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NLS evolution on the line
The Cauchy problem for the NLS flow:{

iΨt = −∆Ψ− 2|Ψ|2Ψ,
Ψ|t=0 = Ψ0,

where ∆Ψ = ∂2
x Ψ on the line R.

The Cauchy problem is locally and globally well-posed in Ψ0 ∈ H1(R).
Moreover, the mass

Q(Ψ) = ‖Ψ‖2
L2

and the energy
E(Ψ) = ‖Ψ′‖2

L2 − ‖Ψ‖4
L4 ,

are constants in time for Ψ ∈ C(R,H1).

E(Ψ) is coercive in H1 thanks to Gagliardo–Nirenberg inequality:

‖Ψ‖4
L4 ≤ C‖∂xΨ‖L2‖Ψ‖3

L2 ,

where C > 0 is independent of Ψ.
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Standing waves
Ground state is a standing wave of smallest energy E at fixed mass Q,

E = inf{E(u) : u ∈ H1(R), Q(u) = µ}.

Euler–Lagrange equation for the standing waves:

−∆Φ− 2|Φ|2Φ = −ωΦ,

where ω > 0 defines Ψ(t, x) = Φ(x)eiωt.

Infimum E exists thanks to the same Gagliardo–Nirenberg inequality.

Theorem. (M.Weinstein, 1986) Infimum E is attained at the NLS soliton
Φω(x) =

√
ωsech(

√
ωx) with ω = µ2/4:

E = min
u∈H1(R)

E(u) = E(φ).
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Orbital stability of standing waves
From the constants of motion, we can define the Lyapunov functional

Λω(Ψ) := E(Ψ) + ωQ(Ψ),

the critical points of which are the standing waves:

−∆Φ− 2|Φ|2Φ = −ωΦ.

The NLS soliton Φω(x) =
√
ωsech(

√
ωx) is a saddle point of Λω(Ψ) for

fixed ω > 0. Moreover, it is a degenerate saddle point as Φω(x + a)eiθ is
also a solution for every θ ∈ R and a ∈ R.

Definition. For every ε > 0, there is δ > 0 such that for every Ψ0 ∈ H1

satisfying ‖Ψ0 − Φω‖H1 < δ, the unique solution Ψ ∈ C(R,H1) of the NLS
equation satisfies

inf
θ∈R,a∈R

‖Ψ(t, ·)− Φω(·+ a)eiθ‖H1 < ε,

where ω > 0 is fixed.
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Orbital stability of the NLS solitons on the line R
Theorem. (Grillakis–Shatah–Strauss, 1987) The NLS soliton on the line R is
orbitally stable for every ω > 0.

I Hessian Λ′′ω(Φω) has exactly one simple negative eigenvalue and a
double zero eigenvalue.

I Fixed Q(Ψ) = ‖Ψ‖2
L2 produces the linear constraint 〈U,Φω〉L2 = 0 on

U = Re(Ψ). Hessian Λ′′ω(Φω) is non-negative under the constraint.

I The decomposition Ψ(x) = eiθ [Φω(x + a) + U(x + a) + iW(x + a)] is
uniquely defined for θ ∈ R, a ∈ R, and ω > 0 subject to three
constraints on U and W including 〈U,Φω〉L2 = 0. Hessian Λ′′ω(Φω) is
strictly positive under the three constraints.

I U,W ∈ H1 and ω are controlled in the time evolution from energy
estimates due to coercivity of the Lyapunov function in these variables.
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Main Question
If the standing wave has a free parameter which is not supported by the
corresponding symmetry of the PDE, does a drift along the parameter imply
instability of the standing waves?

Two answers:
NO Resonant normal forms (conformal cubic wave equation on

three-sphere): with P. Bizon and D. Hunik (Jagiellonian University,
Krakow, Poland) [Comm. Pure Appl. Math. 72 (2019), 1123–1151].

YES Balanced star graphs (transmission problems): with A. Kairzhan
(McMaster University) and R.H. Goodman (New Jersey Tech, USA)
[SIAM J. Applied Dynamical Systems (2019), in press].
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Resonant normal forms
In many infinite-dimensional Hamiltonian systems with spatial confinement,

I The system can be written in canonical coordinates;
I The resonant energy transfer can be isolated from the rest.

If the resonant energy transfer also involves infinitely many modes, this
reductive technique leads to the infinite-dimensional resonant normal form.

Hamiltonian systems with∞ degrees of freedom

⇓ ⇓ ⇓ ⇓ ⇓

Resonant normal form with∞ canonical coordinates

Examples:
I Cubic Szegö equation

Gerard, Grellier (2010, 2012, 2015)
I Rotating Bose–Einstein condensates in 2D

Faou, Germain, & Hani (2016); Germain, Gerard, Thomann (2017);
Biasi, Bizon, Craps, & Evnin (2017)
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Resonant normal form for conformal flow on S3

I Background geometry: the Einstein cylinderM = R× S3 with metric

g = −dt2 + dx2 + sin2x dω2, (t, x, ω) ∈ R× [0, π]× S2

This spacetime has constant scalar curvature R(g) = 6.

I OnM we consider a real scalar field φ satisfying

�gφ− φ− φ3 = 0 .

I We assume that φ = φ(t, x). Then, ν(t, x) = sin(x)φ(t, x) satisfies

νtt − νxx +
ν3

sin2 x
= 0

with Dirichlet boundary conditions ν(t, 0) = ν(t, π) = 0.

I Linear eigenstates: en(x) ∼ sin(ωnx) with ωn = n + 1 (n = 0, 1, 2, ...)



Time averaging
I Expanding ν(t, x) =

∞∑
n=0

cn(t)en(x) we get

d2cn

dt2 +ω2
ncn = −

∑
jkl

Snjkl cjckcl, Sjkln =

∫ π

0

dx
sin2 x

en(x)ej(x)ek(x)el(x)

I Using variation of constants

cn = βneiωnt + β̄ne−iωnt,
dcn

dt
= iωn

(
βneiωnt − β̄ne−iωnt)

we factor out fast oscillations

2iωn
dβn

dt
= −

∑
jkl

Snjkl cjckcl e−iωnt

I Each term in the sum has a factor e−iΩt, where Ω = ωn ± ωj ± ωk ± ωl.
The terms with Ω = 0 correspond to resonant interactions.

I Let τ = ε2t and βn(t) = εαn(τ). For ε→ 0 the non-resonant terms
∝ e−iΩτ/ε2

are highly oscillatory and therefore negligible.



Resonant system
I Keeping only the resonant terms (and rescaling), we obtain

i(n + 1)
dαn

dτ
=

∞∑
j=0

n+j∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k ,

where Snjk,n+j−k = min{n, j, k, n + j− k}+ 1.

I This system (labeled as conformal flow) provides an accurate
approximation to the cubic wave equation on the timescale ∼ ε−2.
Bizon–Craps–Evnin–Hunik–Luyten–Maliborski (2016)

I This is a Hamiltonian system

i(n + 1)
dαn

dτ
=

1
2
∂H
∂ᾱn

with

H =

∞∑
n=0

∞∑
j=0

n+j∑
k=0

Snjk,n+j−kᾱnᾱjαkαn+j−k



Properties of conformal flow
I Symmetries

Scaling: αn(t)→ cαn(c2t), c ∈ R
Global phase shift: αn(t)→ eiθαn(t), θ ∈ R
Local phase shift: αn(t)→ einµαn(t), µ ∈ R

I Conserved quantities

Q =

∞∑
n=0

(n + 1)|αn|2, E =

∞∑
n=0

(n + 1)2|αn|2

I The Cauchy problem is locally (and therefore also globally) well-posed
for initial data in `2,1(Z) where H,Q,E are finite and conserved.



Energy inequality
Energy

H =

∞∑
n=0

∞∑
j=0

n+j∑
k=0

Snjk,n+j−kᾱnᾱjαkαn+j−k

Two mass quantities:

Q =

∞∑
n=0

(n + 1)|αn|2, E =

∞∑
n=0

(n + 1)2|αn|2

Theorem (Bizon–Hunik–P, 2019)
For every α ∈ `2,1/2(N), it is true that H(α) ≤ Q(α)2. Moreover,
H(α) = Q(α)2 if and only if αn = cpn for some c, p ∈ C with |p| < 1.



Standing waves
A solution of the conformal flow is called a standing wave if α(t) = Ae−iλt,
where (An)n∈N are time-independent and λ is real.

The amplitudes of the standing wave satisfy

(n + 1)λAn =

∞∑
j=0

n+j∑
k=0

Sn,j,k,n+j−k ĀjAkAn+j−k .

and they are critical points of energy H for fixed mass Q
with the Lyapunov functional K(α) = 1

2 H(α)− λQ(α).

Among the standing waves, there is a ground state

αn(t) = cpne−iλt, λ =
|c|2

(1− |p|2)2 , c ∈ C, p ∈ C

with |p| < 1 since αn = cpn attains H(α) ≤ Q(α)2.



Normalized ground state
Normalized ground state with λ = 1

An(p) = (1− p2)pn, p ∈ (0, 1).

I The conserved quantities H,Q,E take values:

H(A) = 1, Q(A) = 1, E(A) =
1 + p2

1− p2 .

I If α = A(p) + a + ib is substituted into K(α) = 1
2 H(α)− Q(α), then

K(α)− K(A(p)) = 〈L+(p)a, a〉+ 〈L−(p)b, b〉+O(‖a‖3 + ‖b‖3).

and the Hessian operator (L+(p),L−(p)) in `2,1(N)× `2,1(N) admits a
simple positive eigenvalue, a triple zero eigenvalue, and the rest of the
spectrum is strictly negative.

I L−(p)A(p) = 0 and L−(p)MA(p) = 0
I L+(p)A′(p) = 0 and L+(p)MA(p) = λ∗(p)MA(p).

where λ∗(p) = 2(1 + p2)/(1− p2) > 0 and M = diag(1, 2, · · · ).
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Orbital stability of the ground state family
The ground state family

An(p) = (1− p2)pn, p ∈ (0, 1).

By the phase shift invariance, it defines the 2-dim orbit

A(p) =
{(

eiθ+iµnAn(p)
)

n∈N : (θ, µ) ∈ S1 × S1
}
.

Theorem (Bizon–Hunik–P, 2019)
For every p0 ∈ (0, 1) and every small ε > 0, there is δ > 0 such that for
every initial data α(0) ∈ `2,1(N) satisfying ‖α(0)− A(p0)‖`2,1 ≤ δ, the
unique solution α(t) ∈ C(R+, `

2,1) satisfies for all t

inf
θ,µ∈S

‖α(t)− eiθ+iµnA(p(t))‖`2,1/2 ≤ ε,

and
inf
θ,µ∈S

‖α(t)− eiθ+iµnA(p(t))‖`2,1 . ε+ (p0 − p(t))1/2

for some continuous function p(t) ∈ [0, p0].

Parameter p(t) may drift towards smaller values compensated by the
increasing `2,1 distance between the solution and the orbit.
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Coercivity of the energy in `2,1/2(N)
Symplectically orthogonal subspace of `2(N):

[Xc(p)]⊥ :=
{

a ∈ `2(N) : 〈MA(p), a〉 = 〈MA′(p), a〉 = 0
}
.

There exists C > 0 such that

−〈L+(p)a, a〉 & ‖a‖2
`2,1/2

−〈L−(p)b, b〉 & ‖b‖2
`2,1/2

for every a, b ∈ `2,1/2(N) ∩ [Xc(p)]⊥.



Decomposition near the ground state
Assume that the initial data α(0) ∈ `2,1(N) satisfy

‖α(0)− A(p0)‖`2,1 ≤ δ,

for some p0 ∈ [0, 1) and a sufficiently small δ > 0. Then, the corresponding
unique global solution α(t) ∈ C(R+, `

2,1) of the conformal flow can be
represented by the decomposition

αn(t) = ei(θ(t)+(n+1)µ(t)) (c(t)An(p(t)) + an(t) + ibn(t)) ,

a, b ∈ [Xc(p)]⊥ satisfying for all t

|c(t)− 1|+ ‖a(t) + ib(t)‖`2,1/2 . δ.

I The proof is based on the Lyapunov function

∆(c) := c2 (Q(α)− 1)− 1
2

(H(α)− 1) .
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Control of the drift of p(t) in time
Under the same assumptions,

p(t) . p0 + δ, ‖a(t) + ib(t)‖`2,1 . δ1/2 + |p0 − p(t)|1/2.

I The proof is based on the additional mass conservation:

E(α(t)) = c(t)2 1 + p(t)2

1− p(t)2 + ‖a(t) + ib(t)‖2
`2,1 ,

which yields

2(p(t)2 − p2
0)

(1− p(t)2)(1− p2
0)

+ ‖a(t) + ib(t)‖2
`2,1 . δ,

Does the drift of p(t) towards smaller values actually occur?



Control of the drift of p(t) in time
Under the same assumptions,

p(t) . p0 + δ, ‖a(t) + ib(t)‖`2,1 . δ1/2 + |p0 − p(t)|1/2.

I The proof is based on the additional mass conservation:

E(α(t)) = c(t)2 1 + p(t)2

1− p(t)2 + ‖a(t) + ib(t)‖2
`2,1 ,

which yields

2(p(t)2 − p2
0)

(1− p(t)2)(1− p2
0)

+ ‖a(t) + ib(t)‖2
`2,1 . δ,

Does the drift of p(t) towards smaller values actually occur?



Refined control of the drift of p(t) in time
In addition to the conservation of H(α), Q(α), and E(α), there exists
another conserved quantity:

Z(α) =

∞∑
n=0

(n + 1)(n + 2)ᾱn+1αn.

Biasi–Bizon–Evrin (2018)

For the normalized ground state,

H(A) = 1, Q(A) = 1, E(A) =
1 + p2

1− p2 , Z(A) =
2p

1− p2 ,

and expansion near the ground state family gives

E(α(t))− |Z(α(t))| ≥ 1− p(t)
1 + p(t)

c(t)2,

which yields
p0 − p(t)

(1 + p(t))(1 + p0)
. δ,

or p0 − p(t) . δ.
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Main Question
If the standing wave has a free parameter which is not supported by the
corresponding symmetry of the PDE, does a drift along the parameter imply
instability of the standing waves?

Two answers:
NO Resonant normal forms (conformal cubic wave equation on
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Krakow, Poland) [Comm. Pure Appl. Math. 72 (2019), 1123–1151].
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(McMaster University) and R.H. Goodman (New Jersey Tech, USA)
[SIAM J. Applied Dynamical Systems (2019), in press].



Nonlinear Schrödinger equation on a metric graph

A metric graph Γ = {E,V} is given
by a set of edges E and vertices V ,
with a metric structure on each edge.

Nonlinear Schrödinger equation on a graph Γ:

iΨt = −∆Ψ− 2|Ψ|2Ψ, x ∈ Γ,

where ∆ is the graph Laplacian and Ψ(t, x) is defined componentwise on
edges subject to Neumann–Kirchhoff boundary conditions at vertices:{

Ψ(v) is continuous for every v ∈ V,∑
e∼v ∂Ψe(v) = 0, for every v ∈ V,

where e ∼ v denotes all edges e ∈ E adjacent to v ∈ V .



Example: a star graph
A star graph is the union of N half-lines connected at a single vertex. For
N = 2, the graph is the line R. For N = 3, the graph is a Y-junction.
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Function spaces are defined componentwise:

L2(Γ) = L2(R−)⊕ L2(R+)⊕ · · · ⊕ L2(R+)︸ ︷︷ ︸
(N-1) elements

,

subject to the Neumann–Kirchhoff conditions at a single vertex:

H1
Γ := {Ψ ∈ H1(Γ) : ψ1(0) = ψ2(0) = · · · = ψN(0)}

H2
Γ := {Ψ ∈ H2(Γ) ∩ H1

Γ : ψ′1(0) =

N∑
j=2

ψ′j (0)},



Generalization of a star graph
A star graph is the union of N half-lines connected at a single vertex. For
N = 2, the graph is the line R. For N = 3, the graph is a Y-junction.
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For given positive (α1, · · · , αN),

H1
Γ := {Ψ ∈ H1(Γ) : α1ψ1(0) = α2ψ2(0) = · · · = αNψN(0)}

H2
Γ := {Ψ ∈ H2(Γ) ∩ H1

Γ : α−1
1 ψ′1(0) =

N∑
j=2

α−1
j ψ′j (0)}.



Steady states on star graphs
Theorem. (Adami–Serra-Tilli, 2015)
If N ≥ 3 and α1 = · · · = αN = 1, no ground state exists in

E = inf{E(u) : u ∈ H1
Γ, Q(u) = µ}.

A minimizing sequence escapes to infinity along the edges.

There exists a standing wave of the Euler–Lagrange equation:

−∆Φ− 2|Φ|2Φ = −ωΦ

in the form of the half-soliton:

Φ(x) =

[ √
ωsech(

√
ωx), x ∈ (−∞, 0), j = 1,√

ωsech(
√
ωx), x ∈ (0,∞), 2 ≤ j ≤ N.

]
.

Theorem. (Adami et al., 2012) (Kairzhan–P., JDE, 2018) Half-soliton is a
saddle point of energy E at fixed mass Q. This saddle point is unstable in the
time evolution of the NLS.
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Non-uniqueness of the half-soliton
Consider now generalized boundary conditions{

α1ψ1(0) = α2ψ2(0) = · · · = αNψN(0)

α−1
1 ψ′1(0) = α−1

2 ψ′2(0) + · · ·+ α−1
N ψ′N(0).

and generalized NLS equation iΨt = −∆Ψ− 2α2|Ψ|2Ψ, where
(α1, . . . , αN) are positive.

If α−2
1 =

∑N
j=2 α

−2
j , then there exists a one-parameter family of solutions

{Φ(x; a)}a∈R satisfying

Φ(x; a) =

[
α−1

1
√
ωsech(

√
ω(x + a)), x ∈ (−∞, 0), j = 1,

α−1
j
√
ωsech(

√
ω(x + a)), x ∈ (0,∞), 2 ≤ j ≤ N.

]
.

D. Matrasulov–K. Sabirov–Z. Sobirov (2012)
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Shifted standing waves
Example for N = 3:

Φ(x; a) =

 α−1
1
√
ωsech(

√
ω(x + a)), x ∈ (−∞, 0),

α−1
2
√
ωsech(

√
ω(x + a)), x ∈ (0,∞),

α−1
3
√
ωsech(

√
ω(x + a)), x ∈ (0,∞).

 .
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Figure: Schematic representation of the shifted standing waves on the star graph with
N = 3, and either a < 0 (left) or a > 0 (right).



Reason for existence of shifted states
Assume that Ψ ∈ H1

Γ satisfies the symmetry reduction:

α2ψ2(t, x) = · · · = αNψN(t, x), x > 0.

If α−2
1 =

∑N
j=2 α

−2
j , the wave function

ϕ(t, x) =

{
α1ψ1(t, x), x ≤ 0,
α2ψ2(t, x), x ≥ 0,

satisfies the cubic NLS equation on the line R:

i
∂ϕ

∂t
= −∂

2ϕ

∂x2 − 2|ϕ|2ϕ, x ∈ R,

which is translationally invariant in x.



Momentum conservation
For a solution Ψ ∈ C(R,H1

Γ), let us define the momentum of the NLS:

P(Ψ) = Im〈Ψ′,Ψ〉L2(Γ)

If α−2
1 =

∑N
j=2 α

−2
j , the map t 7→ P(Ψ) is monotonically increasing:

dP
dt

=
1
2

N∑
j=2

N∑
i 6=j

α2
1

α2
j α

2
i

∣∣αjψ
′
j (0)− αiψ

′
i (0)

∣∣2 ≥ 0.

If in addition, the solution is symmetric and satisfies the NLS reduction:

α2ψ2(t, x) = · · · = αNψN(t, x), x > 0,

then the momentum P(Ψ) is constant in time.
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Stability of standing waves on the star graph
Shifted standing waves with parameters ω > 0 and a ∈ R:

Φω(x; a) =

[
α−1

1
√
ωsech(

√
ω(x + a)), x ∈ (−∞, 0), j = 1,

α−1
j
√
ωsech(

√
ω(x + a)), x ∈ (0,∞), 2 ≤ j ≤ N.

]

Substituting Ψ = Φω + U + iW into Λω(u) := E(u) + ωQ(u) yields

Λω(Φω+U+iW)−Λω(Φω) = 〈L+(ω, a)U,U〉L2(Γ)+〈L−(ω, a)W,W〉L2(Γ)+· · · ,

where {
L−(ω, a) = −∆ + ω − 2α2Φω(·; a)2,
L+(ω, a) = −∆ + ω − 6α2Φω(·; a)2.

Spectral properties of L±(ω, a):
I σc(L±) = [ω,∞) with ω > 0.
I L− ≥ 0 and ker(L−) = span{Φω}.
I Φ′ω ∈ ker(L+)
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Negative eigenvalues of L+(ω, a)

 

Figure: The spectrum of L+(ω, a) for ω = 1.

Theorem. (Kairzhan–P., JPA, 2018) Besides simple eigenvalues λ0 = −3ω
and λ = 0, there exists exactly one additional eigenvalue λ1(ω, a) of
multiplicity N − 2 such that λ1(ω, a) > 0 for a > 0 and λ1(ω, a) < 0.



Shifted standing waves
Recall the main example for N = 3:

Φ(x; a) =

 α−1
1
√
ωsech(

√
ω(x + a)), x ∈ (−∞, 0),

α−1
2
√
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√
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3
√
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ω(x + a)), x ∈ (0,∞).
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Figure: L+(ω, a) has two negative eigenvalues for a < 0 (left) and one negative
eigenvalue for a > 0 (right).



Implication of the eigenvalue count for N = 3

Λω(Φω+U+iW)−Λω(Φω) = 〈L+(ω, a)U,U〉L2(Γ)+〈L−(ω, a)W,W〉L2(Γ)+· · ·

I a < 0: Φω is a saddle point of Λω with two negative eigenvalues and it
remains a saddle point with one negative eigenvalue under the
constraint of fixed Q(Ψ) = ‖Ψ‖2

L2 .

Shifted state with a < 0 is spectrally and nonlinearly unstable.

I a > 0: Φω is a saddle point of Λω with one negative eigenvalue and it is
a degenerate constrained minimizer under the constraint of fixed
Q(Ψ) = ‖Ψ‖2

L2 with double zero eigenvalue.

The shifted state with a > 0 is spectrally stable. Is it nonlinearly stable?
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Recap for spectrally stable shifted states with a > 0

Λω(Φω+U+iW)−Λω(Φω) = 〈L+(ω, a)U,U〉L2(Γ)+〈L−(ω, a)W,W〉L2(Γ)+· · ·

I L− ≥ 0 and ker(L−) = span{Φω}.

I ker(L+) = span{Φ′ω} and L+ has one negative eigenvalue.

I Fixed Q(Ψ) = ‖Ψ‖2
L2 produces the linear constraint 〈U,Φω〉L2 = 0 on

U = Re(Ψ). Hessian Λ′′ω(Φω) is non-negative under the constraint.

I The decomposition Ψ(x) = eiθ [Φω(x; a) + U(x) + iW(x)] is uniquely
defined for θ ∈ R, a ∈ R, and ω > 0 subject to three constraints on U
and W including 〈U,Φω〉L2 = 0. Hessian Λ′′ω(Φω) is strictly positive
under the three constraints.

I U,W ∈ H1
Γ and ω are controlled in the time evolution from energy

estimates due to coercivity of the Lyapunov function.
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Drift of the shifted states
Theorem. (Kairzhan–P–Goodman, 2019)
Fix a0 > 0. For every a ∈ (0, a0) there exists ε0 > 0 (sufficiently small) such
that for every ε ∈ (0, ε0), there exists δ > 0 and T > 0 such that for every
initial datum Ψ0 ∈ H1

Γ with P(Ψ0) > 0 and

‖Ψ0 − Φω(·; a0)‖H1(Γ) ≤ δ

the unique solution Ψ ∈ C([0,T],H1
Γ) ∩ C1([0,T],H−1

Γ ) to the NLS
equation with the initial datum Ψ(0, ·) = Ψ0 satisfies the bound

inf
θ∈R
‖Ψ(t, ·)− eiθΦω(·; a(t))‖H1(Γ) ≤ ε, t ∈ [0,T],

where a ∈ C1([0,T]) is a strictly decreasing function such that
limt→T a(t) = a.



Reason for the drift
Recall that the momentum of the NLS:

P(Ψ) = Im〈Ψ′,Ψ〉L2(Γ)

is no longer constant but is monotonically increasing:

dP
dt

=
1
2

N∑
j=2

N∑
i 6=j

α2
1

α2
j α

2
i

∣∣αjψ
′
j (0)− αiψ

′
i (0)

∣∣2 ≥ 0.

For the solution uniquely decomposed as

Ψ(t, x) = eiθ(t) [Φω(t)(x; a(t)) + U(t, x) + iW(t, x)
]
,

the momentum is expanded as

P(Ψ) = −2〈Φ′ω(·; a),W〉L2(Γ) +O(‖U + iW‖2
H1(Γ)),

whereas the modulation equation for a(t) reads as

ȧ = 2〈Φ′ω(·; a),W〉L2(Γ)

[
1 +O(‖U + iW‖H1(Γ))

]
+O(‖U + iW‖2

H1(Γ)),

so that ȧ = −P(Ψ) +O(‖U + iW‖2
H1(Γ)) < 0 if P(Ψ) ≥ P(Ψ0) > 0.
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Numerical illustration: linear instability for a < 0

Figure: A numerical solution for a = −0.55 and ε = 0.1. The colorbar corresponds
to values of |u|2. The three panels correspond to the solution on edges 1, 2, and 3
going down.



Numerical illustration: drift instability for a > 0

Figure: A numerical solution for a = 0.55 and ε = 0.1. The colorbar corresponds to
values of |u|2.



Drift instability for a > 0
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Figure: Postprocessed quantities form the same simulation. (Top) The position of the
maximum of u. The solid line for t < 33.5 describes the position on the incoming
edge one. The dashed line for t > 33.5 shows the position of the maximum on edge
two. (Middle) The asymmetry, defined as ‖u2‖L2(R+) − ‖u3‖L2(R+). (Bottom) The
momentum P(Ψ) versus time t.



Pushing experiments beyond the validity of the theorem
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Figure: A numerical solution with a = 0. (Top) The position of the maximum of |u|2,
on edge one for t < 117 and on edge three (dashed) for t > 117. (Middle)
Asymmetry of the solution between the two outgoing edges. (Bottom) The
momentum P(Ψ) versus time t.



Conclusion
I Resonant normal forms: drift along the degenerate ground state family

is eliminated due to conserved quantities.

I PDEs on star graphs: drift along the shifted states leads to nonlinear
instability of the standing wave.

Thanks! Questions???
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