Periodic Waves in Fractional KdV Equation

Dmitry E Pelinovsky Joint work with Uyen Le and Fábio Natali

Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$
u_{t}+2 u u_{x}-\left(D^{\alpha} u\right)_{x}=0,
$$

where the fractional derivative operator D_{α} is defined by

$$
\widehat{D^{\alpha} u(\xi)}=|\xi|^{\alpha} \hat{u}(\xi), \quad \xi \in \mathbb{R} .
$$

Integrable cases: Benjamin-Ono equation $(\alpha=1)$ and KdV equation $(\alpha=2)$.

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$
u_{t}+2 u u_{x}-\left(D^{\alpha} u\right)_{x}=0,
$$

where the fractional derivative operator D_{α} is defined by

$$
\widehat{D^{\alpha} u(\xi)}=|\xi|^{\alpha} \hat{u}(\xi), \quad \xi \in \mathbb{R} .
$$

Integrable cases: Benjamin-Ono equation ($\alpha=1$) and KdV equation ($\alpha=2$).
Here we consider 2π-periodic solutions on $\mathbb{T}:=(-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.
(3) Positivity of periodic travelling wave solution
(2) Convergence of Petviashvili method for fixed-point iterations
(3) New variational formulation of periodic wave solutions

Background

- Well-posedness in Sobolev spaces:
- F. Linares, D. Pilod, J.C. Saut (2014)
- L. Molinet, D. Pilod, S. Vento (2018)
- Existence and modulation stability of periodic waves by using
- pertubative methods in M. Johnson (2013),
- variational methods in H. Chen, J. Bona (2013), V.Hur, M. Johnson (2015)
- fixed-point methods in H. Chen (2004)
- Existence and stability of solitary waves in J. Angulo (2018):
- stable for $\frac{1}{2}<\alpha \leq 2$
- unstable for $\frac{1}{3}<\alpha<\frac{1}{2}$
- Convergence of Petviashvili's method near periodic waves in
- J. Alvarez, A. Duran (2017)
- D. Clamond, D. Dutykh (2018)

Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form

$$
u(x, t)=\psi(x-c t), \quad c>0 .
$$

Integrating the equation with zero constant yields the boundary value problem

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2}, \quad \psi \in H_{p e r}^{\alpha}(-\pi, \pi) .
$$

Advantage: $c+D^{\alpha}$ is positive (useful for fixed-point iterations).

Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form

$$
u(x, t)=\psi(x-c t), \quad c>0 .
$$

Integrating the equation with zero constant yields the boundary value problem

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2}, \quad \psi \in H_{p e r}^{\alpha}(-\pi, \pi) .
$$

Advantage: $c+D^{\alpha}$ is positive (useful for fixed-point iterations).
The left propagating wave $u(x, t)=\phi(x+c t)$ with same $c>0$ is related to ψ by

$$
\phi(x)=\psi(x)-c,
$$

and satisfies the boundary value problem

$$
\left(c-D^{\alpha}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha}(-\pi, \pi) .
$$

Advantage: $c-D^{\alpha}$ may vanish (useful for local bifurcation theory).

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$
\left(c-D^{\alpha}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha}(-\pi, \pi),
$$

with $\sigma\left(c-D^{\alpha}\right)=\left\{c, c-1, c-2^{\alpha}, c-3^{\alpha}, \ldots\right\}$.

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$
\left(c-D^{\alpha}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha}(-\pi, \pi),
$$

with $\sigma\left(c-D^{\alpha}\right)=\left\{c, c-1, c-2^{\alpha}, c-3^{\alpha}, \ldots\right\}$.
Theorem. For every $\alpha>\frac{1}{2}$, there exists a locally unique even solution ϕ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$
\begin{aligned}
& \phi=a \cos (x)+a^{2} \phi_{2}(x)+a^{3} \phi_{3}(x)+\mathcal{O}\left(a^{4}\right), \\
& c=1+c_{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
\end{aligned}
$$

with

$$
\phi_{2}(x)=-\frac{1}{2}+\frac{1}{2\left(2^{\alpha}-1\right)} \cos (2 x) \text { and } c_{2}=1-\frac{1}{2\left(2^{\alpha}-1\right)} .
$$

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$
\left(c-D^{\alpha}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha}(-\pi, \pi),
$$

with $\sigma\left(c-D^{\alpha}\right)=\left\{c, c-1, c-2^{\alpha}, c-3^{\alpha}, \ldots\right\}$.
Theorem. For every $\alpha>\frac{1}{2}$, there exists a locally unique even solution ϕ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$
\begin{aligned}
& \phi=a \cos (x)+a^{2} \phi_{2}(x)+a^{3} \phi_{3}(x)+\mathcal{O}\left(a^{4}\right), \\
& c=1+c_{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
\end{aligned}
$$

with

$$
\phi_{2}(x)=-\frac{1}{2}+\frac{1}{2\left(2^{\alpha}-1\right)} \cos (2 x) \text { and } c_{2}=1-\frac{1}{2\left(2^{\alpha}-1\right)} .
$$

Note the threshold behavior: $c_{2}>0$ for $\alpha>\alpha_{0}$ and $c_{2}<0$ for $\alpha<\alpha_{0}$, where $\alpha_{0} \approx 0.585$.

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$
u_{t}+2 u u_{x}-\left(D^{\alpha} u\right)_{x}=0
$$

where the fractional derivative operator D_{α} is defined by

$$
\widehat{D^{\alpha} u(\xi)}=|\xi|^{\alpha} \hat{u}(\xi), \quad \xi \in \mathbb{R} .
$$

Integrable cases: Benjamin-Ono equation ($\alpha=1$) and KdV equation ($\alpha=2$).

Here we consider 2π-periodic solutions on $\mathbb{T}:=(-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.
(1) Positivity of periodic travelling wave solution
(2) Convergence of Petviashvili method for fixed-point iterations
(- New variational formulation of periodic wave solutions

Positivity of ψ

ϕ is not positive. Recall the relation between ψ and ϕ

$$
\psi(x)=\phi(x)+c, \quad x \in[-\pi, \pi] .
$$

Since $c \approx 1$ and $\phi \approx 0$, then ψ is positive.

In the integrable cases, ψ remains positive for every $c>1$, e.g.

$$
\alpha=1: \quad \psi(x)=\frac{\sinh \gamma}{\cosh \gamma-\cos x}, \quad c=\operatorname{coth} \gamma .
$$

Question: Is ψ positive for every $c>1$ if $\alpha>\alpha_{0}$?

Main result on positivity of ψ

Theorem (Le-P, 2019)

For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right]$, there exists an even single-lobe solution $\psi \in H_{p e r}^{\alpha}(-\pi, \pi)$ to the BVP

$$
\left(c+D_{\alpha}\right) \psi=\psi^{2} .
$$

such that $\psi(x)>0$ on $[-\pi, \pi]$.

We say the periodic wave has single-lobe profile if there is only one maximum and minimum of ψ on the period.

Small-amplitude waves bifurcating from zero at $c=1$ are single-lobe solutions.

Proof of positivity of ψ : Step 1

Green's function for $c+D^{\alpha}$ is obtained from the solution of

$$
\left(c+D^{\alpha}\right) \varphi(x)=h, \quad h \in L_{p e r}^{2}(-\pi, \pi),
$$

in the convolution form

$$
\varphi(x)=\int_{-\pi}^{\pi} G(x-s) h(s) d s
$$

or in Fourier form,

$$
G_{c, \alpha}(x)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} \frac{e^{i n x}}{c+|n|^{\alpha}} \Rightarrow\left\|G_{c, \alpha}\right\|_{L_{p e r}^{2}} \leq M_{c, \alpha}, \quad \alpha>1 / 2
$$

For $\alpha \leq 2$, the Greens function is strictly positive:

$$
G_{c, \alpha}(x) \geq m_{c, \alpha},
$$

Nieto (2010) for $\alpha \in(0,1)$; Bai-Lu (2005) for $\alpha \in(1,2)$.

Proof of positivity of ψ : Step 2

Operator A in the positive cone
From the BVP

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2},
$$

we define the nonlinear operator

$$
A_{c, \alpha}(\psi):=\left(c+D^{\alpha}\right)^{-1} \psi^{2} \Rightarrow A_{c, \alpha}(\psi)(x)=\int_{-\pi}^{\pi} G_{c, \alpha}(x-s) \psi(s)^{2} d s
$$

and the positive cone in $L_{p e r}^{2}(-\pi, \pi)$

$$
P_{c, \alpha}:=\left\{\psi \in L_{p e r}^{2}(-\pi, \pi): \psi(x) \geq \frac{m_{c, \alpha}}{M_{c, \alpha}}\|\psi\|_{L_{p e r}^{2}}, x \in[-\pi, \pi]\right\} .
$$

i) $A_{c, \alpha}$ is bounded and continuous in $L_{p e r}^{2}(-\pi, \pi)$ (Young's inequality),
ii) $A_{c, \alpha}$ is compact as it is a limit of compact operators $A_{c, \alpha}^{(N)}$, where $A_{c, \alpha}^{(N)}$ are gives by $2 N+1$ Fourier coefficients.
iii) $A_{c, \alpha}(\psi)$ is closed in $P_{c, \alpha}: A_{c, \alpha}(\psi) \geq m_{c, \alpha}\|\psi\|_{L_{\text {per }}^{2}}^{2} \geq \frac{m_{c, \alpha}}{M_{c, \alpha}}\left\|A_{c, \alpha}(\psi)\right\|_{L_{p e r}}$.

Proof of positivity of ψ : Step 3

3) Existence of fixed point in the cone

Let

$$
B_{r}:=\left\{\psi \in L_{p e r}^{2}(-\pi, \pi):\|\psi\|_{L_{p e r}^{2}}<r\right\}
$$

By Kranoselskii's fixed point theorem if there exists r_{-}and r_{+}such that

$$
\begin{array}{ll}
\left\|A_{c, \alpha}(\psi)\right\|_{L_{p e r}^{2}}^{2}<\|\psi\|_{L_{p e r}^{2}}, & \psi \in P_{c, \alpha} \cap \partial B_{r_{-}} \\
\left\|A_{c, \alpha}(\psi)\right\|_{L_{p e r}^{2}}>\|\psi\|_{L_{p e r}^{2}}, & \psi \in P_{c, \alpha} \cap \partial B_{r_{+}}
\end{array}
$$

then, $A_{c, \alpha}$ has fixed point in $P_{c, \alpha}$.

- r_{-}is small enough so that $r_{-} M_{c, \alpha}<1$
- r_{+}is large enough so that $\sqrt{2 \pi} r_{+} m_{c, \alpha}>1$
- $r_{-}<r_{+}$because $\sqrt{2 \pi} m_{c, \alpha} \leq M_{c, \alpha}$.

By bootstrapping argument, if $\psi \in L_{\text {per }}^{2}$, then $\psi \in H_{p e r}^{\infty}$.
Remark: The positive fixed point may not be single-lobe since the constant solution $\psi=c$ is always a positive fixed point of $A_{c, \alpha}$ in $P_{c, \alpha}$ for every $c>0$.

Proof of positivity of ψ : Step 4

4) Distinguishing ψ from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point ψ is defined as $(-1)^{N}$, where N is the number of unstable eigenvalues of $A_{c, \alpha}^{\prime}(\psi)$ outside the unit disk with the account of the multiplicities.

For the constant solution $\psi=c$, the linearized operator

$$
A_{c, \alpha}^{\prime}(c)=2 c\left(c+D^{\alpha}\right)^{-1}: L_{p e r}^{2} \rightarrow L_{p e r}^{2}
$$

in the space of even functions has $N=k+1$ unstable eigenvalues outside the unit disk for $c \in\left(k^{\alpha},(k+1)^{\alpha}\right)$ with $k \in \mathbb{N}$. The index of the constant solution changes sign every time c crosses the resonance at $k^{\alpha}, k \in \mathbb{N}$.

Number of unstable eigenvalues along solution branches

Figure: Schematic representation of bifurcations from the constant fixed point $\psi=\boldsymbol{c}$. Here $\alpha=2$.

No bifurcations along the single-lobe solutions

Positive single-lobe fixed point ψ bifurcates for $c>1$ if $\alpha>\alpha_{0}$. The linearized operator at ψ is given by

$$
A_{c, \alpha}^{\prime}(\psi)=2\left(c+D^{\alpha}\right)^{-1} \psi=I d-\left(c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha} .
$$

where $\mathcal{H}_{c, \alpha}:=c+D^{\alpha}-2 \psi$ is the linearization of the fractional KdV .

No bifurcations along the single-lobe solutions

Positive single-lobe fixed point ψ bifurcates for $c>1$ if $\alpha>\alpha_{0}$. The linearized operator at ψ is given by

$$
A_{c, \alpha}^{\prime}(\psi)=2\left(c+D^{\alpha}\right)^{-1} \psi=I d-\left(c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha}
$$

where $\mathcal{H}_{c, \alpha}:=c+D^{\alpha}-2 \psi$ is the linearization of the fractional KdV .

Lemma

$N=1$ is true for every $c>1$ along the branch of single-lobe solutions.

- For $c \gtrsim 1$, this can be shown by the perturbative argument (if $\alpha>\alpha_{0}$).
- For other $c>1$, we rely on the result of V.Hur and M.Johson (2015), $\operatorname{Ker}\left(\mathcal{H}_{c, \alpha}\right)=\operatorname{span}\left(\partial_{x} \psi\right) \Rightarrow$ if $N=1$ for $c \gtrsim 1$, then $N=1$ for $c>1$.

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$
u_{t}+2 u u_{x}-\left(D^{\alpha} u\right)_{x}=0
$$

where the fractional derivative operator D_{α} is defined by

$$
\widehat{D^{\alpha} u(\xi)}=|\xi|^{\alpha} \hat{u}(\xi), \quad \xi \in \mathbb{R} .
$$

Integrable cases: Benjamin-Ono equation ($\alpha=1$) and KdV equation ($\alpha=2$).

Here we consider 2π-periodic solutions on $\mathbb{T}:=(-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.
(1) Positivity of periodic travelling wave solution
(2) Convergence of Petviashvili method for fixed-point iterations
(3) New variational formulation of periodic wave solutions

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2}, \quad \Rightarrow \quad \psi=A_{c, \alpha}(\psi):=\left(c+D^{\alpha}\right)^{-1} \psi^{2} .
$$

However, the linearized operator

$$
A_{c, \alpha}^{\prime}(\psi)=2\left(c-D_{\alpha}\right)^{-1} \psi
$$

always has $N=1$ unstable eigenvalue outside the unit disk. \Rightarrow Fixed-point iterations diverge from the single-lobe periodic waves.

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2}, \quad \Rightarrow \quad \psi=A_{c, \alpha}(\psi):=\left(c+D^{\alpha}\right)^{-1} \psi^{2} .
$$

However, the linearized operator

$$
A_{c, \alpha}^{\prime}(\psi)=2\left(c-D_{\alpha}\right)^{-1} \psi
$$

always has $N=1$ unstable eigenvalue outside the unit disk.
\Rightarrow Fixed-point iterations diverge from the single-lobe periodic waves.
V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:

$$
w_{n+1}=T_{c, \alpha}\left(w_{n}\right):=\left[M_{c, \alpha}\left(w_{n}\right)\right]^{2}\left(c+D^{\alpha}\right)^{-1}\left(w_{n}^{2}\right), \quad n \in \mathbb{N},
$$

where

$$
M_{c, \alpha}(w):=\frac{\left\langle\left(c+D^{\alpha}\right) w, w\right\rangle}{\left\langle w^{2}, w\right\rangle}, \quad w \in H_{p e r}^{\alpha}(-\pi, \pi) .
$$

If $w=\psi$, then $M_{c, \alpha}(\psi)=1$ and $T_{c, \alpha}(\psi)=\psi$.

Main results on convergence of fixed-point iterations

Theorem (Le-P, 2019)

For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right]$, the single-lobe solution $\psi \in H_{p e r}^{\alpha}$ to

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2},
$$

is an asymptotically stable fixed point of $T_{c, \alpha}$.

Main results on convergence of fixed-point iterations

Theorem (Le-P, 2019)

For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right]$, the single-lobe solution $\psi \in H_{p e r}^{\alpha}$ to

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2},
$$

is an asymptotically stable fixed point of $T_{c, \alpha}$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as ϕ satisfying $\left(c-D^{\alpha}\right) \phi+\phi^{2}=0$?

Main results on convergence of fixed-point iterations

Theorem (Le-P, 2019)

For every $c>1$ and $\alpha \in\left(\alpha_{0}, 2\right]$, the single-lobe solution $\psi \in H_{p e r}^{\alpha}$ to

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2},
$$

is an asymptotically stable fixed point of $T_{c, \alpha}$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as ϕ satisfying $\left(c-D^{\alpha}\right) \phi+\phi^{2}=0$?

Answer:
i) ϕ is an unstable fixed point of $T_{c, \alpha}$ for $\alpha \in\left(\alpha_{0}, \alpha_{1}\right)$, where $\alpha_{1} \approx 1.322$
ii) ϕ is an asymptotically stable fixed point for $\alpha \in\left(\alpha_{1}, 2\right]$ if $c \gtrsim 1$ and is unstable if $c>1$ is large enough.

Proof of convergence

Consider again the linearized fixed-point iterations:

$$
\begin{aligned}
A_{c, \alpha}^{\prime}(\phi) & :=2\left(-c+D^{\alpha}\right)^{-1} \phi=I d-\left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha}, \\
\mathcal{H}_{c, \alpha} & :=-c+D^{\alpha}-2 \phi .
\end{aligned}
$$

Spectrum of $A_{c, \alpha}^{\prime}(\phi)$ is related to the spectrum of $\left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha}$:

$$
\mathcal{H}_{c, \alpha} v=\lambda\left(-c+D^{\alpha}\right) v, \quad v \in H_{p e r}^{\alpha}(-\pi, \pi),
$$

where both $\mathcal{H}_{c, \alpha}$ and $\left(-c+D^{\alpha}\right)$ are sign-indefinite.

Eigenvalues of $\left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha}$ are divided for $c \gtrsim 1$ into two sets $\left\{\sigma_{1}, \sigma_{2}\right\}$:

1) σ_{1} contains sequence of eigenvalues near 1 and converging to 1 , related to the subspace $L_{\text {per }}^{2}(-\pi, \pi) \backslash\left\{e^{i x}, e^{-i x}\right\}$,
2) σ_{2} contains finite number of eigenvalues related to the subspace $\left\{e^{i x}, e^{-i x}\right\}$.

Small-amplitude periodic wave: $c \gtrsim 1$

Related to the subspace $\left\{e^{i x}, e^{-i x}\right\}$, we find $\sigma_{2}=\left\{-1,0, \lambda_{1}, \lambda_{2}\right\}$, where

$$
\lambda_{1} \rightarrow \frac{2^{\alpha+1}-5}{2^{\alpha+1}-3}, \quad \lambda_{2}<2, \lambda_{2} \rightarrow 2 \text { as } c \rightarrow 1 .
$$

The eigenvalues $\{-1,0\}$ are due to exact solutions:

$$
\begin{aligned}
& \left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha} \phi=-\phi, \\
& \left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha} \phi^{\prime}=0,
\end{aligned} \quad \Rightarrow \quad\{-1,0\} \subset \sigma_{2} .
$$

for which

$$
A_{c, \alpha}^{\prime}(\phi)=I d-\left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha} \Rightarrow\{2,1\} \subset \sigma\left(A_{c, \alpha}^{\prime}(\phi)\right) .
$$

For $\alpha_{0} \approx 0.585$ and $\alpha_{1} \approx 1.322$

$$
\lambda_{1}<0 \text { if } \alpha \in\left(\alpha_{0}, \alpha_{1}\right), \quad \lambda_{1} \in(0,1) \text { if } \alpha \in\left(\alpha_{1}, 2\right]
$$

Figure: Eigenvalues of the operator $\left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha}$ for $\alpha=2$ (KdV equation)

Figure: Eigenvalues of the operator $\left(-c+D^{\alpha}\right)^{-1} \mathcal{H}_{c, \alpha}$ for $\alpha=1$ (Benjamin-Ono equation): Here $\lambda=-1$ is a double eigenvalue!

Convergence case for $\left(-c+D^{\alpha}\right) \phi=\phi^{2}, \alpha=2, c=2$

Figure: Iterations for $c=2$ and $\alpha=2$. Left) The last iteration versus x. (Right) Computational errors versus n.

Divergence case for $\left(-c+D^{\alpha}\right) \phi=\phi^{2}, \alpha=1, c=1.1$

Figure: Iterations for $c=1.1$ and $\alpha=1$. (Left) The last four iterations versus x. (Right) Computational errors versus n.

Summary on convergence of Petviashvili's method

- Petviashvili's method does not converge well for left-propagating sign-indefinite periodic waves satisfying

$$
\left(c-D^{\alpha}\right) \phi+\phi^{2}=0, \quad \phi \in H_{p e r}^{\alpha}(-\pi, \pi) .
$$

- Petviashvili's method converge unconditionally for right-propagating positive periodic waves satisfying

$$
\left(c+D^{\alpha}\right) \psi=\psi^{2}, \quad \psi \in H_{p e r}^{\alpha}(-\pi, \pi) .
$$

where $\psi(x)=c+\phi(x)$. This is related to the fact that

$$
A_{c, \alpha}^{\prime}=2\left(c+D^{\alpha}\right)^{-1} \psi
$$

has only $N=1$ unstable eigenvalue lying outside the unit disk.

Convergence case for $\left(c+D^{\alpha}\right) \psi=\psi^{2}, \alpha=1, c=1.6$

Figure: Iterations for $c=1.6$ and $\alpha=1$. (a) The last iteration versus x. (b) Computational errors versus n.

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$
u_{t}+2 u u_{x}-\left(D^{\alpha} u\right)_{x}=0
$$

where the fractional derivative operator D_{α} is defined by

$$
\widehat{D^{\alpha} u(\xi)}=|\xi|^{\alpha} \hat{u}(\xi), \quad \xi \in \mathbb{R} .
$$

Integrable cases: Benjamin-Ono equation ($\alpha=1$) and KdV equation ($\alpha=2$).

Here we consider 2π-periodic solutions on $\mathbb{T}:=(-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.
(1) Positivity of periodic travelling wave solution
(3) Convergence of Petviashvili method for fixed-point iterations
(3) New variational formulation of periodic wave

Stationary equations for periodic waves

Periodic travelling wave $u(x, t)=\psi(x-c t)$ satisfies the stationary equation:

$$
\left(c+D^{\alpha}\right) \psi-\psi^{2}+b=0,
$$

where b is an integration constant.

Stationary equations for periodic waves

Periodic travelling wave $u(x, t)=\psi(x-c t)$ satisfies the stationary equation:

$$
\left(c+D^{\alpha}\right) \psi-\psi^{2}+b=0,
$$

where b is an integration constant.
Thanks to the Galilean transformation

$$
\psi(x)=\frac{1}{2}\left(c-\sqrt{c^{2}+4 b}\right)+\varphi(x)
$$

the periodic wave φ is a solution to the stationary equation

$$
\left(\omega+D^{\alpha}\right) \varphi-\varphi^{2}=0
$$

with only one parameter $\omega:=\sqrt{c^{2}+4 b}$.

Different formulations

Stationary equation

$$
\left(c+D^{\alpha}\right) \psi-\psi^{2}+b=0 \quad \Rightarrow\left(\omega+D^{\alpha}\right) \varphi-\varphi^{2}=0 .
$$

admit two families of periodic wave solutions:

- ψ is obtained for $c>1$ and $b=0$
- ϕ is obtained for $c<-1$ and $b=0$.

Obstacle on existence: When $\alpha<\alpha_{0} \approx 0.585$, Stokes waves ψ bifurcate to $c<1$ instead of $c>1$ because $c=1+c_{2} a^{2}+\mathcal{O}\left(a^{4}\right)$ with $c_{2}<0$.

New formulation

Stationary equation

$$
\left(c+D^{\alpha}\right) \psi-\psi^{2}+b=0 \quad \Rightarrow\left(\omega+D^{\alpha}\right) \varphi-\varphi^{2}=0 .
$$

Let ψ has zero mean on \mathcal{T} so that $\psi=\varphi-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \varphi d x$. Then, b is defined by

$$
b(c):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \psi^{2} d x
$$

No fold point appears for $\alpha<\alpha_{0}$:

$$
c=-1+\frac{1}{2\left(2^{\alpha}-1\right)} a^{2}+\mathcal{O}\left(a^{4}\right), \quad b(c)=\frac{1}{2} a^{2}+\mathcal{O}\left(a^{4}\right) .
$$

Existence of periodic waves

Standard variational method: find minimizers of energy

$$
E(u)=\frac{1}{2} \int_{-\pi}^{\pi}\left(D^{\frac{\alpha}{2}} u\right)^{2}-\frac{1}{3} \int_{-\pi}^{\pi} u^{3} d x
$$

subject to fixed momentum and mass

$$
F(u)=\frac{1}{2} \int_{-\pi}^{\pi} u^{2} d x, \quad M(u)=\int_{-\pi}^{\pi} u d x .
$$

Existence of periodic waves

Standard variational method: find minimizers of energy

$$
E(u)=\frac{1}{2} \int_{-\pi}^{\pi}\left(D^{\frac{\alpha}{2}} u\right)^{2}-\frac{1}{3} \int_{-\pi}^{\pi} u^{3} d x
$$

subject to fixed momentum and mass

$$
F(u)=\frac{1}{2} \int_{-\pi}^{\pi} u^{2} d x, \quad M(u)=\int_{-\pi}^{\pi} u d x
$$

New variational method: find minimizer of the quadratic energy

$$
\mathcal{B}_{c}(u):=\frac{1}{2} \int_{-\pi}^{\pi}\left[\left(D^{\frac{\alpha}{2}} u\right)^{2}+c u^{2}\right] d x
$$

subject to fixed cubic energy and zero-mean constraint:

$$
Y:=\left\{u \in H_{\text {per }}^{\frac{\alpha}{2}}(\mathbb{T}): \quad \int_{-\pi}^{\pi} u^{3} d x=1, \quad \int_{-\pi}^{\pi} u d x=0\right\} .
$$

There exists a constrained minimizer $u_{*} \in Y$ for every $\alpha>1 / 3$ and every $c \geqq-1$.

Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:

$$
\mathcal{L}=D^{\alpha}+c-2 \psi: H_{\text {per }}^{\alpha}(\mathbb{T}) \subset L_{\text {per }}^{2}(\mathbb{T}) \rightarrow L_{\text {per }}^{2}(\mathbb{T}),
$$

This operator enjoys Sturm's oscillation theory [Hur-Johnson, 2015] which yields

Lemma (Hur-Johnson, 2015)

Assume $\alpha \in\left(\frac{1}{3}, 2\right]$ and that $\psi \in H_{\text {per }}^{\infty}(\mathbb{T})$ be an even single-lobe periodic wave. If $\left\{1, \psi, \psi^{2}\right\} \in \operatorname{Range}(\mathcal{L})$, then $\operatorname{Ker}(\mathcal{L})=\operatorname{span}\left(\partial_{\chi} \psi\right)$.

Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:

$$
\mathcal{L}=D^{\alpha}+c-2 \psi: H_{\mathrm{per}}^{\alpha}(\mathbb{T}) \subset L_{\mathrm{per}}^{2}(\mathbb{T}) \rightarrow L_{\mathrm{per}}^{2}(\mathbb{T})
$$

This operator enjoys Sturm's oscillation theory [Hur-Johnson, 2015] which yields

Lemma (Hur-Johnson, 2015)

Assume $\alpha \in\left(\frac{1}{3}, 2\right]$ and that $\psi \in H_{\text {per }}^{\infty}(\mathbb{T})$ be an even single-lobe periodic wave. If $\left\{1, \psi, \psi^{2}\right\} \in \operatorname{Range}(\mathcal{L})$, then $\operatorname{Ker}(\mathcal{L})=\operatorname{span}\left(\partial_{\chi} \psi\right)$.

At the fold point for $\alpha<\alpha_{0} \approx 0.585,\left\{1, \psi, \psi^{2}\right\} \in \operatorname{Range}(\mathcal{L})$ is false. As a result, $\operatorname{dimKer}(\mathcal{L})=2$ at the fold point.
Since c and b are Lagrange multipliers in $G(u)=E(u)+c F(u)+b M(u)$, the periodic wave ψ may not be differentiable in c and b. As a result,

$$
\mathcal{L} \partial_{c} \psi=-\psi, \quad \mathcal{L} \partial_{b} \psi=-1
$$

may not follow from $\left(c+D^{\alpha}\right) \psi-\psi^{2}+b=0$.

Continuation of periodic waves: new approach

For the zero-mean periodic wave ψ with $b(c)=\frac{1}{2 \pi} F(\psi)$, we verify:

$$
\begin{aligned}
& \mathcal{L} \psi=-\psi^{2}-b(c) \\
& \mathcal{L} 1=-2 \psi+c
\end{aligned}
$$

Theorem (Natali,Le,P, 2019)

If $\operatorname{Ker}\left(\left.\mathcal{L}\right|_{1^{\perp}}\right)=\operatorname{span}\left(\partial_{x} \psi\right)$ at $c=c_{0}$, then the mapping $c \mapsto \psi$ is C^{1} at $c=c_{0}$.

Continuation of periodic waves: new approach

For the zero-mean periodic wave ψ with $b(c)=\frac{1}{2 \pi} F(\psi)$, we verify:

$$
\begin{aligned}
& \mathcal{L} \psi=-\psi^{2}-b(c) \\
& \mathcal{L} 1=-2 \psi+c
\end{aligned}
$$

Theorem (Natali,Le, P, 2019)

If $\operatorname{Ker}\left(\left.\mathcal{L}\right|_{1^{\perp}}\right)=\operatorname{span}\left(\partial_{x} \psi\right)$ at $c=c_{0}$, then the mapping $c \mapsto \psi$ is C^{1} at $c=c_{0}$.
Hence, we add the third equation:

$$
\mathcal{L} \partial_{c} \psi=-\psi-b^{\prime}(c), \quad \Rightarrow \quad \mathcal{L}\left(1-2 \partial_{c} \psi\right)=c+2 b^{\prime}(c)
$$

Corollary

If $c+2 b^{\prime}(c) \neq 0$, then $\operatorname{Ker}(\mathcal{L})=\operatorname{span}\left(\partial_{x} \psi\right)$. If $c+2 b^{\prime}(c)=0$, then $\operatorname{Ker}(\mathcal{L})=\operatorname{span}\left(\partial_{x} \psi, 1-2 \partial_{c} \psi\right)$.

Stability of periodic waves: new approach

Since ψ is a minimizer of the new variational problem, we have:

$$
\left.\mathcal{L}\right|_{\left\{1, \psi^{2}\right\}^{\perp}} \geq 0,
$$

which yields the exact formula for the number of negative eigenvalues of \mathcal{L} :

$$
n(\mathcal{L})= \begin{cases}1, & c+2 b^{\prime}(c) \geq 0 \\ 2, & c+2 b^{\prime}(c)<0\end{cases}
$$

Stability of periodic waves: new approach

Since ψ is a minimizer of the new variational problem, we have:

$$
\left.\mathcal{L}\right|_{\left\{1, \psi^{2}\right\}^{\perp}} \geq 0,
$$

which yields the exact formula for the number of negative eigenvalues of \mathcal{L} :

$$
n(\mathcal{L})= \begin{cases}1, & c+2 b^{\prime}(c) \geq 0 \\ 2, & c+2 b^{\prime}(c)<0\end{cases}
$$

and the number of negative eigenvalues in the old variational problem:

$$
n\left(\left.\mathcal{L}\right|_{\{1, \psi\}^{\perp}}\right)= \begin{cases}0, & b^{\prime}(c) \geq 0 \\ 1, & b^{\prime}(c)<0 .\end{cases}
$$

Theorem (Natali,Le,P, 2019)

Assume $\operatorname{Ker}\left(\left.\mathcal{L}\right|_{1^{\perp}}\right)=\operatorname{span}\left(\partial_{\chi} \psi\right)$ for $c \in(-1, \infty)$. The zero-mean periodic wave ψ is spectrally stable if $b^{\prime}(c)>0$ and is spectrally unstable if $b^{\prime}(c)<0$.

Summary

For the periodic waves in the fractional KdV equation satisfying

$$
\left(c+D^{\alpha}\right) \psi-\psi^{2}+b=0,
$$

we have showed the following:
(1) $\psi>0$ for $c>1, b=0$, and $\alpha>\alpha_{0} \approx 0.585$
(2) Petviashvili method diverges for ψ for $c<-1, b=0$, and $\alpha>\alpha_{0}$
((Periodic waves ψ with zero mean are obtained with a new variational problem with $b \neq 0$ for both $\alpha>\alpha_{0}$ and $\alpha<\alpha_{0}$.

Thank you! Questions???

Summary

For the periodic waves in the fractional KdV equation satisfying

$$
\left(c+D^{\alpha}\right) \psi-\psi^{2}+b=0
$$

we have showed the following:
(1) $\psi>0$ for $c>1, b=0$, and $\alpha>\alpha_{0} \approx 0.585$
(2) Petviashvili method diverges for ψ for $c<-1, b=0$, and $\alpha>\alpha_{0}$
((Periodic waves ψ with zero mean are obtained with a new variational problem with $b \neq 0$ for both $\alpha>\alpha_{0}$ and $\alpha<\alpha_{0}$.

Thank you! Questions???

