Periodic Waves in Fractional KdV Equation

Dmitry E Pelinovsky Joint work with Uyen Le and Fábio Natali

Department of Mathematics, McMaster University, Canada http://dmpeli.math.mcmaster.ca

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$u_t+2uu_x-(D^{\alpha}u)_x=0,$$

where the fractional derivative operator D_{lpha} is defined by

$$\widehat{D^{\alpha}u(\xi)} = |\xi|^{\alpha} \, \hat{u}(\xi), \quad \xi \in \mathbb{R}.$$

Integrable cases: Benjamin–Ono equation ($\alpha = 1$) and KdV equation ($\alpha = 2$).

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Fractional Korteweg de Vries Equation

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$u_t+2uu_x-(D^{\alpha}u)_x=0,$$

where the fractional derivative operator D_{lpha} is defined by

$$\widehat{D^{\alpha}u(\xi)} = |\xi|^{\alpha} \, \hat{u}(\xi), \quad \xi \in \mathbb{R}.$$

Integrable cases: Benjamin–Ono equation ($\alpha = 1$) and KdV equation ($\alpha = 2$).

Here we consider 2π -periodic solutions on $\mathbb{T} := (-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.

- Positivity of periodic travelling wave solution
- Onvergence of Petviashvili method for fixed-point iterations
- New variational formulation of periodic wave solutions

Background

- Well-posedness in Sobolev spaces:
 - F. Linares, D. Pilod, J.C. Saut (2014)
 - L. Molinet, D. Pilod, S. Vento (2018)
- Existence and modulation stability of periodic waves by using
 - pertubative methods in M. Johnson (2013),
 - variational methods in H. Chen, J. Bona (2013), V.Hur, M. Johnson (2015)
 - fixed-point methods in H. Chen (2004)
- Existence and stability of solitary waves in J. Angulo (2018):
 - stable for $\frac{1}{2} < \alpha \le 2$
 - unstable for $\frac{1}{3} < \alpha < \frac{1}{2}$
- Convergence of Petviashvili's method near periodic waves in
 - J. Alvarez, A. Duran (2017)
 - D. Clamond, D. Dutykh (2018)

イロト 不得下 不足下 不足下 一日

Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form

$$u(x,t) = \psi(x-ct), \qquad c > 0.$$

Integrating the equation with zero constant yields the boundary value problem

$$(c+D^{lpha})\psi=\psi^2, \quad \psi\in H^{lpha}_{per}(-\pi,\pi).$$

Advantage: $c + D^{\alpha}$ is positive (useful for fixed-point iterations).

Stationary equations for periodic waves

The right propagating, periodic travelling wave solution takes the form

$$u(x,t) = \psi(x-ct), \quad c > 0.$$

Integrating the equation with zero constant yields the boundary value problem

$$(c+D^{\alpha})\psi=\psi^2, \quad \psi\in H^{\alpha}_{per}(-\pi,\pi).$$

Advantage: $c + D^{\alpha}$ is positive (useful for fixed-point iterations).

The left propagating wave $u(x, t) = \phi(x + ct)$ with same c > 0 is related to ψ by

$$\phi(x)=\psi(x)-c,$$

and satisfies the boundary value problem

$$(c-D^{\alpha})\phi+\phi^2=0, \quad \phi\in H^{\alpha}_{per}(-\pi,\pi).$$

Advantage: $c - D^{\alpha}$ may vanish (useful for local bifurcation theory).

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$(c-D^{\alpha})\phi+\phi^2=0, \quad \phi\in H^{\alpha}_{per}(-\pi,\pi),$$

with $\sigma(c-D^{\alpha}) = \{c, c-1, c-2^{\alpha}, c-3^{\alpha}, \dots\}.$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$(c-D^{\alpha})\phi+\phi^2=0, \quad \phi\in H^{\alpha}_{per}(-\pi,\pi),$$

with $\sigma(c - D^{\alpha}) = \{c, c - 1, c - 2^{\alpha}, c - 3^{\alpha}, \dots\}.$

Theorem. For every $\alpha > \frac{1}{2}$, there exists a locally unique even solution ϕ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$\begin{split} \phi &= a\cos(x) + a^2\phi_2(x) + a^3\phi_3(x) + \mathcal{O}(a^4), \\ c &= 1 + c_2a^2 + \mathcal{O}(a^4). \end{split}$$

with

$$\phi_2(x) = -\frac{1}{2} + \frac{1}{2(2^{\alpha} - 1)}\cos(2x)$$
 and $c_2 = 1 - \frac{1}{2(2^{\alpha} - 1)}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● 三 ● のへで

Stokes expansions of small-amplitude waves

Consider the BVP as a bifurcation problem:

$$(c-D^{\alpha})\phi+\phi^2=0, \quad \phi\in H^{\alpha}_{per}(-\pi,\pi),$$

with $\sigma(c - D^{\alpha}) = \{c, c - 1, c - 2^{\alpha}, c - 3^{\alpha}, \dots\}.$

Theorem. For every $\alpha > \frac{1}{2}$, there exists a locally unique even solution ϕ bifurcating from zero solution. The wave profile ϕ and the wave speed c are real analytic in wave amplitude a and satisfy the following Stokes expansions

$$\begin{split} \phi &= a\cos(x) + a^2\phi_2(x) + a^3\phi_3(x) + \mathcal{O}(a^4), \\ c &= 1 + c_2a^2 + \mathcal{O}(a^4). \end{split}$$

with

$$\phi_2(x) = -\frac{1}{2} + \frac{1}{2(2^{\alpha} - 1)}\cos(2x)$$
 and $c_2 = 1 - \frac{1}{2(2^{\alpha} - 1)}$

Note the threshold behavior: $c_2 > 0$ for $\alpha > \alpha_0$ and $c_2 < 0$ for $\alpha < \alpha_0$, where $\alpha_0 \approx 0.585$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$u_t+2uu_x-(D^{\alpha}u)_x=0,$$

where the fractional derivative operator D_{lpha} is defined by

$$\widehat{D^{\alpha}u(\xi)} = |\xi|^{\alpha} \, \hat{u}(\xi), \quad \xi \in \mathbb{R}.$$

Integrable cases: Benjamin–Ono equation ($\alpha = 1$) and KdV equation ($\alpha = 2$).

Here we consider 2π -periodic solutions on $\mathbb{T} := (-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.

Positivity of periodic travelling wave solution

- Onvergence of Petviashvili method for fixed-point iterations
- New variational formulation of periodic wave solutions

(日)、(四)、(E)、(E)、(E)

 ϕ is not positive. Recall the relation between ψ and ϕ

$$\psi(x) = \phi(x) + c, \quad x \in [-\pi, \pi].$$

Since $c \approx 1$ and $\phi \approx 0$, then ψ is positive.

In the integrable cases, ψ remains positive for every c> 1, e.g.

$$lpha = 1: \quad \psi(x) = rac{\sinh \gamma}{\cosh \gamma - \cos x}, \quad c = \coth \gamma.$$

Question: Is ψ positive for every c > 1 if $\alpha > \alpha_0$?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

э.

For every c > 1 and $\alpha \in (\alpha_0, 2]$, there exists an even single-lobe solution $\psi \in H^{\alpha}_{per}(-\pi, \pi)$ to the BVP

$$(c+D_{\alpha})\psi=\psi^{2}.$$

such that $\psi(x) > 0$ on $[-\pi, \pi]$.

We say the periodic wave has single-lobe profile if there is only one maximum and minimum of ψ on the period.

Small-amplitude waves bifurcating from zero at c = 1 are single-lobe solutions.

・ロト ・得ト ・ヨト ・ヨト

Green's function for $c + D^{\alpha}$ is obtained from the solution of

$$(c+D^{\alpha})\varphi(x)=h, \quad h\in L^2_{per}(-\pi,\pi),$$

in the convolution form

$$\varphi(x) = \int_{-\pi}^{\pi} G(x-s)h(s)ds$$

or in Fourier form,

$$\mathcal{G}_{c,lpha}(x) = rac{1}{2\pi}\sum_{n\in\mathbb{Z}}rac{e^{inx}}{c+|n|^{lpha}} \quad \Rightarrow \quad \|\mathcal{G}_{c,lpha}\|_{L^2_{per}} \leq M_{c,lpha}, \qquad lpha > 1/2.$$

For $\alpha \leq$ 2, the Greens function is strictly positive:

$$G_{c,\alpha}(x) \geq m_{c,\alpha},$$

Nieto (2010) for $\alpha \in (0, 1)$; Bai-Lu (2005) for $\alpha \in (1, 2)$.

ロ ト 4回 ト 4 三 ト 4 三 ト ・ 三 ・ つ へ ()

Operator A in the positive cone From the BVP

$$(c+D^{lpha})\psi=\psi^2,$$

we define the nonlinear operator

$$A_{c,\alpha}(\psi) := (c+D^{\alpha})^{-1}\psi^2 \Rightarrow A_{c,\alpha}(\psi)(x) = \int_{-\pi}^{\pi} G_{c,\alpha}(x-s)\psi(s)^2 ds,$$

and the positive cone in $L^2_{per}(-\pi,\pi)$

$$\mathsf{P}_{\mathsf{c},\alpha} := \left\{ \psi \in \mathsf{L}^2_{\mathsf{per}}(-\pi,\pi) : \psi(x) \geq \frac{m_{\mathsf{c},\alpha}}{M_{\mathsf{c},\alpha}} \|\psi\|_{\mathsf{L}^2_{\mathsf{per}}}, x \in [-\pi,\pi] \right\}.$$

- i) $A_{c,\alpha}$ is bounded and continuous in $L^2_{per}(-\pi,\pi)$ (Young's inequality),
- ii) $A_{c,\alpha}$ is compact as it is a limit of compact operators $A_{c,\alpha}^{(N)}$, where $A_{c,\alpha}^{(N)}$ are gives by 2N + 1 Fourier coefficients.
- iii) $A_{c,\alpha}(\psi)$ is closed in $P_{c,\alpha}$: $A_{c,\alpha}(\psi) \ge m_{c,\alpha} \|\psi\|_{L^2_{per}}^2 \ge \frac{m_{c,\alpha}}{M_{c,\alpha}} \|A_{c,\alpha}(\psi)\|_{L^2_{per}}$.

ロトス団とスヨとスヨと

3) Existence of fixed point in the cone Let

$$B_r := \{ \psi \in L^2_{per}(-\pi,\pi) : \|\psi\|_{L^2_{per}} < r \}$$

By Kranoselskii's fixed point theorem if there exists r_{-} and r_{+} such that

$$\begin{aligned} \|A_{c,\alpha}(\psi)\|_{L^2_{per}} &< \|\psi\|_{L^2_{per}}, \quad \psi \in P_{c,\alpha} \cap \partial B_{r_-} \\ \|A_{c,\alpha}(\psi)\|_{L^2_{per}} &> \|\psi\|_{L^2_{per}}, \quad \psi \in P_{c,\alpha} \cap \partial B_{r_+} \end{aligned}$$

then, $A_{c,\alpha}$ has fixed point in $P_{c,\alpha}$.

- r_{-} is small enough so that $r_{-}M_{c,\alpha} < 1$
- r_+ is large enough so that $\sqrt{2\pi}r_+m_{c,lpha}>1$
- $r_- < r_+$ because $\sqrt{2\pi}m_{c,\alpha} \le M_{c,\alpha}$.

By bootstrapping argument, if $\psi \in L^2_{per}$, then $\psi \in H^\infty_{per}$.

<u>Remark:</u> The positive fixed point may not be single-lobe since the constant solution $\psi = c$ is always a positive fixed point of $A_{c,\alpha}$ in $P_{c,\alpha}$ for every c > 0.

・ロン ・ 理 と ・ ヨ と ・ ヨ ・ うへつ

4) Distinguishing ψ from constant fixed point

Definition (Leray-Schauder index)

The Leray-Schauder index of the fixed point ψ is defined as $(-1)^N$, where N is the number of unstable eigenvalues of $A'_{c,\alpha}(\psi)$ outside the unit disk with the account of the multiplicities.

For the constant solution $\psi = c$, the linearized operator

$$A_{c,lpha}'(c)=2c(c+D^{lpha})^{-1}:L^2_{per}
ightarrow L^2_{per}$$

in the space of even functions has N = k + 1 unstable eigenvalues outside the unit disk for $c \in (k^{\alpha}, (k+1)^{\alpha})$ with $k \in \mathbb{N}$. The index of the constant solution changes sign every time c crosses the resonance at k^{α} , $k \in \mathbb{N}$.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Number of unstable eigenvalues along solution branches

Figure: Schematic representation of bifurcations from the constant fixed point $\psi = c$. Here $\alpha = 2$.

No bifurcations along the single-lobe solutions

Positive single-lobe fixed point ψ bifurcates for c > 1 if $\alpha > \alpha_0$. The linearized operator at ψ is given by

$$\mathcal{A}_{c,lpha}'(\psi)=2(c+D^lpha)^{-1}\psi=\mathit{Id}-(c+D^lpha)^{-1}\mathcal{H}_{c,lpha}.$$

where $\mathcal{H}_{c,\alpha} := c + D^{\alpha} - 2\psi$ is the linearization of the fractional KdV.

No bifurcations along the single-lobe solutions

Positive single-lobe fixed point ψ bifurcates for c > 1 if $\alpha > \alpha_0$. The linearized operator at ψ is given by

$$\mathcal{A}_{c,lpha}'(\psi)=2(c+D^lpha)^{-1}\psi=\mathit{Id}-(c+D^lpha)^{-1}\mathcal{H}_{c,lpha}.$$

where $\mathcal{H}_{c,\alpha} := c + D^{\alpha} - 2\psi$ is the linearization of the fractional KdV.

Lemma

N = 1 is true for every c > 1 along the branch of single-lobe solutions.

- For $c \gtrsim 1$, this can be shown by the perturbative argument (if $\alpha > \alpha_0$).
- For other c > 1, we rely on the result of V.Hur and M.Johson (2015), $\operatorname{Ker}(\mathcal{H}_{c,\alpha}) = \operatorname{span}(\partial_x \psi) \Rightarrow \text{ if } N = 1 \text{ for } c \gtrsim 1$, then N = 1 for c > 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$u_t+2uu_x-(D^{\alpha}u)_x=0,$$

where the fractional derivative operator D_{lpha} is defined by

$$\widehat{D^{\alpha}u(\xi)} = |\xi|^{\alpha} \, \hat{u}(\xi), \quad \xi \in \mathbb{R}.$$

Integrable cases: Benjamin–Ono equation ($\alpha = 1$) and KdV equation ($\alpha = 2$).

Here we consider 2π -periodic solutions on $\mathbb{T} := (-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.

- Positivity of periodic travelling wave solution
- Onvergence of Petviashvili method for fixed-point iterations
- New variational formulation of periodic wave solutions

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$(c+D^{lpha})\psi=\psi^2, \quad \Rightarrow \quad \psi=A_{c,lpha}(\psi):=(c+D^{lpha})^{-1}\psi^2.$$

However, the linearized operator

$$A_{c,lpha}'(\psi)=2(c-D_{lpha})^{-1}\psi$$

always has N = 1 unstable eigenvalue outside the unit disk. \Rightarrow Fixed-point iterations diverge from the single-lobe periodic waves.

Petviashvili method for fixed point iterations

Recall the stationary equation for ψ :

$$(c+D^{lpha})\psi=\psi^2, \quad \Rightarrow \quad \psi=A_{c,lpha}(\psi):=(c+D^{lpha})^{-1}\psi^2.$$

However, the linearized operator

$$A_{c,lpha}'(\psi)=2(c-D_{lpha})^{-1}\psi$$

always has N = 1 unstable eigenvalue outside the unit disk.

 \Rightarrow Fixed-point iterations diverge from the single-lobe periodic waves.

V. Petviashvili (1976) introduced a stabilizing factor in the fixed-point iterations:

$$w_{n+1} = T_{c,\alpha}(w_n) := [M_{c,\alpha}(w_n)]^2 (c + D^{\alpha})^{-1}(w_n^2), \quad n \in \mathbb{N},$$

where

$$M_{c,lpha}(w):=rac{\langle (c+D^{lpha})w,w
angle}{\langle w^2,w
angle}, \hspace{0.5cm} w\in H^{lpha}_{per}(-\pi,\pi).$$

If $w = \psi$, then $M_{c,\alpha}(\psi) = 1$ and $T_{c,\alpha}(\psi) = \psi$.

- 本語 医 本語 医 一語

For every c > 1 and $\alpha \in (\alpha_0, 2]$, the single-lobe solution $\psi \in H^{\alpha}_{per}$ to $(c + D^{\alpha})\psi = \psi^2$,

is an asymptotically stable fixed point of $T_{c,\alpha}$.

For every c > 1 and $\alpha \in (\alpha_0, 2]$, the single-lobe solution $\psi \in H^{\alpha}_{per}$ to $(c + D^{\alpha})\psi = \psi^2$,

is an asymptotically stable fixed point of $T_{c,\alpha}$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as ϕ satisfying $(c - D^{\alpha})\phi + \phi^2 = 0$?

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

For every c > 1 and $\alpha \in (\alpha_0, 2]$, the single-lobe solution $\psi \in H^{\alpha}_{per}$ to $(c + D^{\alpha})\psi = \psi^2$,

is an asymptotically stable fixed point of $T_{c,\alpha}$.

Question: Does the Petviashvili's method converge for sign-indefinite wave such as ϕ satisfying $(c - D^{\alpha})\phi + \phi^2 = 0$?

Answer:

- i) ϕ is an unstable fixed point of $T_{c,\alpha}$ for $\alpha \in (\alpha_0, \alpha_1)$, where $\alpha_1 \approx 1.322$
- ii) ϕ is an asymptotically stable fixed point for $\alpha \in (\alpha_1, 2]$ if $c \gtrsim 1$ and is unstable if c > 1 is large enough.

Proof of convergence

Consider again the linearized fixed-point iterations:

$$egin{aligned} &\mathcal{A}_{c,lpha}'(\phi) \coloneqq 2(-c+D^lpha)^{-1}\phi = \mathit{Id} - (-c+D^lpha)^{-1}\mathcal{H}_{c,lpha}, \ &\mathcal{H}_{c,lpha} \coloneqq -c+D^lpha - 2\phi. \end{aligned}$$

Spectrum of $A'_{c,\alpha}(\phi)$ is related to the spectrum of $(-c + D^{\alpha})^{-1}\mathcal{H}_{c,\alpha}$:

$$\mathcal{H}_{c,\alpha} v = \lambda(-c + D^{\alpha})v, \quad v \in H^{\alpha}_{per}(-\pi,\pi),$$

where both $\mathcal{H}_{c,\alpha}$ and $(-c + D^{\alpha})$ are sign-indefinite.

Eigenvalues of $(-c + D^{\alpha})^{-1} \mathcal{H}_{c,\alpha}$ are divided for $c \gtrsim 1$ into two sets $\{\sigma_1, \sigma_2\}$:

1) σ_1 contains sequence of eigenvalues near 1 and converging to 1, related to the subspace $L^2_{per}(-\pi,\pi) \setminus \{e^{ix}, e^{-ix}\}$,

2) σ_2 contains finite number of eigenvalues related to the subspace $\{e^{ix}, e^{-ix}\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Small-amplitude periodic wave: $c \gtrsim 1$

Related to the subspace $\{e^{ix},e^{-ix}\}$, we find $\sigma_2=\{-1,0,\lambda_1,\lambda_2\}$, where

$$\lambda_1
ightarrow rac{2^{lpha+1}-5}{2^{lpha+1}-3}, \qquad \lambda_2 < 2, \ \lambda_2
ightarrow 2 ext{ as } c
ightarrow 1.$$

The eigenvalues $\{-1, 0\}$ are due to exact solutions:

$$\begin{array}{ll} (-c+D^{\alpha})^{-1}\mathcal{H}_{c,\alpha}\phi=-\phi,\\ (-c+D^{\alpha})^{-1}\mathcal{H}_{c,\alpha}\phi'=0, \end{array} \Rightarrow \quad \{-1,0\}\subset \sigma_2. \end{array}$$

for which

$$\mathcal{A}_{\boldsymbol{c},lpha}'(\phi) = \mathcal{I}\boldsymbol{d} - (-\boldsymbol{c} + D^{lpha})^{-1}\mathcal{H}_{\boldsymbol{c},lpha} \Rightarrow \{2,1\} \subset \sigma(\mathcal{A}_{\boldsymbol{c},lpha}'(\phi)).$$

For $\alpha_0 \approx 0.585$ and $\alpha_1 \approx 1.322$

 $\lambda_1 < 0$ if $\alpha \in (\alpha_0, \alpha_1)$,

$$\lambda_1 \in (0,1)$$
 if $\alpha \in (lpha_1,2]$

・ロン ・四 と ・ ヨ と ・ ヨ と …

э.

Figure: Eigenvalues of the operator $(-c + D^{\alpha})^{-1}\mathcal{H}_{c,\alpha}$ for $\alpha = 2$ (KdV equation)

ヘロン 人間と ヘヨン ヘヨン

Figure: Eigenvalues of the operator $(-c + D^{\alpha})^{-1}\mathcal{H}_{c,\alpha}$ for $\alpha = 1$ (Benjamin-Ono equation): Here $\lambda = -1$ is a double eigenvalue!

- 4 回 2 4 回 2 4 回 2 4

Convergence case for
$$(-c + D^{\alpha})\phi = \phi^2$$
, $\alpha = 2$, $c = 2$

Figure: Iterations for c = 2 and $\alpha = 2$. Left) The last iteration versus x. (Right) Computational errors versus n.

Figure: Iterations for c = 1.1 and $\alpha = 1$. (Left) The last four iterations versus x. (Right) Computational errors versus n.

< 🗇 🕨

Summary on convergence of Petviashvili's method

• Petviashvili's method does not converge well for left-propagating sign-indefinite periodic waves satisfying

$$(c-D^{\alpha})\phi+\phi^2=0, \quad \phi\in H^{\alpha}_{per}(-\pi,\pi).$$

• Petviashvili's method converge unconditionally for right-propagating positive periodic waves satisfying

$$(c+D^{\alpha})\psi=\psi^2, \quad \psi\in H^{\alpha}_{per}(-\pi,\pi).$$

where $\psi(x) = c + \phi(x)$. This is related to the fact that

$$A'_{c,\alpha} = 2(c+D^{\alpha})^{-1}\psi$$

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ○ ○ ○

has only N = 1 unstable eigenvalue lying outside the unit disk.

Convergence case for
$$(c + D^{lpha})\psi = \psi^2, \ lpha = 1, \ c = 1.6$$

Figure: Iterations for c = 1.6 and $\alpha = 1$. (a) The last iteration versus x. (b) Computational errors versus n.

э

∃ ⊳

< 17 ▶

The fractional KdV is a popular model for dynamics of waves in shallow fluids:

$$u_t+2uu_x-(D^{\alpha}u)_x=0,$$

where the fractional derivative operator D_{α} is defined by

$$\widehat{D^{\alpha}u(\xi)} = |\xi|^{\alpha} \, \hat{u}(\xi), \quad \xi \in \mathbb{R}.$$

Integrable cases: Benjamin–Ono equation ($\alpha = 1$) and KdV equation ($\alpha = 2$).

Here we consider 2π -periodic solutions on $\mathbb{T} := (-\pi, \pi)$, so that $\xi \in \mathbb{Z}$.

- Positivity of periodic travelling wave solution
- Onvergence of Petviashvili method for fixed-point iterations
- New variational formulation of periodic wave

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Stationary equations for periodic waves

Periodic travelling wave $u(x, t) = \psi(x - ct)$ satisfies the stationary equation:

$$(c+D^{\alpha})\psi-\psi^2+b=0,$$

where b is an integration constant.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Stationary equations for periodic waves

Periodic travelling wave $u(x, t) = \psi(x - ct)$ satisfies the stationary equation:

$$(c+D^{\alpha})\psi-\psi^2+b=0,$$

where b is an integration constant.

Thanks to the Galilean transformation

$$\psi(x) = rac{1}{2}\left(c - \sqrt{c^2 + 4b}
ight) + arphi(x),$$

the periodic wave φ is a solution to the stationary equation

$$(\omega + D^{\alpha})\varphi - \varphi^2 = 0,$$

with only one parameter $\omega := \sqrt{c^2 + 4b}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Different formulations

Stationary equation

$$(c+D^{lpha})\psi-\psi^2+b=0 \quad \Rightarrow (\omega+D^{lpha})\varphi-\varphi^2=0.$$

admit two families of periodic wave solutions:

- ψ is obtained for c>1 and b=0
- ϕ is obtained for c < -1 and b = 0.

Obstacle on existence: When $\alpha < \alpha_0 \approx 0.585$, Stokes waves ψ bifurcate to c < 1 instead of c > 1 because $c = 1 + c_2 a^2 + O(a^4)$ with $c_2 < 0$.

New formulation

Stationary equation

$$(c+D^{lpha})\psi-\psi^2+b=0 \quad \Rightarrow (\omega+D^{lpha})arphi-arphi^2=0.$$

Let ψ has zero mean on \mathcal{T} so that $\psi = \varphi - \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi dx$. Then, b is defined by

$$b(c):=\frac{1}{2\pi}\int_{-\pi}^{\pi}\psi^2dx$$

No fold point appears for $\alpha < \alpha_0$:

$$c = -1 + rac{1}{2(2^{lpha} - 1)}a^2 + \mathcal{O}(a^4), \quad b(c) = rac{1}{2}a^2 + \mathcal{O}(a^4).$$

Existence of periodic waves

Standard variational method: find minimizers of energy

$$E(u) = \frac{1}{2} \int_{-\pi}^{\pi} (D^{\frac{\alpha}{2}}u)^2 - \frac{1}{3} \int_{-\pi}^{\pi} u^3 dx,$$

subject to fixed momentum and mass

$$F(u) = \frac{1}{2} \int_{-\pi}^{\pi} u^2 dx, \quad M(u) = \int_{-\pi}^{\pi} u \, dx.$$

イロト 不得下 不良下 不良下 一度

Existence of periodic waves

Standard variational method: find minimizers of energy

$$E(u) = \frac{1}{2} \int_{-\pi}^{\pi} (D^{\frac{\alpha}{2}}u)^2 - \frac{1}{3} \int_{-\pi}^{\pi} u^3 dx,$$

subject to fixed momentum and mass

$$F(u) = \frac{1}{2} \int_{-\pi}^{\pi} u^2 dx, \quad M(u) = \int_{-\pi}^{\pi} u \, dx.$$

New variational method: find minimizer of the quadratic energy

$$\mathcal{B}_{c}(u) := \frac{1}{2} \int_{-\pi}^{\pi} \left[(D^{\frac{\alpha}{2}}u)^{2} + cu^{2} \right] dx$$

subject to fixed cubic energy and zero-mean constraint:

$$Y:=\left\{u\in H^{\frac{\alpha}{2}}_{\mathrm{per}}(\mathbb{T}):\quad \int_{-\pi}^{\pi}u^{3}dx=1,\quad \int_{-\pi}^{\pi}udx=0\right\}.$$

There exists a constrained minimizer $u_* \in Y$ for every $\alpha > 1/3$ and every $c \ge -1$.

Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:

$$\mathcal{L} = D^lpha + c - 2\psi : \mathcal{H}^lpha_{ ext{per}}(\mathbb{T}) \subset \mathcal{L}^2_{ ext{per}}(\mathbb{T}) o \mathcal{L}^2_{ ext{per}}(\mathbb{T}),$$

This operator enjoys Sturm's oscillation theory [Hur-Johnson, 2015] which yields

Lemma (Hur–Johnson, 2015)

Assume $\alpha \in (\frac{1}{3}, 2]$ and that $\psi \in H^{\infty}_{per}(\mathbb{T})$ be an even single-lobe periodic wave. If $\{1, \psi, \psi^2\} \in \operatorname{Range}(\mathcal{L})$, then $\operatorname{Ker}(\mathcal{L}) = \operatorname{span}(\partial_x \psi)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Continuation of periodic waves: standard approach

Hessian operator for both variational problems is the same operator:

$$\mathcal{L} = D^{lpha} + c - 2\psi : \mathcal{H}^{lpha}_{\mathrm{per}}(\mathbb{T}) \subset L^2_{\mathrm{per}}(\mathbb{T})
ightarrow L^2_{\mathrm{per}}(\mathbb{T}),$$

This operator enjoys Sturm's oscillation theory [Hur-Johnson, 2015] which yields

Lemma (Hur–Johnson, 2015)

Assume $\alpha \in (\frac{1}{3}, 2]$ and that $\psi \in H^{\infty}_{per}(\mathbb{T})$ be an even single-lobe periodic wave. If $\{1, \psi, \psi^2\} \in \operatorname{Range}(\mathcal{L})$, then $\operatorname{Ker}(\mathcal{L}) = \operatorname{span}(\partial_x \psi)$.

At the fold point for $\alpha < \alpha_0 \approx 0.585$, $\{1, \psi, \psi^2\} \in \text{Range}(\mathcal{L})$ is false. As a result, $\dim \text{Ker}(\mathcal{L}) = 2$ at the fold point. Since *c* and *b* are Lagrange multipliers in G(u) = E(u) + cF(u) + bM(u), the periodic wave ψ may not be differentiable in *c* and *b*. As a result,

$$\mathcal{L}\partial_{c}\psi = -\psi, \quad \mathcal{L}\partial_{b}\psi = -1$$

may not follow from $(c + D^{\alpha})\psi - \psi^2 + b = 0$.

<ロ> <問> <思> < E> < E> < E</p>

Continuation of periodic waves: new approach

For the zero-mean periodic wave ψ with $b(c) = \frac{1}{2\pi}F(\psi)$, we verify:

$$egin{aligned} \mathcal{L}\psi &= -\psi^2 - b(c), \ \mathcal{L}1 &= -2\psi + c. \end{aligned}$$

Theorem (Natali,Le,P, 2019)

If $\operatorname{Ker}(\mathcal{L}|_{1^{\perp}}) = \operatorname{span}(\partial_x \psi)$ at $c = c_0$, then the mapping $c \mapsto \psi$ is C^1 at $c = c_0$.

- 本間 と 本臣 と 本臣 と 二臣

Continuation of periodic waves: new approach

For the zero-mean periodic wave ψ with $b(c) = \frac{1}{2\pi}F(\psi)$, we verify:

$$egin{aligned} \mathcal{L}\psi &= -\psi^2 - b(c), \ \mathcal{L}1 &= -2\psi + c. \end{aligned}$$

Theorem (Natali, Le, P, 2019)

If $\operatorname{Ker}(\mathcal{L}|_{1^{\perp}}) = \operatorname{span}(\partial_x \psi)$ at $c = c_0$, then the mapping $c \mapsto \psi$ is C^1 at $c = c_0$.

Hence, we add the third equation:

$$\mathcal{L}\partial_{c}\psi = -\psi - b'(c), \quad \Rightarrow \quad \mathcal{L}\left(1 - 2\partial_{c}\psi\right) = c + 2b'(c).$$

Corollary

If
$$c + 2b'(c) \neq 0$$
, then $\operatorname{Ker}(\mathcal{L}) = \operatorname{span}(\partial_x \psi)$. If $c + 2b'(c) = 0$, then $\operatorname{Ker}(\mathcal{L}) = \operatorname{span}(\partial_x \psi, 1 - 2\partial_c \psi)$.

・ロト ・四ト ・ヨト ・ヨト …

3

Stability of periodic waves: new approach

Since ψ is a minimizer of the new variational problem, we have:

$$\mathcal{L}\big|_{\{1,\psi^2\}^{\perp}} \geq 0,$$

which yields the exact formula for the number of negative eigenvalues of \mathcal{L} :

$$n(\mathcal{L}) = \left\{ egin{array}{c} 1, & c+2b'(c) \geq 0, \\ 2, & c+2b'(c) < 0. \end{array}
ight.$$

э.

Stability of periodic waves: new approach

Since ψ is a minimizer of the new variational problem, we have:

$$\mathcal{L}\big|_{\{1,\psi^2\}^{\perp}} \ge 0,$$

which yields the exact formula for the number of negative eigenvalues of \mathcal{L} :

$$\mathit{n}(\mathcal{L}) = \left\{ egin{array}{ll} 1, & c+2b'(c) \geq 0, \ 2, & c+2b'(c) < 0. \end{array}
ight.$$

and the number of negative eigenvalues in the old variational problem:

$$n(\mathcal{L}|_{\{1,\psi\}^{\perp}}) = \left\{ egin{array}{cc} 0, & b'(c) \geq 0, \ 1, & b'(c) < 0. \end{array}
ight.$$

Theorem (Natali,Le,P, 2019)

Assume $\operatorname{Ker}(\mathcal{L}|_{1^{\perp}}) = \operatorname{span}(\partial_x \psi)$ for $c \in (-1, \infty)$. The zero-mean periodic wave ψ is spectrally stable if b'(c) > 0 and is spectrally unstable if b'(c) < 0.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

For the periodic waves in the fractional KdV equation satisfying

$$(c+D^{\alpha})\psi-\psi^2+b=0,$$

we have showed the following:

- $\psi > 0$ for c > 1, b = 0, and $\alpha > \alpha_0 \approx 0.585$
- 2 Petviashvili method diverges for ψ for c < -1, b = 0, and $\alpha > \alpha_0$
- Periodic waves ψ with zero mean are obtained with a new variational problem with b ≠ 0 for both α > α₀ and α < α₀.</p>

Thank you! Questions???

For the periodic waves in the fractional KdV equation satisfying

$$(c+D^{\alpha})\psi-\psi^2+b=0,$$

we have showed the following:

- $\psi > 0$ for c > 1, b = 0, and $\alpha > \alpha_0 \approx 0.585$
- 2 Petviashvili method diverges for ψ for c < -1, b = 0, and $\alpha > \alpha_0$
- Periodic waves ψ with zero mean are obtained with a new variational problem with b ≠ 0 for both α > α₀ and α < α₀.</p>

Thank you! Questions???