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Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

ut + 2uux = (−∆)α/2ux ,

where the fractional Laplacian (−∆)α/2 is defined by

̂(−∆)α/2u(ξ) = |ξ|α û(ξ), ξ ∈ R.

Integrable cases: Benjamin–Ono equation (α = 1) and KdV equation (α = 2).
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The fractional KdV is a popular model for dynamics of waves in shallow fluids:

ut + 2uux = (−∆)α/2ux ,

where the fractional Laplacian (−∆)α/2 is defined by

̂(−∆)α/2u(ξ) = |ξ|α û(ξ), ξ ∈ R.

Integrable cases: Benjamin–Ono equation (α = 1) and KdV equation (α = 2).

Here we consider 2π-periodic solutions on T := [−π, π], so that ξ ∈ Z.

1 New variational formulation for travelling periodic waves.

2 Positivity of periodic travelling wave profiles.

3 Convergence of Petviashvili’s method for fixed-point iterations
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Background

Well-posedness in Sobolev spaces:

F. Linares, D. Pilod, J.C. Saut (2014)
L. Molinet, D. Pilod, S. Vento (2018)

Existence and modulation stability of periodic waves by using

pertubative methods for α > 1
2

in M. Johnson (2013),
variational methods for α > 1

3
in V.Hur, M. Johnson (2015)

fixed-point methods in H. Chen (2004) and H. Chen, J. Bona (2013)

Existence and stability of solitary waves in J. Angulo (2018):

stable for 1
2
< α ≤ 2

unstable for 1
3
< α < 1

2

Convergence of Petviashvili’s method near periodic waves in

J. Alvarez, A. Duran (2017)
D. Clamond, D. Dutykh (2018)
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Particular family of travelling periodic waves

The periodic travelling wave solution takes the form

u(x , t) = ψ(x − ct).

Integrating the equation with zero constant yields the boundary value problem

(c + (−∆)α/2)ψ = ψ2, ψ ∈ Hα
per .

Advantage: If c + (−∆)α/2 is positive, this can be used for fixed-point iterations.
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Particular family of travelling periodic waves

The periodic travelling wave solution takes the form

u(x , t) = ψ(x − ct).

Integrating the equation with zero constant yields the boundary value problem

(c + (−∆)α/2)ψ = ψ2, ψ ∈ Hα
per .

Advantage: If c + (−∆)α/2 is positive, this can be used for fixed-point iterations.

With the transformation
ψ(x) = c + φ(x),

the same boundary-value problem can be written as

(c − (−∆)α/2)φ+ φ2 = 0, φ ∈ Hα
per .

Advantage: if c − (−∆)α/2 vanishes, this can be used for local bifurcation theory.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(c − (−∆)α/2)φ+ φ2 = 0, φ ∈ Hα
per ,

with the spectrum σ(c − (−∆)α/2) = {c , c − 1, c − 2α, . . . }
and Fourier modes {1, e±ix , e±2ix , . . . }.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(c − (−∆)α/2)φ+ φ2 = 0, φ ∈ Hα
per ,

with the spectrum σ(c − (−∆)α/2) = {c , c − 1, c − 2α, . . . }
and Fourier modes {1, e±ix , e±2ix , . . . }.

Theorem. For every α > 1
2 , there exists a locally unique, even, single-lobe solution

φ ∈ Hα
per bifurcating from zero solution. The wave profile φ and the wave speed c

are real analytic in wave amplitude a and satisfy the following Stokes expansions

φ = a cos(x) + a2φ2(x) + a3φ3(x) +O(a4),

c = 1 + c2a
2 +O(a4).

with

φ2(x) = −1

2
+

1

2(2α − 1)
cos(2x) and c2 = 1− 1

2(2α − 1)
.
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Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

(c − (−∆)α/2)φ+ φ2 = 0, φ ∈ Hα
per ,

with the spectrum σ(c − (−∆)α/2) = {c , c − 1, c − 2α, . . . }
and Fourier modes {1, e±ix , e±2ix , . . . }.

Theorem. For every α > 1
2 , there exists a locally unique, even, single-lobe solution

φ ∈ Hα
per bifurcating from zero solution. The wave profile φ and the wave speed c

are real analytic in wave amplitude a and satisfy the following Stokes expansions

φ = a cos(x) + a2φ2(x) + a3φ3(x) +O(a4),

c = 1 + c2a
2 +O(a4).

with

φ2(x) = −1

2
+

1

2(2α − 1)
cos(2x) and c2 = 1− 1

2(2α − 1)
.

Threshold behavior: c2 > 0 for α > α0 and c2 < 0 for α < α0,
where α0 = log 3

log 2 − 1 ≈ 0.585.
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Stationary equation for travelling periodic waves

Periodic travelling wave u(x , t) = ψ(x − ct) satisfies the stationary equation:

(c + (−∆)α/2)ψ − ψ2 + b = 0,

where b is an integration constant.
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Stationary equation for travelling periodic waves

Periodic travelling wave u(x , t) = ψ(x − ct) satisfies the stationary equation:

(c + (−∆)α/2)ψ − ψ2 + b = 0,

where b is an integration constant.

The stationary equation is the Euler–Lagrange equation for the action
G (u) = E (u) + cF (u) + bM(u), where

E (u) =
1

2

∮
((−∆)α/4u)2 − 1

3

∮
u3dx , F (u) =

1

2

∮
u2dx , M(u) =

∮
u dx .

Standard variational method: to find minimizers of energy E (u) subject to the
fixed momentum F (u) and mass M(u).
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Drawbacks of the standard variational method

Due to Galilean transformation ψ(x) = a + ϕ(x) with a := 1
2 (c −

√
c2 + 4b),

ψ solves (c + (−∆)α/2)ψ − ψ2 + b = 0 if and only if ϕ solves

(ω + (−∆)α/2)ϕ− ϕ2 = 0, ω :=
√

c2 + 4b.

ϕ is a minimizer of energy E (u) at fixed momentum F (u) = µ.
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New variational formulation

Find minimizers of the quadratic energy

Bc(u) :=
1

2

∮ [
((−∆)α/4u)2 + cu2

]
dx

subject to fixed cubic energy and zero-mean constraint:

Y :=

{
u ∈ H

α
2
per :

∮
u3dx = 1,

∮
udx = 0

}
.

Theorem (Natali–Le–P., Nonlinearity 33 (2020), 1956)

There exists a constrained minimizer u∗ ∈ Y for every α > 1
3 and every c > −1.

Minimizer u∗ yields the periodic wave ψ ∈ H
α
2
per of the stationary equation

(c + (−∆)α/2)ψ − ψ2 + b(c) = 0, b(c) =
1

2π

∮
ψ2dx =

1

π
F (ψ).

Dmitry E. Pelinovsky McMaster University 8 / 26



Advantages of the new variational method

No fold point appears for α < α0:

c = −1 +
1

2(2α − 1)
a2 +O(a4), b(c) =

1

2
a2 +O(a4).
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Advantages of the new variational method

No fold point appears for α < α0:

c = −1 +
1

2(2α − 1)
a2 +O(a4), b(c) =

1

2
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Stability theory

Stability of the periodic wave satisfying (c + (−∆)α/2)ψ − ψ2 + b = 0 is
determined by the linearized operator L : Hα

per ⊂ L2per 7→ L2per given by

L = (−∆)α/2 + c − 2ψ.

n(L) = number of negative eigenvalues, z(L) = multiplicity of zero eigenvalue.
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Stability theory

Stability of the periodic wave satisfying (c + (−∆)α/2)ψ − ψ2 + b = 0 is
determined by the linearized operator L : Hα

per ⊂ L2per 7→ L2per given by

L = (−∆)α/2 + c − 2ψ.

n(L) = number of negative eigenvalues, z(L) = multiplicity of zero eigenvalue.

The self-adjoint operator enjoys Sturm’s oscillation theory.

Lemma (Hur–Johnson, 2015)

Assume α ∈ ( 1
3 , 2] and that ψ ∈ Hα

per admits only one maximum on T. An
eigenfunction of L for the n-th eigenvalue changes its sign at most 2(n− 1) times.

This property and the variational formulation implies that

1 ≤ n(L) ≤ 2, 1 ≤ z(L) ≤ 2.
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Stability theory

Stability of the periodic wave satisfying (c + (−∆)α/2)ψ − ψ2 + b = 0 is
determined by the linearized operator L : Hα

per ⊂ L2per 7→ L2per given by

L = (−∆)α/2 + c − 2ψ.

n(L) = number of negative eigenvalues, z(L) = multiplicity of zero eigenvalue.

The kernel of L can be characterized from the following criterion.

Lemma (Hur–Johnson, 2015)

Assume α ∈ ( 1
3 , 2] and that ψ ∈ Hα

per admits only one maximum on T.

Ker(L) = span(∂xψ) if and only if {1, ψ, ψ2} ∈ Range(L).

If ψ is C 1 with respect to (c , b), then

L∂bψ = −1, L∂cψ = −ψ, Lψ = −ψ2 − b,

so that z(L) = 1. However, ψ is not C 1 at the fold bifurcation!

Dmitry E. Pelinovsky McMaster University 10 / 26



Stability theory

Stability of the periodic wave satisfying (c + (−∆)α/2)ψ − ψ2 + b = 0 is
determined by the linearized operator L : Hα

per ⊂ L2per 7→ L2per given by

L = (−∆)α/2 + c − 2ψ.

n(L) = number of negative eigenvalues, z(L) = multiplicity of zero eigenvalue.

Theorem (Haragus-Kapitula, 2008)

The periodic wave with profile ψ ∈ Hα
per is stable in the time evolution of the KdV

equation if
n(L|{1,ψ}⊥) = 0, z(L|{1,ψ}⊥) = 1

and unstable if
n(L|{1,ψ}⊥) = 1.

It is dificult to compute n(L|{1,ψ}⊥) and z(L|{1,ψ}⊥) if n(L) = 2 or z(L) = 2.
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New approach in the stability theory

Assume that the minimizer of

Bc(u) :=
1

2

∮ [
((−∆)α/4u)2 + cu2

]
dx

subject to
∮
u3dx = 1 an

∮
udx = 0 is non-degenerate.
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New approach in the stability theory

Assume that the minimizer of

Bc(u) :=
1

2

∮ [
((−∆)α/4u)2 + cu2

]
dx

subject to
∮
u3dx = 1 an

∮
udx = 0 is non-degenerate.

Ker(L|{1,ψ2}⊥) = span(∂xψ) and the mapping c 7→ ψ ∈ Hα
per is C 1 in c so that

L1 = −2ψ + c , Lψ = −ψ2 − b(c), L∂cψ = −ψ − b′(c).

and

n(L) =

{
1, c + 2b′(c) ≥ 0,
2, c + 2b′(c) < 0,

z(L) =

{
1, c + 2b′(c) 6= 0,
2, c + 2b′(c) = 0,
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New approach in the stability theory

Assume that the minimizer of

Bc(u) :=
1

2

∮ [
((−∆)α/4u)2 + cu2

]
dx

subject to
∮
u3dx = 1 an

∮
udx = 0 is non-degenerate.

Theorem (Natali–Le-P, 2020)

The periodic wave ψ ∈ Hα
per is stable if b′(c) > 0 and unstable if b′(c) < 0.
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Comparison between standard and new methods

‖ψ‖2L2 versus either ω (left) or c (right) for α = 0.6:
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The family of periodic waves is stable.
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Comparison between standard and new methods

‖ψ‖2L2 versus either ω (left) or c (right) for α = 0.5:
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Comparison between standard and new methods

‖ψ‖2L2 versus c for α = 0.45:
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For α < 0.5, there exists c0 = c0(α) such that the family of periodic orbits is
stable for c ∈ (−1, c0) and unstable for c ∈ (c0,∞).
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Positivity of periodic waves

Here we consider positivity of the profile ψ ∈ Hα
per satisfying

(c + (−∆)α/2)ψ = ψ2, c > 1, b = 0.

ψ > 0 for every c > 1 in the integrable cases:

BO equation with α = 1:

ψ(x) =
sinh γ

cosh γ − cos x
, c = coth γ.

KdV equation α = 2:

ψ(x) =
2K (k)2

π2

[√
1− k2 + k4 + 1− 2k2 + 3k2cn2

(
K (k)

π
x ; k

)]
with c = 4K(k)2

π2

√
1− k2 + k4.

Question: Is ψ > 0 for every c > 1 and every α?
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Main result

Theorem (Le–P, SIMA 51 (2019) 2850–2883)

For every c > 1 and α ∈ (α0, 2], ψ(x) > 0 on T as long as z(L) = 1.

The assumption is only true for α > α0 ≈ 0.585 because the fold bifurcation point
with z(L) = 2 exists for α < α0.
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Proof of positivity: Step 1

Green’s function for c + (−∆)α/2 is obtained from the solution of

(c + (−∆)α/2)ϕ(x) = h, h ∈ L2per ,

in the convolution form

ϕ(x) =

∫ π

−π
G (x − s)h(s)ds

or in Fourier form,

Gc,α(x) =
1

2π

∑
n∈Z

e inx

c + |n|α
⇒ ‖Gc,α‖L2

per
≤ Mc,α, α >

1

2
.

Lemma (Le–P, FCAA 24 (2021), 1507–1534)

If α ∈ (0, 2] and c ∈ (0,∞), then there exists mc,α > 0 such that Gc,α(x) ≥ mc,α

for every x ∈ [−π, π].
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Proof of positivity: Step 2

Operator A in the positive cone
From the stationary equation

(c + (−∆)α/2)ψ = ψ2,

we define the nonlinear operator

Ac,α(ψ) := (c + Dα)−1ψ2 ⇒ Ac,α(ψ)(x) =

∫ π

−π
Gc,α(x − s)ψ(s)2ds,

and the positive cone in L2per

Pc,α :=

{
ψ ∈ L2per : ψ(x) ≥ mc,α

Mc,α
‖ψ‖L2

per
, x ∈ T

}
.

i) Ac,α is bounded and continuous in L2
per (Young’s inequality),

ii) Ac,α is compact as it is a limit of compact operators A
(N)
c,α,

where A
(N)
c,α are gives by 2N + 1 Fourier partial sum.

iii) Ac,α(ψ) is closed in Pc,α: Ac,α(ψ) ≥ mc,α‖ψ‖2L2per ≥
mc,α

Mc,α
‖Ac,α(ψ)‖L2per .
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Proof of positivity: Step 3

3) Existence of fixed point in the cone
Let

Br := {ψ ∈ L2per : ‖ψ‖L2
per
< r}

By Kranoselskii’s fixed point theorem if there exists r− and r+ such that

‖Ac,α(ψ)‖L2
per
< ‖ψ‖L2

per
, ψ ∈ Pc,α ∩ ∂Br−

‖Ac,α(ψ)‖L2
per
> ‖ψ‖L2

per
, ψ ∈ Pc,α ∩ ∂Br+

then, Ac,α has fixed point in Pc,α ∩ Br+\Br− .

r− is small enough so that r−Mc,α < 1
r+ is large enough so that

√
2πr+mc,α > 1

r− < r+ because
√

2πmc,α ≤ Mc,α.

By bootstrapping argument, if ψ ∈ L2per , then ψ ∈ H∞per .

However, the positive fixed point may not have single maximum/minimum on
T since the constant solution ψ = c is a fixed point of Ac,α in Pc,α ∀c > 0.
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Proof of positivity: Step 4

4) Distinguishing ψ from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point ψ is defined as (−1)N , where N is
the number of unstable eigenvalues of A′c,α(ψ) outside the unit disk with the
account of the multiplicities.

For the constant solution ψ = c , the linearized operator

A′c,α(c) = 2c(c + (−∆)α/2)−1 : L2per → L2per

in the space of even functions has N = k + 1 unstable eigenvalues outside the unit
disk for c ∈ (kα, (k + 1)α) with k ∈ N. The index of the constant solution
changes sign every time c crosses the eigenvaue of (−∆)α/2 at kα, k ∈ N.
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Number of unstable eigenvalues along solution branches
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Figure: Schematic representation of bifurcations from the constant fixed point ψ = c.
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No bifurcations along the single-lobe solutions

Positive fixed point ψ bifurcates for c > 1 if α > α0. The linearized operator at ψ
is given by

A′c,α(ψ) = 2(c + (−∆)α/2)−1ψ = Id − (c + (−∆)α/2)−1L,

where L := c + Dα − 2ψ is the linearized operator.

For c & 1, n(L) = 1 holds for α > α0 by the perturbation argument.

For larger c > 1, n(L) = 1 remains true as long as z(L) = 1.
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Petviashvili method for fixed point iterations

Recall the stationary equation for ψ:

(c + (−∆)α/2)ψ = ψ2, ⇒ ψ = Ac,α(ψ) := (c + (−∆)α/2)−1ψ2.

Recall that the linearized operator

A′c,α(ψ) = 2(c + (−∆)α/2)−1ψ = Id − (c + (−∆)α/2)−1L,

has N = 1 unstable eigenvalue outside the unit disk.
⇒ Fixed-point iterations diverge from the periodic wave solution.
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Petviashvili method for fixed point iterations

Recall the stationary equation for ψ:

(c + (−∆)α/2)ψ = ψ2, ⇒ ψ = Ac,α(ψ) := (c + (−∆)α/2)−1ψ2.

Recall that the linearized operator

A′c,α(ψ) = 2(c + (−∆)α/2)−1ψ = Id − (c + (−∆)α/2)−1L,

has N = 1 unstable eigenvalue outside the unit disk.
⇒ Fixed-point iterations diverge from the periodic wave solution.

V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:

wn+1 = Tc,α(wn) := [M(wn)]2 (c + (−∆)α/2)−1(w2
n ), n ∈ N,

where

M(w) :=
〈(c + (−∆)α/2)w ,w〉

〈w2,w〉
.

If w = ψ, then M(ψ) = 1 and Tc,α(ψ) = ψ.
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Main result

Theorem (Le–P, SIMA 51 (2019) 2850–2883)

For every c > 1 and α ∈ (α0, 2], the periodic wave solution ψ ∈ Hα
per to

(c + (−∆)α/2)ψ = ψ2,

is an asymptotically stable fixed point of Tc,α as long as z(L) = 1.
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Main result

Theorem (Le–P, SIMA 51 (2019) 2850–2883)

For every c > 1 and α ∈ (α0, 2], the periodic wave solution ψ ∈ Hα
per to

(c + (−∆)α/2)ψ = ψ2,

is an asymptotically stable fixed point of Tc,α as long as z(L) = 1.

Question: Does the Petviashvili’s method converge for sign-indefinite wave such
as φ = ψ − c satisfying (c − (−∆)α/2)φ+ φ2 = 0?
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For every c > 1 and α ∈ (α0, 2], the periodic wave solution ψ ∈ Hα
per to

(c + (−∆)α/2)ψ = ψ2,

is an asymptotically stable fixed point of Tc,α as long as z(L) = 1.

Question: Does the Petviashvili’s method converge for sign-indefinite wave such
as φ = ψ − c satisfying (c − (−∆)α/2)φ+ φ2 = 0?

Answer:

i) φ is an unstable fixed point of Tc,α for α ∈ (α0, α1), where α1 ≈ 1.322

ii) φ is an asymptotically stable fixed point for α ∈ (α1, 2] if c & 1 and is
unstable if c � 1.
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Iterations of (c − (−∆)α/2)φ+ φ2 = 0 with c = 2 and α = 2
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Figure: (Left) The last iteration versus x . (Right) Computational errors versus n.
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Iterations of (c − (−∆)α/2)φ+ φ2 = 0 with c = 1.1 and α = 1
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Figure: (Left) The last four iterations versus x . (Right) Computational errors versus n.
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Iterations of (c + (−∆)α/2)ψ = ψ2 with c = 1.6 and α = 1
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Figure: (Left) The last iteration versus x . (Right) Computational errors versus n.
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Summary

For the periodic waves in the fractional KdV equation satisfying

(c + (−∆)α/2)ψ − ψ2 + b = 0,

we have showed the following:

1 Periodic waves with zero-mean profile ψ ∈ Hα
per can be obtained from a new

variational problem for every c ∈ (−1,∞) and α ∈
(
1
3 , 2
]
.

2 The dependence b = b(c) = 1
2π

∮
ψ2dx contains information about the fold

bifurcation point and the stability of the periodic waves in the time evolution.

3 For b = 0, the profile ψ is positive for every c > 1 and α > α0 ≈ 0.585 as
long as n(L) = 1 and z(L) = 1

4 Petviashvili’s method converges for positive ψ and generally diverges for the
sign-indefinite φ despite the simple connection φ = ψ − c .

Thank you! Questions???

Dmitry E. Pelinovsky McMaster University 26 / 26


