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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:
ur 4 2uuy, = (—A)*?uy,

where the fractional Laplacian (—A)®/? is defined by

—

(—=R)2u(§) = [¢]" a(¢), € E€R.

Integrable cases: Benjamin—-Ono equation (o = 1) and KdV equation (a = 2).
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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:
ur 4 2uuy, = (—A)*?uy,

where the fractional Laplacian (—A)®/? is defined by

(—=R)2u(§) = [¢]" a(¢), € E€R.

Integrable cases: Benjamin—-Ono equation (o = 1) and KdV equation (a = 2).

Here we consider 27-periodic solutions on T := [—m, 7], so that £ € Z.
© New variational formulation for travelling periodic waves.
@ Positivity of periodic travelling wave profiles.

© Convergence of Petviashvili's method for fixed-point iterations
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Background

@ Well-posedness in Sobolev spaces:

o F. Linares, D. Pilod, J.C. Saut (2014)
o L. Molinet, D. Pilod, S. Vento (2018)

@ Existence and modulation stability of periodic waves by using

o pertubative methods for a > 1 in M. Johnson (2013),
o variational methods for v > % in V.Hur, M. Johnson (2015)
o fixed-point methods in H. Chen (2004) and H. Chen, J. Bona (2013)

o Existence and stability of solitary waves in J. Angulo (2018):
o stable for % <a<?
e unstable for % <a<i

@ Convergence of Petviashvili's method near periodic waves in

o J. Alvarez, A. Duran (2017)
e D. Clamond, D. Dutykh (2018)
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Particular family of travelling periodic waves

The periodic travelling wave solution takes the form
u(x, t) = ¥(x — ct).
Integrating the equation with zero constant yields the boundary value problem
(c+(-2)") =% e Hg,.

Advantage: If ¢ + (—A)®/? is positive, this can be used for fixed-point iterations.
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Particular family of travelling periodic waves

The periodic travelling wave solution takes the form
u(x, t) = ¥(x — ct).
Integrating the equation with zero constant yields the boundary value problem
(c+(-2)") =% e Hg,.

Advantage: If ¢ + (—A)®/? is positive, this can be used for fixed-point iterations.

With the transformation
1/)(X) =c+ (D(X)7

the same boundary-value problem can be written as
(C - (_A)Oé/2)¢5 + d)z = 07 OfS H/(Jler‘
Advantage: if ¢ — (—A)®/? vanishes, this can be used for local bifurcation theory.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:
(€= (=8)%)o +¢* =0, o€ H.,

with the spectrum o(c — (—A)*/?) = {c,c —1,c —2%,...}
and Fourier modes {1, e*™ e®2x 1.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(€= (=D)%)o+¢* =0, o€H.,
with the spectrum o(c — (—A)*/?) = {c,c —1,c —2%,...}
and Fourier modes {1, e*™ e®2x 1.

Theorem. For every o > % there exists a locally unique, even, single-lobe solution
¢ € Hg,, bifurcating from zero solution. The wave profile ¢ and the wave speed ¢
are real analytic in wave amplitude a and satisfy the following Stokes expansions

¢ = acos(x) + a*pa(x) + a>p3(x) + O(a*),
c=1+ca® +0(a%).

with i
Pa(x) = ) + cos(2x) and o =1—

1
220 — 1) 220 — 1)
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(€= (=D)%)o+¢* =0, o€H.,
with the spectrum o(c — (—A)*/?) = {c,c —1,c —2%,...}
and Fourier modes {1, e*™ e®2x 1.

Theorem. For every o > % there exists a locally unique, even, single-lobe solution
¢ € Hg,, bifurcating from zero solution. The wave profile ¢ and the wave speed ¢
are real analytic in wave amplitude a and satisfy the following Stokes expansions

¢ = acos(x) + a*pa(x) + a>p3(x) + O(a*),
c=1+ca® +0(a%).
with

1 1 1
¢2(X) = —5 + m COS(2X) and C = 1-— m

Threshold behavior: ¢, > 0 for a > ag and ¢ < 0 for a < ap,

where ag = :ggg —1=0.585.
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Stationary equation for travelling periodic waves

Periodic travelling wave u(x, t) = ¢)(x — ct) satisfies the stationary equation:
(c+(=a)"?)p— ¢+ b=0,

where b is an integration constant.
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Stationary equation for travelling periodic waves

Periodic travelling wave u(x, t) = ¢)(x — ct) satisfies the stationary equation:
(c+(=a)"?)p— ¢+ b=0,

where b is an integration constant.

The stationary equation is the Euler-Lagrange equation for the action
G(u) = E(u) + cF(u) + bM(u), where

E(u) = %%((—A)a/‘lu)2 - %%ﬁdx, F(u) = éy{uzdx, M(u) = j{udx.

Standard variational method: to find minimizers of energy E(u) subject to the
fixed momentum F(u) and mass M(u).
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Drawbacks of the standard variational method

Due to Galilean transformation t(x) = a+ ¢(x) with a := 3(c — v/c2 + 4b),
1 solves (¢ + (—A)*/?)p —p? + b =0 if and only if ¢ solves

(w+ (—A)O‘/2)cp — > =0, w:=+/c2+4b.

© is a minimizer of energy E(u) at fixed momentum F(u) = p.
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Drawbacks of the standard variational method

Due to Galilean transformation t(x) = a+ ¢(x) with a := 3(c — v/c2 + 4b),
1 solves (¢ + (—A)*/?)p —p? + b =0 if and only if ¢ solves

(w+ (=A))p —?> =0, w:=+/c2+4b.
© is a minimizer of energy E(u) at fixed momentum F(u) = p.

a=1:
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Drawbacks of the standard variational method

Due to Galilean transformation t(x) = a+ ¢(x) with a := 3(c — v/c2 + 4b),
1 solves (¢ + (—A)*/?)p —p? + b =0 if and only if ¢ solves

(w+ (—A)O‘/2)cp — > =0, w:=+/c2+4b.

© is a minimizer of energy E(u) at fixed momentum F(u) = p.

a = 0.6:

Dmitry E. Pelinovsky McMaster University 7/26



Drawbacks of the standard variational method

Due to Galilean transformation t(x) = a+ ¢(x) with a := 3(c — v/c2 + 4b),

1 solves (¢ + (—A)*/?)p —p? + b =0 if and only if ¢ solves

(w+ (=A))p —?> =0, w:=+/c2+4b.
© is a minimizer of energy E(u) at fixed momentum F(u) = p.

a = 0.5:
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New variational formulation

Find minimizers of the quadratic energy

Bo(u) = %f [((-2)/4u)? + o] de

subject to fixed cubic energy and zero-mean constraint:

Y:_{ueHé;r: ?{u3dx:1, j{udx—O}.

Theorem (Natali-Le—P., Nonlinearity 33 (2020), 1956)

There exists a constrained minimizer u, € Y for every o > % and every ¢ > —1.

Minimizer u, yields the periodic wave ¢ € Hp%er of the stationary equation
1 1
(c (-8~ v+ b(0) =0, ble) = - f WP = ZF(v).
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Advantages of the new variational method

No fold point appears for o < av:

_ 1 2 4 _ 1, 4
c= 1+2(2a_1)a + O(a"), b(c)fza + 0(a").
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Advantages of the new variational method

No fold point appears for o < av:

c=-1+ ﬁf +0(a*), b(c)==a*+0(a").

b(c) versus ¢ for a = 1:
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Advantages of the new variational method

No fold point appears for o < av:

c=-1+ ﬁf +0(a*), b(c)==a*+0(a").

b(c) versus ¢ for a = 0.6:
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Advantages of the new variational method

No fold point appears for o < av:

c=-1+ ﬁf +0(a*), b(c)==a*+0(a").

b(c) versus ¢ for a = 0.5:
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Stability theory

Stability of the periodic wave satisfying (¢ + (—A)*/2) —¢? +b=0is

determined by the linearized operator £ : HS,, C L3, — L2 given by

L= (D)% +4c— 2.

n(L) = number of negative eigenvalues, z(£) = multiplicity of zero eigenvalue.
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Stability theory

Stability of the periodic wave satisfying (¢ + (=A)*/?)y) — >+ b=0is
determined by the linearized operator £ : HS,, C L3, — L2 given by

per per
L= (D)% +4c— 2.

n(L) = number of negative eigenvalues, z(£) = multiplicity of zero eigenvalue.

The self-adjoint operator enjoys Sturm'’s oscillation theory.

Lemma (Hur—Johnson, 2015)

Assume « € (%, 2] and that ) € HS.,, admits only one maximum on T. An
eigenfunction of L for the n-th eigenvalue changes its sign at most 2(n — 1) times.

This property and the variational formulation implies that

1<n(L)<2, 1<z(L)<2
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Stability theory

Stability of the periodic wave satisfying (¢ + (=A)*/?)y) — >+ b=0is
determined by the linearized operator £ : HS,, C L3, — L2 given by

L= (D)% +4c— 2.

n(L) = number of negative eigenvalues, z(£) = multiplicity of zero eigenvalue.

The kernel of £ can be characterized from the following criterion.

Lemma (Hur—Johnson, 2015)

Assume o € (%,2] and that ¢ € HS,, admits only one maximum on T.
Ker(L) = span(9x1) if and only if {1,1,1?} € Range(L).

If ¢ is C* with respect to (c, b), then
Labw = _]-a E@aj} = —1/’; LQ/} = _11[}2 - ba
so that z(£) = 1. However, 1 is not C! at the fold bifurcation!
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Stability theory

Stability of the periodic wave satisfying (¢ + (=A)*/?)y) — >+ b=0is
determined by the linearized operator £ : HS,, C L3, — L2 given by

per per
L= (D)% +4c— 2.

n(L) = number of negative eigenvalues, z(£) = multiplicity of zero eigenvalue.

Theorem (Haragus-Kapitula, 2008)

The periodic wave with profile 1) € Hg,, is stable in the time evolution of the KdV
equation if
n(£|{1,¢}L) = 0, Z(£|{17w}L) =1
and unstable if
n(Ll{1pyr) = 1.

It is dificult to compute n(L][1 1) and z(L](1,411) if n(L) =2 or z(L) = 2.
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New approach in the stability theory

Assume that the minimizer of

Be(u) == %% [((fA)‘”‘/“u)2 + cu2] dx

subject to ¢ udx =1 an ¢ udx = 0 is non-degenerate.
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New approach in the stability theory

Assume that the minimizer of

Be(u) == %% [((fA)‘”‘/“u)2 + cu2] dx

subject to ¢ udx =1 an ¢ udx = 0 is non-degenerate.

Ker(L|(1,y2y+) = span(8xy) and the mapping ¢ — ¢ € HS,, is C! in ¢ so that

per

L1=-2¢+c, L1p = —1p? — b(c), LI = —1p — b'(c).

wo={ 5 hmgze  ww={y R97e
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New approach in the stability theory

Assume that the minimizer of

Be(u) == %% [((fA)‘”‘/“u)2 + cu2] dx

subject to ¢ udx =1 an ¢ udx = 0 is non-degenerate.

Theorem (Natali-Le-P, 2020)

The periodic wave ¢ € Hy., is stable if b'(c) > 0 and unstable if b'(c) < 0.
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Comparison between standard and new methods

[|1]|2, versus either w (left) or ¢ (right) for o = 0.6:

The family of periodic waves is stable.
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Comparison between standard and new methods

[|1]|2, versus either w (left) or ¢ (right) for & = 0.5:
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The family of periodic waves is stable.
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Comparison between standard and new methods

[[4]|2, versus c for o = 0.45:

For aw < 0.5, there exists ¢y = ¢p(«) such that the family of periodic orbits is
stable for ¢ € (—1, ¢p) and unstable for ¢ € (¢, 00).
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Positivity of periodic waves

Here we consider positivity of the profile ¢ € H,, satisfying

(c+ (—A)?)p=9? c>1, b=0.

1 > 0 for every ¢ > 1 in the integrable cases:

@ BO equation with a = 1:

W(x) = sinh ~y

=———————  c¢=cothn.
cosh~y — cosx’ K

o KdV equation @ = 2:

W(x) = 2K(,f)2 V1= K2+ k*+1— 2k + 3K2cn? (K(k)x; k)]

™ ™

with ¢ = KW T2 14,

Question: Is 1) > 0 for every ¢ > 1 and every a?
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Main result

Theorem (Le—P, SIMA 51 (2019) 2850-2883)

For every ¢ > 1 and a € (v, 2], ¥(x) >0 on T as long as z(L) = 1.

The assumption is only true for a > ap =~ 0.585 because the fold bifurcation point
with z(L£) = 2 exists for o < a.
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Proof of positivity: Step 1

@ Green's function for ¢ + (—A)®/? is obtained from the solution of

(c+ (=D))p(x)=h, hel?

per»

in the convolution form

T

o(x) = G(x — s)h(s)ds
or in Fourier form,
1 einx 1
Gc a - 5 1 4 Gc « < Mc s 5
= 2W§Zc+|n|a = lCeally, < Mea,  a>3

Lemma (Le-P, FCAA 24 (2021), 1507-1534)

If o € (0,2] and ¢ € (0,00), then there exists mc o > 0 such that G (x) > mc o
for every x € [—m,m].
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Proof of positivity: Step 2

@ Operator A in the positive cone
From the stationary equation

(c+ (=2)?)p =42,
we define the nonlinear operator

Aealt) = (04 D) 102 = Aca(0)) = [ Gualo =)ol

and the positive cone in Lpe,

P {w €2, Yz

mCO{

||1p||Lz , XE€ ']I‘}.

Ac, is bounded and continuous in L3, (Young's inequality),

©e

Aco is compact as it is a limit of compact operators A(CN;

where A(C & are gives by 2N + 1 Fourier partial sum.
Acia(i) is closed in Pea: Aca(¥) > meallily > e | Aca()lg,

per
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Proof of positivity: Step 3

@ Existence of fixed point in the cone
Let

B, = {,l/} € Lf)er : ||’lp||l-,2,e, < r}

By Kranoselskii's fixed point theorem if there exists r_ and ry such that

||AC,a(w)||L2 < ”d)”L2 ) (UNS 'Dc,oz NoB,_

per per

1Aca(@)iz, > 10, ¢ € PeandBy,

per per

then, Ac o has fixed point in P o N B, \B,_.
e r_ is small enough so that r— M., <1
e ry is large enough so that v27wrime o >1
o r_ < ry because vV2mrme,o < M o.
By bootstrapping argument, if ¢ € L2, then ¢ € Hgg,.
However, the positive fixed point may not have single maximum/minimum on
T since the constant solution 1) = c is a fixed point of Ac , in Pc o Vc > 0.

Dmitry E. Pelinovsky McMaster University 17 /26



Proof of positivity: Step 4

@ Distinguishing v from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point v is defined as (—1)", where N is
the number of unstable eigenvalues of A (1) outside the unit disk with the
account of the multiplicities.

For the constant solution i) = ¢, the linearized operator
Azale) = 2¢(c + (=L))o — L,

in the space of even functions has N = k + 1 unstable eigenvalues outside the unit
disk for ¢ € (k*, (k + 1)) with k € N. The index of the constant solution
changes sign every time c crosses the eigenvaue of (—A)*/2? at k*, k € N.
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Number of unstable eigenvalues along solution branches

N=3

N=2

N=2

Cc

Figure: Schematic representation of bifurcations from the constant fixed point ¥ = c.
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No bifurcations along the single-lobe solutions

Positive fixed point 1 bifurcates for ¢ > 1 if a > «ag. The linearized operator at v
is given by

AL (1) =2(c+ (—A)*) M = Id — (c + (—A)*?) 7L,

where £ := ¢ 4+ D% — 21} is the linearized operator.

e For ¢ 2 1, n(£) =1 holds for a > g by the perturbation argument.
o For larger ¢ > 1, n(£) = 1 remains true as long as z(£) = 1.
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Petviashvili method for fixed point iterations

Recall the stationary equation for :

(c+ (—R)) =97 = ¢=Aca(v) = (c+(-L)?) 12

Recall that the linearized operator
Aca(®) =2(c+ (=2)"2) T = 1d — (c + (-2)*?) 7L,

has N = 1 unstable eigenvalue outside the unit disk.
= Fixed-point iterations diverge from the periodic wave solution.
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Petviashvili method for fixed point iterations

Recall the stationary equation for :
(c+ (D) =02 = ¥=Aca(®)=(c+(-A)"?) W
Recall that the linearized operator
Aca(t) =2(c+ (D)%) = ld — (c + (-A)*/*) 'L,

has N = 1 unstable eigenvalue outside the unit disk.
= Fixed-point iterations diverge from the periodic wave solution.

V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:
Wait = Tea(Wn) = [M(wa)]* (c + (—2)*?) "X (w2), neN,

where
((c + (=0)**)w, w)
(w2, w) '

If w=1), then M(1)) =1 and T (1)) = 1),

M(w) =
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Main result

Theorem (Le—P, SIMA 51 (2019) 2850-2883)

For every ¢ > 1 and a € (v, 2], the periodic wave solution v € Hg,, to
(c+ (=) =42,

is an asymptotically stable fixed point of T . as long as z(L) = 1.
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Main result

Theorem (Le—P, SIMA 51 (2019) 2850-2883)

For every ¢ > 1 and a € (v, 2], the periodic wave solution v € Hg,, to
(c+ (=) =42,

is an asymptotically stable fixed point of T . as long as z(L) = 1.

Question: Does the Petviashvili's method converge for sign-indefinite wave such
as ¢ = 1) — c satisfying (c — (—A)*/?)¢ + $*> = 0?
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Main result

Theorem (Le—P, SIMA 51 (2019) 2850-2883)

For every ¢ > 1 and a € (v, 2], the periodic wave solution v € Hg,, to
(c+ (=) =42,

is an asymptotically stable fixed point of T . as long as z(L) = 1.

Question: Does the Petviashvili's method converge for sign-indefinite wave such
as ¢ = 1) — c satisfying (c — (—A)*/?)¢ + $*> = 0?

Answer:

@ ¢ is an unstable fixed point of T, , for & € (ap, a1), where a7 ~ 1.322

@ ¢ is an asymptotically stable fixed point for o € (a1,2] if ¢ 2 1 and is
unstable if ¢ > 1.
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Iterations of (¢ — (—A)*/?)¢ + ¢? = 0 with c =2 and o = 2

T T T T T T 10° T T T T T T T T T
102
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104
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10°
05 1 108
-10
Al | 10
1012
15 ]
oM . . . . . . . . .
3 2 1 ) 1 2 3 10 20 30 40 50 60 70 80 90 100

number of iterations

Figure: (Left) The last iteration versus x. (Right) Computational errors versus n.
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Iterations of (¢ — (—A)*/?)¢ + ¢? = 0 with c = 1.1 and a = 1

03[ T T T v T — 10° T T T T
02} ]
o1r ," /" “\ “\ 1
! u, ()
N-eee- Uy 091
u, 21)()
""" Un g
. . . . 100 . . . .
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X Number of iterations

Figure: (Left) The last four iterations versus x. (Right) Computational errors versus n.
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Iterations of (¢ + (—A)*/?)y = ¢? with c = 1.6 and o = 1

10710

10 20 30 40 50 60 70
X number of iterations

10

Figure: (Left) The last iteration versus x. (Right) Computational errors versus n.
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For the periodic waves in the fractional KdV equation satisfying
(c+(=2)"2)p —¢?+b=0,

we have showed the following:

@ Periodic waves with zero-mean profile ¢ € HJ,, can be obtained from a new
variational problem for every ¢ € (—1,00) and « € (3,2].

@ The dependence b = b(c) = % $ 1)?dx contains information about the fold
bifurcation point and the stability of the periodic waves in the time evolution.

© For b =0, the profile ¥ is positive for every ¢ > 1 and o > ap ~ 0.585 as
long as n(£) =1and z(£) =1

@ Petviashvili's method converges for positive 1) and generally diverges for the
sign-indefinite ¢ despite the simple connection ¢ =y — c.

Thank you! Questions???
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