Variational characterization of periodic waves in the fractional KdV equation

Dmitry E Pelinovsky Joint work with Uyen Le (McMaster) and Fábio Natali (Maringá)

Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$u_t+2uu_x=(-\Delta)^{\alpha/2}u_x,$$

where the fractional Laplacian $(-\Delta)^{lpha/2}$ is defined by

$$(\widehat{-\Delta)^{lpha/2}}u(\xi)=|\xi|^{lpha}\,\hat{u}(\xi),\quad \ \xi\in\mathbb{R}.$$

Integrable cases: Benjamin–Ono equation ($\alpha = 1$) and KdV equation ($\alpha = 2$).

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$u_t+2uu_x=(-\Delta)^{\alpha/2}u_x,$$

where the fractional Laplacian $(-\Delta)^{lpha/2}$ is defined by

$$(\widetilde{-\Delta})^{\alpha/2}u(\xi) = |\xi|^{\alpha} \, \hat{u}(\xi), \quad \xi \in \mathbb{R}.$$

Integrable cases: Benjamin–Ono equation ($\alpha = 1$) and KdV equation ($\alpha = 2$).

Here we consider 2π -periodic solutions on $\mathbb{T} := [-\pi, \pi]$, so that $\xi \in \mathbb{Z}$.

- New variational formulation for travelling periodic waves.
- Positivity of periodic travelling wave profiles.
- Onvergence of Petviashvili's method for fixed-point iterations

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Background

- Well-posedness in Sobolev spaces:
 - F. Linares, D. Pilod, J.C. Saut (2014)
 - L. Molinet, D. Pilod, S. Vento (2018)
- Existence and modulation stability of periodic waves by using
 - pertubative methods for $\alpha > \frac{1}{2}$ in M. Johnson (2013),
 - variational methods for $\alpha > \frac{1}{3}$ in V.Hur, M. Johnson (2015)
 - fixed-point methods in H. Chen (2004) and H. Chen, J. Bona (2013)
- Existence and stability of solitary waves in J. Angulo (2018):
 - stable for $\frac{1}{2} < \alpha \leq 2$
 - unstable for $\frac{1}{3} < \alpha < \frac{1}{2}$
- Convergence of Petviashvili's method near periodic waves in
 - J. Alvarez, A. Duran (2017)
 - D. Clamond, D. Dutykh (2018)

Particular family of travelling periodic waves

The periodic travelling wave solution takes the form

$$u(x,t)=\psi(x-ct).$$

Integrating the equation with zero constant yields the boundary value problem

$$(c+(-\Delta)^{lpha/2})\psi=\psi^2, \hspace{0.5cm}\psi\in H^lpha_{
m per}.$$

Advantage: If $c + (-\Delta)^{\alpha/2}$ is positive, this can be used for fixed-point iterations.

Particular family of travelling periodic waves

The periodic travelling wave solution takes the form

$$u(x,t)=\psi(x-ct).$$

Integrating the equation with zero constant yields the boundary value problem

$$(c+(-\Delta)^{lpha/2})\psi=\psi^2, \hspace{0.5cm}\psi\in H^lpha_{
m per}.$$

Advantage: If $c + (-\Delta)^{\alpha/2}$ is positive, this can be used for fixed-point iterations.

With the transformation

$$\psi(x)=c+\phi(x),$$

the same boundary-value problem can be written as

$$(c-(-\Delta)^{\alpha/2})\phi+\phi^2=0, \hspace{0.5cm} \phi\in H^{lpha}_{per}.$$

Advantage: if $c - (-\Delta)^{\alpha/2}$ vanishes, this can be used for local bifurcation theory.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$(c-(-\Delta)^{lpha/2})\phi+\phi^2=0, \hspace{0.5cm} \phi\in H^{lpha}_{per},$$

with the spectrum $\sigma(c - (-\Delta)^{\alpha/2}) = \{c, c - 1, c - 2^{\alpha}, \dots\}$ and Fourier modes $\{1, e^{\pm i \varkappa}, e^{\pm 2i \varkappa}, \dots\}$.

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$(c-(-\Delta)^{\alpha/2})\phi+\phi^2=0, \hspace{0.5cm}\phi\in H^{lpha}_{per},$$

with the spectrum $\sigma(c - (-\Delta)^{\alpha/2}) = \{c, c - 1, c - 2^{\alpha}, ...\}$ and Fourier modes $\{1, e^{\pm ix}, e^{\pm 2ix}, ...\}$.

Theorem. For every $\alpha > \frac{1}{2}$, there exists a locally unique, even, single-lobe solution $\phi \in H_{per}^{\alpha}$ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$\phi = a\cos(x) + a^2\phi_2(x) + a^3\phi_3(x) + O(a^4),$$

$$c = 1 + c_2a^2 + O(a^4).$$

with

$$\phi_2(x) = -rac{1}{2} + rac{1}{2(2^{lpha}-1)}\cos(2x) \ \ {
m and} \ \ c_2 = 1 - rac{1}{2(2^{lpha}-1)}.$$

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$(c-(-\Delta)^{lpha/2})\phi+\phi^2=0, \hspace{0.5cm} \phi\in H^{lpha}_{per},$$

with the spectrum $\sigma(c - (-\Delta)^{\alpha/2}) = \{c, c - 1, c - 2^{\alpha}, ...\}$ and Fourier modes $\{1, e^{\pm ix}, e^{\pm 2ix}, ...\}$.

Theorem. For every $\alpha > \frac{1}{2}$, there exists a locally unique, even, single-lobe solution $\phi \in H_{per}^{\alpha}$ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$\phi = a\cos(x) + a^2\phi_2(x) + a^3\phi_3(x) + O(a^4),$$

$$c = 1 + c_2a^2 + O(a^4).$$

with

$$\phi_2(x) = -rac{1}{2} + rac{1}{2(2^{lpha}-1)}\cos(2x) \ \ {
m and} \ \ c_2 = 1 - rac{1}{2(2^{lpha}-1)}.$$

Threshold behavior: $c_2 > 0$ for $\alpha > \alpha_0$ and $c_2 < 0$ for $\alpha < \alpha_0$, where $\alpha_0 = \frac{\log 3}{\log 2} - 1 \approx 0.585$.

► < E > E

Stationary equation for travelling periodic waves

Periodic travelling wave $u(x, t) = \psi(x - ct)$ satisfies the stationary equation:

$$(c+(-\Delta)^{\alpha/2})\psi-\psi^2+b=0,$$

where b is an integration constant.

Stationary equation for travelling periodic waves

Periodic travelling wave $u(x, t) = \psi(x - ct)$ satisfies the stationary equation:

$$(c+(-\Delta)^{\alpha/2})\psi-\psi^2+b=0,$$

where b is an integration constant.

The stationary equation is the Euler–Lagrange equation for the action G(u) = E(u) + cF(u) + bM(u), where

$$E(u) = \frac{1}{2} \oint ((-\Delta)^{\alpha/4} u)^2 - \frac{1}{3} \oint u^3 dx, \quad F(u) = \frac{1}{2} \oint u^2 dx, \quad M(u) = \oint u \, dx.$$

Standard variational method: to find minimizers of energy E(u) subject to the fixed momentum F(u) and mass M(u).

<ロ> <個> <ヨ> <ヨ> 三国

Due to Galilean transformation $\psi(x) = a + \varphi(x)$ with $a := \frac{1}{2}(c - \sqrt{c^2 + 4b})$, ψ solves $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ if and only if φ solves

$$(\omega+(-\Delta)^{lpha/2})arphi-arphi^2=0, \quad \omega:=\sqrt{c^2+4b}.$$

 φ is a minimizer of energy E(u) at fixed momentum $F(u) = \mu$.

Due to Galilean transformation $\psi(x) = a + \varphi(x)$ with $a := \frac{1}{2}(c - \sqrt{c^2 + 4b})$, ψ solves $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ if and only if φ solves

$$(\omega+(-\Delta)^{lpha/2})arphi-arphi^2=0,\quad\omega:=\sqrt{c^2+4b}.$$

 φ is a minimizer of energy E(u) at fixed momentum $F(u) = \mu$.

 $\alpha = 1$:

Due to Galilean transformation $\psi(x) = a + \varphi(x)$ with $a := \frac{1}{2}(c - \sqrt{c^2 + 4b})$, ψ solves $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ if and only if φ solves

$$(\omega+(-\Delta)^{lpha/2})arphi-arphi^2=0, \quad \omega:=\sqrt{c^2+4b}.$$

 φ is a minimizer of energy E(u) at fixed momentum $F(u) = \mu$.

 $\alpha = 0.6$:

Due to Galilean transformation $\psi(x) = a + \varphi(x)$ with $a := \frac{1}{2}(c - \sqrt{c^2 + 4b})$, ψ solves $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ if and only if φ solves

$$(\omega+(-\Delta)^{lpha/2})arphi-arphi^2=0, \quad \omega:=\sqrt{c^2+4b}.$$

 φ is a minimizer of energy E(u) at fixed momentum $F(u) = \mu$.

 $\alpha = 0.5$:

New variational formulation

Find minimizers of the quadratic energy

$$\mathcal{B}_{c}(u) := \frac{1}{2} \oint \left[((-\Delta)^{\alpha/4} u)^{2} + cu^{2} \right] dx$$

subject to fixed cubic energy and zero-mean constraint:

$$Y:=\left\{u\in H_{\rm per}^{\frac{\alpha}{2}}:\quad \oint u^3dx=1,\quad \oint udx=0\right\}.$$

Theorem (Natali–Le–P., Nonlinearity **33** (2020), 1956)

There exists a constrained minimizer $u_* \in Y$ for every $\alpha > \frac{1}{3}$ and every c > -1.

Minimizer u_* yields the periodic wave $\psi \in H_{\mathrm{per}}^{\frac{\alpha}{2}}$ of the stationary equation

$$(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b(c) = 0, \qquad b(c) = rac{1}{2\pi} \oint \psi^2 dx = rac{1}{\pi} F(\psi).$$

No fold point appears for $\alpha < \alpha_0$:

$$c = -1 + rac{1}{2(2^{lpha}-1)}a^2 + \mathcal{O}(a^4), \quad b(c) = rac{1}{2}a^2 + \mathcal{O}(a^4).$$

< ∃⇒

No fold point appears for $\alpha < \alpha_0$:

$$c = -1 + rac{1}{2(2^{lpha}-1)}a^2 + \mathcal{O}(a^4), \quad b(c) = rac{1}{2}a^2 + \mathcal{O}(a^4).$$

b(c) versus c for $\alpha = 1$:

No fold point appears for $\alpha < \alpha_0$:

$$c = -1 + rac{1}{2(2^{lpha}-1)}a^2 + \mathcal{O}(a^4), \quad b(c) = rac{1}{2}a^2 + \mathcal{O}(a^4).$$

b(c) versus c for $\alpha = 0.6$:

No fold point appears for $\alpha < \alpha_0$:

$$c = -1 + rac{1}{2(2^{lpha}-1)}a^2 + \mathcal{O}(a^4), \quad b(c) = rac{1}{2}a^2 + \mathcal{O}(a^4).$$

b(c) versus c for $\alpha = 0.5$:

Stability of the periodic wave satisfying $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ is determined by the linearized operator $\mathcal{L} : H^{\alpha}_{per} \subset L^2_{per} \mapsto L^2_{per}$ given by

$$\mathcal{L} = (-\Delta)^{lpha/2} + c - 2\psi.$$

 $n(\mathcal{L}) =$ number of negative eigenvalues, $z(\mathcal{L}) =$ multiplicity of zero eigenvalue.

イロト イ押ト イヨト イヨト

Stability of the periodic wave satisfying $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ is determined by the linearized operator $\mathcal{L}: H_{per}^{\alpha} \subset L_{per}^2 \mapsto L_{per}^2$ given by

$$\mathcal{L} = (-\Delta)^{lpha/2} + c - 2\psi.$$

 $n(\mathcal{L}) =$ number of negative eigenvalues, $z(\mathcal{L}) =$ multiplicity of zero eigenvalue.

The self-adjoint operator enjoys Sturm's oscillation theory.

Lemma (Hur–Johnson, 2015)

Assume $\alpha \in (\frac{1}{3}, 2]$ and that $\psi \in H_{per}^{\alpha}$ admits only one maximum on \mathbb{T} . An eigenfunction of \mathcal{L} for the n-th eigenvalue changes its sign at most 2(n-1) times.

This property and the variational formulation implies that

$$1 \leq n(\mathcal{L}) \leq 2, \quad 1 \leq z(\mathcal{L}) \leq 2.$$

・ロト ・四ト ・ヨト ・ヨトー

Stability of the periodic wave satisfying $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ is determined by the linearized operator $\mathcal{L}: H_{per}^{\alpha} \subset L_{per}^2 \mapsto L_{per}^2$ given by

$$\mathcal{L} = (-\Delta)^{lpha/2} + c - 2\psi.$$

 $n(\mathcal{L}) =$ number of negative eigenvalues, $z(\mathcal{L}) =$ multiplicity of zero eigenvalue.

The kernel of \mathcal{L} can be characterized from the following criterion.

Lemma (Hur–Johnson, 2015)

Assume $\alpha \in (\frac{1}{3}, 2]$ and that $\psi \in H^{\alpha}_{per}$ admits only one maximum on \mathbb{T} . $\operatorname{Ker}(\mathcal{L}) = \operatorname{span}(\partial_x \psi)$ if and only if $\{1, \psi, \psi^2\} \in \operatorname{Range}(\mathcal{L})$.

If ψ is C^1 with respect to (c, b), then

$$\mathcal{L}\partial_{b}\psi = -1, \qquad \mathcal{L}\partial_{c}\psi = -\psi, \qquad \mathcal{L}\psi = -\psi^{2} - b,$$

so that $z(\mathcal{L}) = 1$. However, ψ is not C^1 at the fold bifurcation!

(日) (四) (三) (三) (三)

Stability of the periodic wave satisfying $(c + (-\Delta)^{\alpha/2})\psi - \psi^2 + b = 0$ is determined by the linearized operator $\mathcal{L}: H_{per}^{\alpha} \subset L_{per}^2 \mapsto L_{per}^2$ given by

$$\mathcal{L} = (-\Delta)^{lpha/2} + c - 2\psi.$$

 $n(\mathcal{L}) =$ number of negative eigenvalues, $z(\mathcal{L}) =$ multiplicity of zero eigenvalue.

Theorem (Haragus-Kapitula, 2008)

The periodic wave with profile $\psi\in {\rm H}_{\rm per}^\alpha$ is stable in the time evolution of the KdV equation if

$$n(\mathcal{L}|_{\{1,\psi\}^{\perp}}) = 0, \quad z(\mathcal{L}|_{\{1,\psi\}^{\perp}}) = 1$$

and unstable if

$$n(\mathcal{L}|_{\{1,\psi\}^{\perp}})=1.$$

It is dificult to compute $n(\mathcal{L}|_{\{1,\psi\}^{\perp}})$ and $z(\mathcal{L}|_{\{1,\psi\}^{\perp}})$ if $n(\mathcal{L}) = 2$ or $z(\mathcal{L}) = 2$.

・ コ マ ・ 雪 マ ・ 目 マ ・ 日 マ

New approach in the stability theory

Assume that the minimizer of

$$\mathcal{B}_{c}(u) := \frac{1}{2} \oint \left[((-\Delta)^{\alpha/4} u)^{2} + cu^{2} \right] dx$$

subject to $\oint u^3 dx = 1$ an $\oint u dx = 0$ is non-degenerate.

New approach in the stability theory

Assume that the minimizer of

$$\mathcal{B}_{c}(u) := \frac{1}{2} \oint \left[((-\Delta)^{\alpha/4} u)^{2} + cu^{2} \right] dx$$

subject to $\oint u^3 dx = 1$ an $\oint u dx = 0$ is non-degenerate.

 $\operatorname{Ker}(\mathcal{L}|_{\{1,\psi^2\}^{\perp}}) = \operatorname{span}(\partial_x\psi) \text{ and the mapping } c \mapsto \psi \in H^{\alpha}_{\operatorname{per}} \text{ is } C^1 \text{ in } c \text{ so that}$

$$\mathcal{L}1 = -2\psi + c,$$
 $\mathcal{L}\psi = -\psi^2 - b(c),$ $\mathcal{L}\partial_c\psi = -\psi - b'(c).$

and

$$n(\mathcal{L})=\left\{egin{array}{ccc} 1, & c+2b'(c)\geq 0, \\ 2, & c+2b'(c)< 0, \end{array}
ight.$$
 $z(\mathcal{L})=\left\{egin{array}{ccc} 1, & c+2b'(c)
eq 0, \\ 2, & c+2b'(c)= 0, \end{array}
ight.$

New approach in the stability theory

Assume that the minimizer of

$$\mathcal{B}_{c}(u) := \frac{1}{2} \oint \left[((-\Delta)^{\alpha/4} u)^{2} + cu^{2} \right] dx$$

subject to $\oint u^3 dx = 1$ an $\oint u dx = 0$ is non-degenerate.

Theorem (Natali–Le-P, 2020)

The periodic wave $\psi \in H^{\alpha}_{\mathrm{per}}$ is stable if b'(c) > 0 and unstable if b'(c) < 0.

Comparison between standard and new methods

 $\|\psi\|_{L^2}^2$ versus either ω (left) or c (right) for $\alpha = 0.6$:

The family of periodic waves is stable.

Comparison between standard and new methods

 $\|\psi\|_{L^2}^2$ versus either ω (left) or c (right) for $\alpha = 0.5$:

The family of periodic waves is stable.

Comparison between standard and new methods

 $\|\psi\|_{L^2}^2$ versus *c* for $\alpha = 0.45$:

For $\alpha < 0.5$, there exists $c_0 = c_0(\alpha)$ such that the family of periodic orbits is stable for $c \in (-1, c_0)$ and unstable for $c \in (c_0, \infty)$.

Positivity of periodic waves

Here we consider positivity of the profile $\psi \in \mathit{H}^{lpha}_{\mathrm{per}}$ satisfying

$$(c+(-\Delta)^{lpha/2})\psi=\psi^2,\quad c>1,\quad b=0.$$

 $\psi > 0$ for every c > 1 in the integrable cases:

• BO equation with $\alpha = 1$:

$$\psi(x) = \frac{\sinh \gamma}{\cosh \gamma - \cos x}, \quad c = \coth \gamma.$$

• KdV equation $\alpha = 2$:

$$\psi(x) = \frac{2K(k)^2}{\pi^2} \left[\sqrt{1 - k^2 + k^4} + 1 - 2k^2 + 3k^2 \operatorname{cn}^2 \left(\frac{K(k)}{\pi} x; k \right) \right]$$

with $c = \frac{4K(k)^2}{\pi^2}\sqrt{1-k^2+k^4}$.

Question: Is $\psi > 0$ for every c > 1 and every α ?

ヘロン 人間 とく ヨン 人 ヨン

For every c > 1 and $\alpha \in (\alpha_0, 2]$, $\psi(x) > 0$ on \mathbb{T} as long as $z(\mathcal{L}) = 1$.

The assumption is only true for $\alpha > \alpha_0 \approx 0.585$ because the fold bifurcation point with $z(\mathcal{L}) = 2$ exists for $\alpha < \alpha_0$.

Green's function for $c + (-\Delta)^{\alpha/2}$ is obtained from the solution of

$$(c + (-\Delta)^{\alpha/2})\varphi(x) = h, \quad h \in L^2_{per},$$

in the convolution form

$$\varphi(x) = \int_{-\pi}^{\pi} G(x-s)h(s)ds$$

or in Fourier form,

$$G_{c,\alpha}(x) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \frac{e^{inx}}{c + |n|^{\alpha}} \quad \Rightarrow \quad \|G_{c,\alpha}\|_{L^2_{per}} \leq M_{c,\alpha}, \qquad \alpha > \frac{1}{2}.$$

Lemma (Le–P, FCAA 24 (2021), 1507–1534)

If $\alpha \in (0,2]$ and $c \in (0,\infty)$, then there exists $m_{c,\alpha} > 0$ such that $G_{c,\alpha}(x) \ge m_{c,\alpha}$ for every $x \in [-\pi,\pi]$.

• Operator A in the positive cone From the stationary equation

$$(c+(-\Delta)^{\alpha/2})\psi=\psi^2,$$

we define the nonlinear operator

$$A_{c,\alpha}(\psi) := (c+D^{lpha})^{-1}\psi^2 \Rightarrow A_{c,\alpha}(\psi)(x) = \int_{-\pi}^{\pi} G_{c,\alpha}(x-s)\psi(s)^2 ds,$$

and the positive cone in L_{per}^2

$$P_{c,\alpha} := \left\{ \psi \in L^2_{per} : \quad \psi(x) \geq \frac{m_{c,\alpha}}{M_{c,\alpha}} \|\psi\|_{L^2_{per}}, \quad x \in \mathbb{T} \right\}.$$

A_{c,α} is bounded and continuous in L²_{per} (Young's inequality),
 A_{c,α} is compact as it is a limit of compact operators A^(N)_{c,α}, where A^(N)_{c,α} are gives by 2N + 1 Fourier partial sum.

Existence of fixed point in the cone Let

$$B_r := \{ \psi \in L^2_{per} : \|\psi\|_{L^2_{per}} < r \}$$

By Kranoselskii's fixed point theorem if there exists r_{-} and r_{+} such that

$$\begin{aligned} \|A_{c,\alpha}(\psi)\|_{L^{2}_{per}} < \|\psi\|_{L^{2}_{per}}, \quad \psi \in P_{c,\alpha} \cap \partial B_{r_{-}} \\ \|A_{c,\alpha}(\psi)\|_{L^{2}_{per}} > \|\psi\|_{L^{2}_{per}}, \quad \psi \in P_{c,\alpha} \cap \partial B_{r_{+}} \end{aligned}$$

then, $A_{c, \alpha}$ has fixed point in $P_{c, \alpha} \cap B_{r_+} ackslash B_{r_-}$.

- r_{-} is small enough so that $r_{-}M_{c,\alpha} < 1$
- r_+ is large enough so that $\sqrt{2\pi}r_+m_{c,lpha}>1$
- $r_- < r_+$ because $\sqrt{2\pi}m_{c,\alpha} \leq M_{c,\alpha}$.

By bootstrapping argument, if $\psi \in L^2_{per}$, then $\psi \in H^\infty_{per}$.

However, the positive fixed point may not have single maximum/minimum on \mathbb{T} since the constant solution $\psi = c$ is a fixed point of $A_{c,\alpha}$ in $P_{c,\alpha} \forall c > 0$.

${\ensuremath{\textcircled{}}}$ Distinguishing ψ from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point ψ is defined as $(-1)^N$, where N is the number of unstable eigenvalues of $A'_{c,\alpha}(\psi)$ outside the unit disk with the account of the multiplicities.

For the constant solution $\psi = c$, the linearized operator

$$\mathcal{A}_{c,lpha}'(c)=2c(c+(-\Delta)^{lpha/2})^{-1}:L^2_{per}
ightarrow L^2_{per}$$

in the space of even functions has N = k + 1 unstable eigenvalues outside the unit disk for $c \in (k^{\alpha}, (k+1)^{\alpha})$ with $k \in \mathbb{N}$. The index of the constant solution changes sign every time c crosses the eigenvalue of $(-\Delta)^{\alpha/2}$ at k^{α} , $k \in \mathbb{N}$.

・ コ マ ・ 雪 マ ・ 目 マ ・ 日 マ

Number of unstable eigenvalues along solution branches

Figure: Schematic representation of bifurcations from the constant fixed point $\psi = c$.

Positive fixed point ψ bifurcates for c > 1 if $\alpha > \alpha_0$. The linearized operator at ψ is given by

$$A_{c,\alpha}'(\psi) = 2(c + (-\Delta)^{\alpha/2})^{-1}\psi = Id - (c + (-\Delta)^{\alpha/2})^{-1}\mathcal{L},$$

where $\mathcal{L} := c + D^{\alpha} - 2\psi$ is the linearized operator.

• For $c \gtrsim 1$, $n(\mathcal{L}) = 1$ holds for $\alpha > \alpha_0$ by the perturbation argument.

• For larger c > 1, $n(\mathcal{L}) = 1$ remains true as long as $z(\mathcal{L}) = 1$.

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$(c+(-\Delta)^{lpha/2})\psi=\psi^2, \quad \Rightarrow \quad \psi=A_{c,lpha}(\psi):=(c+(-\Delta)^{lpha/2})^{-1}\psi^2.$$

Recall that the linearized operator

$$A_{c,\alpha}'(\psi) = 2(c + (-\Delta)^{\alpha/2})^{-1}\psi = Id - (c + (-\Delta)^{\alpha/2})^{-1}\mathcal{L},$$

has N = 1 unstable eigenvalue outside the unit disk.

 \Rightarrow Fixed-point iterations diverge from the periodic wave solution.

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$(c+(-\Delta)^{\alpha/2})\psi=\psi^2, \quad \Rightarrow \quad \psi=A_{c,\alpha}(\psi):=(c+(-\Delta)^{\alpha/2})^{-1}\psi^2.$$

Recall that the linearized operator

$$A_{c,\alpha}'(\psi) = 2(c + (-\Delta)^{\alpha/2})^{-1}\psi = Id - (c + (-\Delta)^{\alpha/2})^{-1}\mathcal{L},$$

has N = 1 unstable eigenvalue outside the unit disk.

 \Rightarrow Fixed-point iterations diverge from the periodic wave solution.

V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:

$$w_{n+1} = T_{c,\alpha}(w_n) := [M(w_n)]^2 (c + (-\Delta)^{\alpha/2})^{-1} (w_n^2), \quad n \in \mathbb{N}_{+}$$

where

$$M(w) := \frac{\langle (c + (-\Delta)^{\alpha/2})w, w \rangle}{\langle w^2, w \rangle}.$$

If $w = \psi$, then $M(\psi) = 1$ and $T_{c,\alpha}(\psi) = \psi$.

For every c > 1 and $\alpha \in (\alpha_0, 2]$, the periodic wave solution $\psi \in H^{\alpha}_{per}$ to $(c + (-\Delta)^{\alpha/2})\psi = \psi^2$,

is an asymptotically stable fixed point of $T_{c,\alpha}$ as long as $z(\mathcal{L}) = 1$.

For every c > 1 and $\alpha \in (\alpha_0, 2]$, the periodic wave solution $\psi \in H^{\alpha}_{per}$ to $(c + (-\Delta)^{\alpha/2})\psi = \psi^2$,

is an asymptotically stable fixed point of $T_{c,\alpha}$ as long as $z(\mathcal{L}) = 1$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as $\phi = \psi - c$ satisfying $(c - (-\Delta)^{\alpha/2})\phi + \phi^2 = 0$?

For every c > 1 and $\alpha \in (\alpha_0, 2]$, the periodic wave solution $\psi \in H^{\alpha}_{per}$ to $(c + (-\Delta)^{\alpha/2})\psi = \psi^2$,

is an asymptotically stable fixed point of $T_{c,\alpha}$ as long as $z(\mathcal{L}) = 1$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as $\phi = \psi - c$ satisfying $(c - (-\Delta)^{\alpha/2})\phi + \phi^2 = 0$?

Answer:

- **(**) ϕ is an unstable fixed point of $T_{c,\alpha}$ for $\alpha \in (\alpha_0, \alpha_1)$, where $\alpha_1 \approx 1.322$
- ϕ is an asymptotically stable fixed point for $\alpha \in (\alpha_1, 2]$ if $c \gtrsim 1$ and is unstable if $c \gg 1$.

<ロト <回 > < 回 > < 回 > < 回 > < 三 > 二 三

Iterations of $(c - (-\Delta)^{\alpha/2})\phi + \phi^2 = 0$ with c = 2 and $\alpha = 2$

Figure: (Left) The last iteration versus x. (Right) Computational errors versus n.

Iterations of $(c - (-\Delta)^{\alpha/2})\phi + \phi^2 = 0$ with c = 1.1 and $\alpha = 1$

Figure: (Left) The last four iterations versus x. (Right) Computational errors versus n.

Iterations of $(c+(-\Delta)^{lpha/2})\psi=\psi^2$ with c=1.6 and lpha=1

Figure: (Left) The last iteration versus x. (Right) Computational errors versus n.

Summary

For the periodic waves in the fractional KdV equation satisfying

$$(c+(-\Delta)^{\alpha/2})\psi-\psi^2+b=0,$$

we have showed the following:

- Periodic waves with zero-mean profile ψ ∈ H^α_{per} can be obtained from a new variational problem for every c ∈ (-1,∞) and α ∈ (¹/₃,2].
- **2** The dependence $b = b(c) = \frac{1}{2\pi} \oint \psi^2 dx$ contains information about the fold bifurcation point and the stability of the periodic waves in the time evolution.
- For b = 0, the profile ψ is positive for every c > 1 and $\alpha > \alpha_0 \approx 0.585$ as long as $n(\mathcal{L}) = 1$ and $z(\mathcal{L}) = 1$
- Petviashvili's method converges for positive ψ and generally diverges for the sign-indefinite ϕ despite the simple connection $\phi = \psi c$.

Thank you! Questions???

ロトス部トスモトスモトニモ