$
- unstable for $\frac{1}{3}<\alpha<\frac{1}{2}$
- Convergence of Petviashvili's method near periodic waves in
- J. Alvarez, A. Duran (2017)
- D. Clamond, D. Dutykh (2018)

Particular family of travelling periodic waves

The periodic travelling wave solution takes the form

$$
u(x, t)=\psi(x-c t)
$$

Integrating the equation with zero constant yields the boundary value problem

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2}, \quad \psi \in H_{p e r}^{\alpha} .
$$

Advantage: If $c+(-\Delta)^{\alpha / 2}$ is positive, this can be used for fixed-point iterations.

Particular family of travelling periodic waves

The periodic travelling wave solution takes the form

$$
u(x, t)=\psi(x-c t)
$$

Integrating the equation with zero constant yields the boundary value problem

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2}, \quad \psi \in H_{p e r}^{\alpha} .
$$

Advantage: If $c+(-\Delta)^{\alpha / 2}$ is positive, this can be used for fixed-point iterations.

With the transformation

$$
\psi(x)=c+\phi(x)
$$

the same boundary-value problem can be written as

$$
\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha} .
$$

Advantage: if $c-(-\Delta)^{\alpha / 2}$ vanishes, this can be used for local bifurcation theory.

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$
\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha},
$$

with the spectrum $\sigma\left(c-(-\Delta)^{\alpha / 2}\right)=\left\{c, c-1, c-2^{\alpha}, \ldots\right\}$ and Fourier modes $\left\{1, e^{ \pm i x}, e^{ \pm 2 i x}, \ldots\right\}$.

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$
\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha},
$$

with the spectrum $\sigma\left(c-(-\Delta)^{\alpha / 2}\right)=\left\{c, c-1, c-2^{\alpha}, \ldots\right\}$ and Fourier modes $\left\{1, e^{ \pm i x}, e^{ \pm 2 i x}, \ldots\right\}$.
Theorem. For every $\alpha>\frac{1}{2}$, there exists a locally unique, even, single-lobe solution $\phi \in H_{p e r}^{\alpha}$ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$
\begin{aligned}
& \phi=a \cos (x)+a^{2} \phi_{2}(x)+a^{3} \phi_{3}(x)+\mathcal{O}\left(a^{4}\right), \\
& c=1+c_{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
\end{aligned}
$$

with

$$
\phi_{2}(x)=-\frac{1}{2}+\frac{1}{2\left(2^{\alpha}-1\right)} \cos (2 x) \text { and } c_{2}=1-\frac{1}{2\left(2^{\alpha}-1\right)} .
$$

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$
\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha},
$$

with the spectrum $\sigma\left(c-(-\Delta)^{\alpha / 2}\right)=\left\{c, c-1, c-2^{\alpha}, \ldots\right\}$ and Fourier modes $\left\{1, e^{ \pm i x}, e^{ \pm 2 i x}, \ldots\right\}$.
Theorem. For every $\alpha>\frac{1}{2}$, there exists a locally unique, even, single-lobe solution $\phi \in H_{p e r}^{\alpha}$ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$
\begin{aligned}
& \phi=a \cos (x)+a^{2} \phi_{2}(x)+a^{3} \phi_{3}(x)+\mathcal{O}\left(a^{4}\right), \\
& c=1+c_{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
\end{aligned}
$$

with

$$
\phi_{2}(x)=-\frac{1}{2}+\frac{1}{2\left(2^{\alpha}-1\right)} \cos (2 x) \text { and } c_{2}=1-\frac{1}{2\left(2^{\alpha}-1\right)} .
$$

Threshold behavior: $c_{2}>0$ for $\alpha>\alpha_{0}$ and $c_{2}<0$ for $\alpha<\alpha_{0}$,

$$
\text { where } \alpha_{0}=\frac{\log 3}{\log 2}-1 \approx 0.585
$$

Stationary equation for travelling periodic waves

Periodic travelling wave $u(x, t)=\psi(x-c t)$ satisfies the stationary equation:

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0,
$$

where b is an integration constant.

Stationary equation for travelling periodic waves

Periodic travelling wave $u(x, t)=\psi(x-c t)$ satisfies the stationary equation:

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0
$$

where b is an integration constant.
The stationary equation is the Euler-Lagrange equation for the action $G(u)=E(u)+c F(u)+b M(u)$, where

$$
E(u)=\frac{1}{2} \oint\left((-\Delta)^{\alpha / 4} u\right)^{2}-\frac{1}{3} \oint u^{3} d x, \quad F(u)=\frac{1}{2} \oint u^{2} d x, \quad M(u)=\oint u d x .
$$

Standard variational method: to find minimizers of energy $E(u)$ subject to the fixed momentum $F(u)$ and mass $M(u)$.

Drawbacks of the standard variational method

Due to Galilean transformation $\psi(x)=a+\varphi(x)$ with $a:=\frac{1}{2}\left(c-\sqrt{c^{2}+4 b}\right)$, ψ solves $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ if and only if φ solves

$$
\left(\omega+(-\Delta)^{\alpha / 2}\right) \varphi-\varphi^{2}=0, \quad \omega:=\sqrt{c^{2}+4 b} .
$$

φ is a minimizer of energy $E(u)$ at fixed momentum $F(u)=\mu$.

Drawbacks of the standard variational method

Due to Galilean transformation $\psi(x)=a+\varphi(x)$ with $a:=\frac{1}{2}\left(c-\sqrt{c^{2}+4 b}\right)$, ψ solves $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ if and only if φ solves

$$
\left(\omega+(-\Delta)^{\alpha / 2}\right) \varphi-\varphi^{2}=0, \quad \omega:=\sqrt{c^{2}+4 b} .
$$

φ is a minimizer of energy $E(u)$ at fixed momentum $F(u)=\mu$.

$$
\alpha=1:
$$

Drawbacks of the standard variational method

Due to Galilean transformation $\psi(x)=a+\varphi(x)$ with $a:=\frac{1}{2}\left(c-\sqrt{c^{2}+4 b}\right)$, ψ solves $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ if and only if φ solves

$$
\left(\omega+(-\Delta)^{\alpha / 2}\right) \varphi-\varphi^{2}=0, \quad \omega:=\sqrt{c^{2}+4 b} .
$$

φ is a minimizer of energy $E(u)$ at fixed momentum $F(u)=\mu$.

$$
\alpha=0.6:
$$

Drawbacks of the standard variational method

Due to Galilean transformation $\psi(x)=a+\varphi(x)$ with $a:=\frac{1}{2}\left(c-\sqrt{c^{2}+4 b}\right)$, ψ solves $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ if and only if φ solves

$$
\left(\omega+(-\Delta)^{\alpha / 2}\right) \varphi-\varphi^{2}=0, \quad \omega:=\sqrt{c^{2}+4 b} .
$$

φ is a minimizer of energy $E(u)$ at fixed momentum $F(u)=\mu$.

$$
\alpha=0.5:
$$

New variational formulation

Find minimizers of the quadratic energy

$$
\mathcal{B}_{c}(u):=\frac{1}{2} \oint\left[\left((-\Delta)^{\alpha / 4} u\right)^{2}+c u^{2}\right] d x
$$

subject to fixed cubic energy and zero-mean constraint:

$$
Y:=\left\{u \in H_{\text {per }}^{\frac{\alpha}{2}}: \quad \oint u^{3} d x=1, \quad \oint u d x=0\right\} .
$$

Theorem (Natali-Le-P., Nonlinearity 33 (2020), 1956)

There exists a constrained minimizer $u_{*} \in Y$ for every $\alpha>\frac{1}{3}$ and every $c>-1$.

Minimizer u_{*} yields the periodic wave $\psi \in H_{\mathrm{p}}^{\frac{\alpha}{2}}$ of the stationary equation

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b(c)=0, \quad b(c)=\frac{1}{2 \pi} \oint \psi^{2} d x=\frac{1}{\pi} F(\psi) .
$$

Advantages of the new variational method

No fold point appears for $\alpha<\alpha_{0}$:

$$
c=-1+\frac{1}{2\left(2^{\alpha}-1\right)} a^{2}+\mathcal{O}\left(a^{4}\right), \quad b(c)=\frac{1}{2} a^{2}+\mathcal{O}\left(a^{4}\right)
$$

Advantages of the new variational method

No fold point appears for $\alpha<\alpha_{0}$:

$$
c=-1+\frac{1}{2\left(2^{\alpha}-1\right)} a^{2}+\mathcal{O}\left(a^{4}\right), \quad b(c)=\frac{1}{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
$$

$b(c)$ versus c for $\alpha=1$:

Advantages of the new variational method

No fold point appears for $\alpha<\alpha_{0}$:

$$
c=-1+\frac{1}{2\left(2^{\alpha}-1\right)} a^{2}+\mathcal{O}\left(a^{4}\right), \quad b(c)=\frac{1}{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
$$

$b(c)$ versus c for $\alpha=0.6$:

Advantages of the new variational method

No fold point appears for $\alpha<\alpha_{0}$:

$$
c=-1+\frac{1}{2\left(2^{\alpha}-1\right)} a^{2}+\mathcal{O}\left(a^{4}\right), \quad b(c)=\frac{1}{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
$$

$b(c)$ versus c for $\alpha=0.5$:

Stability theory

Stability of the periodic wave satisfying $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ is determined by the linearized operator $\mathcal{L}: H_{\text {per }}^{\alpha} \subset L_{\text {per }}^{2} \mapsto L_{\text {per }}^{2}$ given by

$$
\mathcal{L}=(-\Delta)^{\alpha / 2}+c-2 \psi .
$$

$n(\mathcal{L})=$ number of negative eigenvalues, $z(\mathcal{L})=$ multiplicity of zero eigenvalue.

Stability theory

Stability of the periodic wave satisfying $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ is determined by the linearized operator $\mathcal{L}: H_{\text {per }}^{\alpha} \subset L_{\text {per }}^{2} \mapsto L_{\text {per }}^{2}$ given by

$$
\mathcal{L}=(-\Delta)^{\alpha / 2}+c-2 \psi .
$$

$n(\mathcal{L})=$ number of negative eigenvalues, $z(\mathcal{L})=$ multiplicity of zero eigenvalue.
The self-adjoint operator enjoys Sturm's oscillation theory.

Lemma (Hur-Johnson, 2015)

Assume $\alpha \in\left(\frac{1}{3}, 2\right]$ and that $\psi \in H_{\text {per }}^{\alpha}$ admits only one maximum on \mathbb{T}. An eigenfunction of \mathcal{L} for the n-th eigenvalue changes its sign at most $2(n-1)$ times.

This property and the variational formulation implies that

$$
1 \leq n(\mathcal{L}) \leq 2, \quad 1 \leq z(\mathcal{L}) \leq 2
$$

Stability theory

Stability of the periodic wave satisfying $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ is determined by the linearized operator $\mathcal{L}: H_{\text {per }}^{\alpha} \subset L_{\text {per }}^{2} \mapsto L_{\text {per }}^{2}$ given by

$$
\mathcal{L}=(-\Delta)^{\alpha / 2}+c-2 \psi .
$$

$n(\mathcal{L})=$ number of negative eigenvalues, $z(\mathcal{L})=$ multiplicity of zero eigenvalue.
The kernel of \mathcal{L} can be characterized from the following criterion.

Lemma (Hur-Johnson, 2015)

Assume $\alpha \in\left(\frac{1}{3}, 2\right]$ and that $\psi \in H_{\text {per }}^{\alpha}$ admits only one maximum on \mathbb{T}. $\operatorname{Ker}(\mathcal{L})=\operatorname{span}\left(\partial_{x} \psi\right)$ if and only if $\left\{1, \psi, \psi^{2}\right\} \in \operatorname{Range}(\mathcal{L})$.

If ψ is C^{1} with respect to (c, b), then

$$
\mathcal{L} \partial_{b} \psi=-1, \quad \mathcal{L} \partial_{c} \psi=-\psi, \quad \mathcal{L} \psi=-\psi^{2}-b,
$$

so that $z(\mathcal{L})=1$. However, ψ is not C^{1} at the fold bifurcation!

Stability theory

Stability of the periodic wave satisfying $\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0$ is determined by the linearized operator $\mathcal{L}: H_{\text {per }}^{\alpha} \subset L_{\text {per }}^{2} \mapsto L_{\text {per }}^{2}$ given by

$$
\mathcal{L}=(-\Delta)^{\alpha / 2}+c-2 \psi .
$$

$n(\mathcal{L})=$ number of negative eigenvalues, $z(\mathcal{L})=$ multiplicity of zero eigenvalue.

Theorem (Haragus-Kapitula, 2008)

The periodic wave with profile $\psi \in H_{\mathrm{per}}^{\alpha}$ is stable in the time evolution of the KdV equation if

$$
n\left(\left.\mathcal{L}\right|_{\{1, \psi\}^{\perp}}\right)=0, \quad z\left(\left.\mathcal{L}\right|_{\{1, \psi\}^{\perp}}\right)=1
$$

and unstable if

$$
n\left(\left.\mathcal{L}\right|_{\{1, \psi\}^{\perp}}\right)=1 .
$$

It is dificult to compute $n\left(\left.\mathcal{L}\right|_{\{1, \psi\}^{\perp}}\right)$ and $z\left(\left.\mathcal{L}\right|_{\{1, \psi\}^{\perp}}\right)$ if $n(\mathcal{L})=2$ or $z(\mathcal{L})=2$.

New approach in the stability theory

Assume that the minimizer of

$$
\mathcal{B}_{c}(u):=\frac{1}{2} \oint\left[\left((-\Delta)^{\alpha / 4} u\right)^{2}+c u^{2}\right] d x
$$

subject to $\oint u^{3} d x=1$ an $\oint u d x=0$ is non-degenerate.

New approach in the stability theory

Assume that the minimizer of

$$
\mathcal{B}_{c}(u):=\frac{1}{2} \oint\left[\left((-\Delta)^{\alpha / 4} u\right)^{2}+c u^{2}\right] d x
$$

subject to $\oint u^{3} d x=1$ an $\oint u d x=0$ is non-degenerate.
$\operatorname{Ker}\left(\left.\mathcal{L}\right|_{\left\{1, \psi^{2}\right\}^{\perp}}\right)=\operatorname{span}\left(\partial_{x} \psi\right)$ and the mapping $c \mapsto \psi \in H_{\text {per }}^{\alpha}$ is C^{1} in c so that

$$
\mathcal{L} 1=-2 \psi+c, \quad \mathcal{L} \psi=-\psi^{2}-b(c), \quad \mathcal{L} \partial_{c} \psi=-\psi-b^{\prime}(c) .
$$

and

$$
n(\mathcal{L})=\left\{\begin{array}{ll}
1, & c+2 b^{\prime}(c) \geq 0, \\
2, & c+2 b^{\prime}(c)<0,
\end{array} \quad z(\mathcal{L})= \begin{cases}1, & c+2 b^{\prime}(c) \neq 0, \\
2, & c+2 b^{\prime}(c)=0,\end{cases}\right.
$$

New approach in the stability theory

Assume that the minimizer of

$$
\mathcal{B}_{c}(u):=\frac{1}{2} \oint\left[\left((-\Delta)^{\alpha / 4} u\right)^{2}+c u^{2}\right] d x
$$

subject to $\oint u^{3} d x=1$ an $\oint u d x=0$ is non-degenerate.

Theorem (Natali-Le-P, 2020)

The periodic wave $\psi \in H_{\mathrm{per}}^{\alpha}$ is stable if $b^{\prime}(c)>0$ and unstable if $b^{\prime}(c)<0$.

Comparison between standard and new methods

$\|\psi\|_{L^{2}}^{2}$ versus either ω (left) or c (right) for $\alpha=0.6$:

The family of periodic waves is stable.

Comparison between standard and new methods

$\|\psi\|_{L^{2}}^{2}$ versus either ω (left) or c (right) for $\alpha=0.5$:

The family of periodic waves is stable.

Comparison between standard and new methods

$\|\psi\|_{L^{2}}^{2}$ versus c for $\alpha=0.45$:

For $\alpha<0.5$, there exists $c_{0}=c_{0}(\alpha)$ such that the family of periodic orbits is stable for $c \in\left(-1, c_{0}\right)$ and unstable for $c \in\left(c_{0}, \infty\right)$.

Positivity of periodic waves

Here we consider positivity of the profile $\psi \in H_{\mathrm{per}}^{\alpha}$ satisfying

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2}, \quad c>1, \quad b=0 .
$$

$\psi>0$ for every $c>1$ in the integrable cases:

- BO equation with $\alpha=1$:

$$
\psi(x)=\frac{\sinh \gamma}{\cosh \gamma-\cos x}, \quad c=\operatorname{coth} \gamma .
$$

- KdV equation $\alpha=2$:

$$
\psi(x)=\frac{2 K(k)^{2}}{\pi^{2}}\left[\sqrt{1-k^{2}+k^{4}}+1-2 k^{2}+3 k^{2} \mathrm{cn}^{2}\left(\frac{K(k)}{\pi} x ; k\right)\right]
$$

with $c=\frac{4 K(k)^{2}}{\pi^{2}} \sqrt{1-k^{2}+k^{4}}$.
Question: Is $\psi>0$ for every $c>1$ and every α ?

Main result

Theorem (Le-P, SIMA 51 (2019) 2850-2883)
 For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right], \psi(x)>0$ on \mathbb{T} as long as $z(\mathcal{L})=1$.

The assumption is only true for $\alpha>\alpha_{0} \approx 0.585$ because the fold bifurcation point with $z(\mathcal{L})=2$ exists for $\alpha<\alpha_{0}$.

Proof of positivity: Step 1

- Green's function for $c+(-\Delta)^{\alpha / 2}$ is obtained from the solution of

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \varphi(x)=h, \quad h \in L_{p e r}^{2},
$$

in the convolution form

$$
\varphi(x)=\int_{-\pi}^{\pi} G(x-s) h(s) d s
$$

or in Fourier form,

$$
G_{c, \alpha}(x)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} \frac{e^{i n x}}{c+|n|^{\alpha}} \Rightarrow\left\|G_{c, \alpha}\right\|_{L_{p e r}^{2}} \leq M_{c, \alpha}, \quad \alpha>\frac{1}{2}
$$

Lemma (Le-P, FCAA 24 (2021), 1507-1534)

If $\alpha \in(0,2]$ and $c \in(0, \infty)$, then there exists $m_{c, \alpha}>0$ such that $G_{c, \alpha}(x) \geq m_{c, \alpha}$ for every $x \in[-\pi, \pi]$.

Proof of positivity: Step 2

- Operator A in the positive cone

From the stationary equation

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2},
$$

we define the nonlinear operator

$$
A_{c, \alpha}(\psi):=\left(c+D^{\alpha}\right)^{-1} \psi^{2} \Rightarrow A_{c, \alpha}(\psi)(x)=\int_{-\pi}^{\pi} G_{c, \alpha}(x-s) \psi(s)^{2} d s
$$

and the positive cone in $L_{p e r}^{2}$

$$
P_{c, \alpha}:=\left\{\psi \in L_{p e r}^{2}: \quad \psi(x) \geq \frac{m_{c, \alpha}}{M_{c, \alpha}}\|\psi\|_{L_{p e r}^{2}}, \quad x \in \mathbb{T}\right\} .
$$

(1) $A_{c, \alpha}$ is bounded and continuous in $L_{p e r}^{2}$ (Young's inequality),
(1) $A_{c, \alpha}$ is compact as it is a limit of compact operators $A_{c, \alpha}^{(N)}$, where $A_{c, \alpha}^{(N)}$ are gives by $2 N+1$ Fourier partial sum.
(1) $A_{c, \alpha}(\psi)$ is closed in $P_{c, \alpha}: A_{c, \alpha}(\psi) \geq m_{c, \alpha}\|\psi\|_{L_{\text {per }}^{2}}^{2} \geq \frac{m_{c, \alpha}}{M_{c, \alpha}}\left\|A_{c, \alpha}(\psi)\right\|_{L_{p e r}^{2}}$.

Proof of positivity: Step 3

(D) Existence of fixed point in the cone

Let

$$
B_{r}:=\left\{\psi \in L_{\text {per }}^{2}: \quad\|\psi\|_{L_{\text {per }}^{2}}<r\right\}
$$

By Kranoselskii's fixed point theorem if there exists r_{-}and r_{+}such that

$$
\begin{array}{ll}
\left\|A_{c, \alpha}(\psi)\right\|_{L_{p e r}^{2}}<\|\psi\|_{L_{p e r}^{2}}, & \psi \in P_{c, \alpha} \cap \partial B_{r_{-}} \\
\left\|A_{c, \alpha}(\psi)\right\|_{L_{p e r}^{2}}>\|\psi\|_{L_{p e r}^{2}}, & \psi \in P_{c, \alpha} \cap \partial B_{r_{+}}
\end{array}
$$

then, $A_{c, \alpha}$ has fixed point in $P_{c, \alpha} \cap B_{r_{+}} \backslash B_{r_{-}}$.

- r_{-}is small enough so that $r_{-} M_{c, \alpha}<1$
- r_{+}is large enough so that $\sqrt{2 \pi} r_{+} m_{c, \alpha}>1$
- $r_{-}<r_{+}$because $\sqrt{2 \pi} m_{c, \alpha} \leq M_{c, \alpha}$.

By bootstrapping argument, if $\psi \in L_{\text {per }}^{2}$, then $\psi \in H_{\text {per }}^{\infty}$.
However, the positive fixed point may not have single maximum/minimum on \mathbb{T} since the constant solution $\psi=c$ is a fixed point of $A_{c, \alpha}$ in $P_{c, \alpha} \forall c>0$.

Proof of positivity: Step 4

(1) Distinguishing ψ from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point ψ is defined as $(-1)^{N}$, where N is the number of unstable eigenvalues of $A_{c, \alpha}^{\prime}(\psi)$ outside the unit disk with the account of the multiplicities.

For the constant solution $\psi=c$, the linearized operator

$$
A_{c, \alpha}^{\prime}(c)=2 c\left(c+(-\Delta)^{\alpha / 2}\right)^{-1}: L_{p e r}^{2} \rightarrow L_{p e r}^{2}
$$

in the space of even functions has $N=k+1$ unstable eigenvalues outside the unit disk for $c \in\left(k^{\alpha},(k+1)^{\alpha}\right)$ with $k \in \mathbb{N}$. The index of the constant solution changes sign every time c crosses the eigenvaue of $(-\Delta)^{\alpha / 2}$ at $k^{\alpha}, k \in \mathbb{N}$.

Number of unstable eigenvalues along solution branches

Figure: Schematic representation of bifurcations from the constant fixed point $\psi=\boldsymbol{c}$.

No bifurcations along the single-lobe solutions

Positive fixed point ψ bifurcates for $c>1$ if $\alpha>\alpha_{0}$. The linearized operator at ψ is given by

$$
A_{c, \alpha}^{\prime}(\psi)=2\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \psi=I d-\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \mathcal{L}
$$

where $\mathcal{L}:=c+D^{\alpha}-2 \psi$ is the linearized operator.

- For $c \gtrsim 1, n(\mathcal{L})=1$ holds for $\alpha>\alpha_{0}$ by the perturbation argument.
- For larger $c>1, n(\mathcal{L})=1$ remains true as long as $z(\mathcal{L})=1$.

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2}, \quad \Rightarrow \quad \psi=A_{c, \alpha}(\psi):=\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \psi^{2}
$$

Recall that the linearized operator

$$
A_{c, \alpha}^{\prime}(\psi)=2\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \psi=I d-\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \mathcal{L}
$$

has $N=1$ unstable eigenvalue outside the unit disk.
\Rightarrow Fixed-point iterations diverge from the periodic wave solution.

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2}, \quad \Rightarrow \quad \psi=A_{c, \alpha}(\psi):=\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \psi^{2} .
$$

Recall that the linearized operator

$$
A_{c, \alpha}^{\prime}(\psi)=2\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \psi=I d-\left(c+(-\Delta)^{\alpha / 2}\right)^{-1} \mathcal{L}
$$

has $N=1$ unstable eigenvalue outside the unit disk.
$\Rightarrow \quad$ Fixed-point iterations diverge from the periodic wave solution.
V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:

$$
w_{n+1}=T_{c, \alpha}\left(w_{n}\right):=\left[M\left(w_{n}\right)\right]^{2}\left(c+(-\Delta)^{\alpha / 2}\right)^{-1}\left(w_{n}^{2}\right), \quad n \in \mathbb{N},
$$

where

$$
M(w):=\frac{\left\langle\left(c+(-\Delta)^{\alpha / 2}\right) w, w\right\rangle}{\left\langle w^{2}, w\right\rangle}
$$

If $w=\psi$, then $M(\psi)=1$ and $T_{c, \alpha}(\psi)=\psi$.

Main result

Theorem (Le-P, SIMA 51 (2019) 2850-2883)

For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right]$, the periodic wave solution $\psi \in H_{p e r}^{\alpha}$ to

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2},
$$

is an asymptotically stable fixed point of $T_{c, \alpha}$ as long as $z(\mathcal{L})=1$.

Main result

Theorem (Le-P, SIMA 51 (2019) 2850-2883)

For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right]$, the periodic wave solution $\psi \in H_{p e r}^{\alpha}$ to

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2},
$$

is an asymptotically stable fixed point of $T_{c, \alpha}$ as long as $z(\mathcal{L})=1$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as $\phi=\psi-c$ satisfying $\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0$?

Main result

Theorem (Le-P, SIMA 51 (2019) 2850-2883)

For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right]$, the periodic wave solution $\psi \in H_{p e r}^{\alpha}$ to

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2},
$$

is an asymptotically stable fixed point of $T_{c, \alpha}$ as long as $z(\mathcal{L})=1$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as $\phi=\psi-c$ satisfying $\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0$?

Answer:

(1) ϕ is an unstable fixed point of $T_{c, \alpha}$ for $\alpha \in\left(\alpha_{0}, \alpha_{1}\right)$, where $\alpha_{1} \approx 1.322$
(1) ϕ is an asymptotically stable fixed point for $\alpha \in\left(\alpha_{1}, 2\right]$ if $c \gtrsim 1$ and is unstable if $c \gg 1$.

Iterations of $\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0$ with $c=2$ and $\alpha=2$

Figure: (Left) The last iteration versus x. (Right) Computational errors versus n.

Iterations of $\left(c-(-\Delta)^{\alpha / 2}\right) \phi+\phi^{2}=0$ with $c=1.1$ and $\alpha=1$

Figure: (Left) The last four iterations versus x. (Right) Computational errors versus n.

Iterations of $\left(c+(-\Delta)^{\alpha / 2}\right) \psi=\psi^{2}$ with $c=1.6$ and $\alpha=1$

Figure: (Left) The last iteration versus x. (Right) Computational errors versus n.

Summary

For the periodic waves in the fractional KdV equation satisfying

$$
\left(c+(-\Delta)^{\alpha / 2}\right) \psi-\psi^{2}+b=0,
$$

we have showed the following:
(1) Periodic waves with zero-mean profile $\psi \in H_{\text {per }}^{\alpha}$ can be obtained from a new variational problem for every $c \in(-1, \infty)$ and $\alpha \in\left(\frac{1}{3}, 2\right]$.
(2) The dependence $b=b(c)=\frac{1}{2 \pi} \oint \psi^{2} d x$ contains information about the fold bifurcation point and the stability of the periodic waves in the time evolution.
(3) For $b=0$, the profile ψ is positive for every $c>1$ and $\alpha>\alpha_{0} \approx 0.585$ as long as $n(\mathcal{L})=1$ and $z(\mathcal{L})=1$
(9) Petviashvili's method converges for positive ψ and generally diverges for the sign-indefinite ϕ despite the simple connection $\phi=\psi-c$.

Thank you! Questions???

