Drift of steady states in Hamiltonian PDEs: two examples

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Workshop "Hamiltonian PDEs: KAM, Reducibility, Normal Forms and Applications", BIRS-Oaxaca, June 10-14, 2019

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

NLS evolution on the line

The Cauchy problem for the NLS flow:

$$\begin{cases} i\Psi_t = -\Delta \Psi - 2|\Psi|^2 \Psi, \\ \Psi|_{t=0} = \Psi_0, \end{cases}$$

◆□▶ ◆■▶ ◆ ■▶ ◆ ■▶ ○ ■ ○ ○ ○ ○

where $\Delta \Psi = \partial_x^2 \Psi$ on the line \mathbb{R} .

NLS evolution on the line

The Cauchy problem for the NLS flow:

$$\left\{ \begin{array}{l} i\Psi_t = -\Delta \Psi - 2|\Psi|^2 \Psi, \\ \Psi|_{t=0} = \Psi_0, \end{array} \right.$$

where $\Delta \Psi = \partial_x^2 \Psi$ on the line \mathbb{R} .

The Cauchy problem is locally and globally well-posed in $\Psi_0 \in H^1(\mathbb{R})$. Moreover, the mass

$$Q(\Psi) = \|\Psi\|_{L^2}^2$$

and the energy

$$E(\Psi) = \|\Psi'\|_{L^2}^2 - \|\Psi\|_{L^4}^4,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

are constants in time for $\Psi \in C(\mathbb{R}, H^1)$.

NLS evolution on the line

The Cauchy problem for the NLS flow:

$$\left\{ \begin{array}{l} i\Psi_t = -\Delta \Psi - 2|\Psi|^2 \Psi, \\ \Psi|_{t=0} = \Psi_0, \end{array} \right.$$

where $\Delta \Psi = \partial_x^2 \Psi$ on the line \mathbb{R} .

The Cauchy problem is locally and globally well-posed in $\Psi_0 \in H^1(\mathbb{R})$. Moreover, the mass

$$Q(\Psi) = \|\Psi\|_{L^2}^2$$

and the energy

$$E(\Psi) = \|\Psi'\|_{L^2}^2 - \|\Psi\|_{L^4}^4,$$

are constants in time for $\Psi \in C(\mathbb{R}, H^1)$.

 $E(\Psi)$ is coercive in H^1 thanks to Gagliardo–Nirenberg inequality:

$$\|\Psi\|_{L^4}^4 \le C \|\partial_x \Psi\|_{L^2} \|\Psi\|_{L^2}^3$$

- ロト・ 日本・ モー・ モー・ うらく

where C > 0 is independent of Ψ .

Standing waves

Ground state is a standing wave of smallest energy E at fixed mass Q,

$$\mathcal{E} = \inf\{E(u): u \in H^1(\mathbb{R}), Q(u) = \mu\}.$$

Euler-Lagrange equation for the standing waves:

$$-\Delta\Phi - 2|\Phi|^2\Phi = -\omega\Phi,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where $\omega > 0$ defines $\Psi(t, x) = \Phi(x)e^{i\omega t}$.

Standing waves

Ground state is a standing wave of smallest energy E at fixed mass Q,

$$\mathcal{E} = \inf\{E(u): u \in H^1(\mathbb{R}), Q(u) = \mu\}.$$

Euler-Lagrange equation for the standing waves:

$$-\Delta\Phi - 2|\Phi|^2\Phi = -\omega\Phi,$$

where $\omega > 0$ defines $\Psi(t, x) = \Phi(x)e^{i\omega t}$.

Infimum \mathcal{E} exists thanks to the same Gagliardo–Nirenberg inequality.

Theorem. (M.Weinstein, 1986) Infimum \mathcal{E} is attained at the NLS soliton $\Phi_{\omega}(x) = \sqrt{\omega} \operatorname{sech}(\sqrt{\omega}x)$ with $\omega = \mu^2/4$:

$$\mathcal{E} = \min_{u \in H^1(\mathbb{R})} E(u) = E(\phi).$$

Orbital stability of standing waves

From the constants of motion, we can define the Lyapunov functional

 $\Lambda_{\omega}(\Psi) := E(\Psi) + \omega Q(\Psi),$

the critical points of which are the standing waves:

$$-\Delta\Phi - 2|\Phi|^2\Phi = -\omega\Phi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Orbital stability of standing waves

From the constants of motion, we can define the Lyapunov functional

 $\Lambda_{\omega}(\Psi) := E(\Psi) + \omega Q(\Psi),$

the critical points of which are the standing waves:

$$-\Delta\Phi - 2|\Phi|^2\Phi = -\omega\Phi.$$

The NLS soliton $\Phi_{\omega}(x) = \sqrt{\omega} \operatorname{sech}(\sqrt{\omega}x)$ is a saddle point of $\Lambda_{\omega}(\Psi)$ for fixed $\omega > 0$. Moreover, it is a degenerate saddle point as $\Phi_{\omega}(x+a)e^{i\theta}$ is also a solution for every $\theta \in \mathbb{R}$ and $a \in \mathbb{R}$.

Orbital stability of standing waves

From the constants of motion, we can define the Lyapunov functional

$$\Lambda_{\omega}(\Psi) := E(\Psi) + \omega Q(\Psi),$$

the critical points of which are the standing waves:

$$-\Delta\Phi - 2|\Phi|^2\Phi = -\omega\Phi.$$

The NLS soliton $\Phi_{\omega}(x) = \sqrt{\omega} \operatorname{sech}(\sqrt{\omega}x)$ is a saddle point of $\Lambda_{\omega}(\Psi)$ for fixed $\omega > 0$. Moreover, it is a degenerate saddle point as $\Phi_{\omega}(x+a)e^{i\theta}$ is also a solution for every $\theta \in \mathbb{R}$ and $a \in \mathbb{R}$.

Definition. For every $\epsilon > 0$, there is $\delta > 0$ such that for every $\Psi_0 \in H^1$ satisfying $\|\Psi_0 - \Phi_\omega\|_{H^1} < \delta$, the unique solution $\Psi \in C(\mathbb{R}, H^1)$ of the NLS equation satisfies

$$\inf_{\theta \in \mathbb{R}, a \in \mathbb{R}} \|\Psi(t, \cdot) - \Phi_{\omega}(\cdot + a)e^{i\theta}\|_{H^{1}} < \epsilon,$$

where $\omega > 0$ is fixed.

Orbital stability of the NLS solitons on the line \mathbb{R}

Theorem. (Grillakis–Shatah–Strauss, 1987) The NLS soliton on the line \mathbb{R} is orbitally stable for every $\omega > 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Orbital stability of the NLS solitons on the line \mathbb{R}

Theorem. (Grillakis–Shatah–Strauss, 1987) The NLS soliton on the line \mathbb{R} is orbitally stable for every $\omega > 0$.

- Hessian Λ["]_ω(Φ_ω) has exactly one simple negative eigenvalue and a double zero eigenvalue.
- ► Fixed $Q(\Psi) = \|\Psi\|_{L^2}^2$ produces the linear constraint $\langle U, \Phi_\omega \rangle_{L^2} = 0$ on $U = \text{Re}(\Psi)$. Hessian $\Lambda''_{\omega}(\Phi_\omega)$ is non-negative under the constraint.
- The decomposition Ψ(x) = e^{iθ} [Φ_ω(x + a) + U(x + a) + iW(x + a)] is uniquely defined for θ ∈ ℝ, a ∈ ℝ, and ω > 0 subject to three constraints on U and W including ⟨U, Φ_ω⟩_{L²} = 0. Hessian Λ["]_ω(Φ_ω) is strictly positive under the three constraints.
- ► $U, W \in H^1$ and ω are controlled in the time evolution from energy estimates due to coercivity of the Lyapunov function in these variables.

Main Question

If the standing wave has a free parameter which is not supported by the corresponding symmetry of the PDE, does a drift along the parameter imply instability of the standing waves?

Main Question

If the standing wave has a free parameter which is not supported by the corresponding symmetry of the PDE, does a drift along the parameter imply instability of the standing waves?

Two answers:

- NO Resonant normal forms (conformal cubic wave equation on three-sphere): with P. Bizon and D. Hunik (Jagiellonian University, Krakow, Poland) [Comm. Pure Appl. Math. 72 (2019), 1123–1151].
- YES Balanced star graphs (transmission problems): with A. Kairzhan (McMaster University) and R.H. Goodman (New Jersey Tech, USA) [SIAM J. Applied Dynamical Systems (2019), in press].

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resonant normal forms

In many infinite-dimensional Hamiltonian systems with spatial confinement,

- The system can be written in canonical coordinates;
- The resonant energy transfer can be isolated from the rest.

If the resonant energy transfer also involves infinitely many modes, this reductive technique leads to the infinite-dimensional resonant normal form.

Hamiltonian systems with ∞ degrees of freedom

$$\Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow$$

Resonant normal form with ∞ canonical coordinates

Resonant normal forms

In many infinite-dimensional Hamiltonian systems with spatial confinement,

- The system can be written in canonical coordinates;
- The resonant energy transfer can be isolated from the rest.

If the resonant energy transfer also involves infinitely many modes, this reductive technique leads to the infinite-dimensional resonant normal form.

Hamiltonian systems with ∞ degrees of freedom

 $\Downarrow \ \Downarrow \ \Downarrow \ \Downarrow \ \Downarrow \ \Downarrow \ \Downarrow \ \Downarrow$

Resonant normal form with ∞ canonical coordinates

Examples:

- Cubic Szegö equation Gerard, Grellier (2010, 2012, 2015)
- Rotating Bose–Einstein condensates in 2D
 Faou, Germain, & Hani (2016); Germain, Gerard, Thomann (2017);
 Biasi, Bizon, Craps, & Evnin (2017)

Resonant normal form for conformal flow on \mathbb{S}^3

▶ Background geometry: the Einstein cylinder $\mathcal{M} = \mathbb{R} \times \mathbb{S}^3$ with metric

$$g = -dt^2 + dx^2 + \sin^2 x \, d\omega^2, \qquad (t, x, \omega) \in \mathbb{R} \times [0, \pi] \times \mathbb{S}^2$$

This spacetime has constant scalar curvature R(g) = 6.

• On \mathcal{M} we consider a real scalar field ϕ satisfying

$$\Box_g \phi - \phi - \phi^3 = 0 \, .$$

• We assume that $\phi = \phi(t, x)$. Then, $\nu(t, x) = \sin(x)\phi(t, x)$ satisfies

$$\nu_{tt} - \nu_{xx} + \frac{\nu^3}{\sin^2 x} = 0$$

with Dirichlet boundary conditions $\nu(t, 0) = \nu(t, \pi) = 0$.

• Linear eigenstates: $e_n(x) \sim \sin(\omega_n x)$ with $\omega_n = n + 1$ (n = 0, 1, 2, ...)

Time averaging

• Expanding
$$\nu(t, x) = \sum_{n=0}^{\infty} c_n(t)e_n(x)$$
 we get

$$\frac{d^2c_n}{dt^2} + \omega_n^2 c_n = -\sum_{jkl} S_{njkl} c_j c_k c_l, \quad S_{jkln} = \int_0^\pi \frac{dx}{\sin^2 x} e_n(x) e_j(x) e_k(x) e_l(x)$$

Using variation of constants

$$c_n = \beta_n e^{i\omega_n t} + \bar{\beta}_n e^{-i\omega_n t}, \qquad \frac{dc_n}{dt} = i\omega_n \left(\beta_n e^{i\omega_n t} - \bar{\beta}_n e^{-i\omega_n t}\right)$$

we factor out fast oscillations

$$2i\omega_n \frac{d\beta_n}{dt} = -\sum_{jkl} S_{njkl} c_j c_k c_l e^{-i\omega_n t}$$

- Each term in the sum has a factor $e^{-i\Omega t}$, where $\Omega = \omega_n \pm \omega_j \pm \omega_k \pm \omega_l$. The terms with $\Omega = 0$ correspond to resonant interactions.
- ► Let $\tau = \varepsilon^2 t$ and $\beta_n(t) = \varepsilon \alpha_n(\tau)$. For $\varepsilon \to 0$ the non-resonant terms $\propto e^{-i\Omega \tau/\varepsilon^2}$ are highly oscillatory and therefore negligible.

Resonant system

▶ Keeping only the resonant terms (and rescaling), we obtain

$$i(n+1)\frac{d\alpha_n}{d\tau} = \sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{njk,n+j-k} \,\bar{\alpha}_j \alpha_k \alpha_{n+j-k} \,,$$

where $S_{njk,n+j-k} = \min\{n, j, k, n+j-k\} + 1$.

- ► This system (labeled as conformal flow) provides an accurate approximation to the cubic wave equation on the timescale ~ ε⁻². Bizon-Craps-Evnin-Hunik-Luyten-Maliborski (2016)
- This is a Hamiltonian system

$$i(n+1)\frac{d\alpha_n}{d\tau} = \frac{1}{2} \frac{\partial H}{\partial \bar{\alpha}_n}$$

with

$$H = \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{njk,n+j-k} \bar{\alpha}_n \bar{\alpha}_j \alpha_k \alpha_{n+j-k}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of conformal flow

Symmetries

Scaling: Global phase shift: Local phase shift:

$$\begin{aligned} \alpha_n(t) &\to c\alpha_n(c^2 t), \quad c \in \mathbb{R} \\ \alpha_n(t) &\to e^{i\theta}\alpha_n(t), \quad \theta \in \mathbb{R} \\ \alpha_n(t) &\to e^{in\mu}\alpha_n(t), \quad \mu \in \mathbb{R} \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Conserved quantities

$$Q = \sum_{n=0}^{\infty} (n+1) |\alpha_n|^2, \qquad E = \sum_{n=0}^{\infty} (n+1)^2 |\alpha_n|^2$$

► The Cauchy problem is locally (and therefore also globally) well-posed for initial data in $\ell^{2,1}(\mathbb{Z})$ where H, Q, E are finite and conserved.

Energy inequality

Energy

$$H = \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{njk,n+j-k} \bar{\alpha}_n \bar{\alpha}_j \alpha_k \alpha_{n+j-k}$$

Two mass quantities:

$$Q = \sum_{n=0}^{\infty} (n+1) |\alpha_n|^2, \qquad E = \sum_{n=0}^{\infty} (n+1)^2 |\alpha_n|^2$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Bizon–Hunik–P, 2019)

For every $\alpha \in \ell^{2,1/2}(\mathbb{N})$, it is true that $H(\alpha) \leq Q(\alpha)^2$. Moreover, $H(\alpha) = Q(\alpha)^2$ if and only if $\alpha_n = cp^n$ for some $c, p \in \mathbb{C}$ with |p| < 1.

Standing waves

A solution of the conformal flow is called a standing wave if $\alpha(t) = Ae^{-i\lambda t}$, where $(A_n)_{n \in \mathbb{N}}$ are time-independent and λ is real.

The amplitudes of the standing wave satisfy

$$(n+1)\lambda A_n = \sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{n,j,k,n+j-k} \bar{A}_j A_k A_{n+j-k}.$$

and they are critical points of energy *H* for fixed mass *Q* with the Lyapunov functional $K(\alpha) = \frac{1}{2}H(\alpha) - \lambda Q(\alpha)$.

Among the standing waves, there is a ground state

$$\alpha_n(t) = cp^n e^{-i\lambda t}, \quad \lambda = \frac{|c|^2}{(1-|p|^2)^2}, \quad c \in \mathbb{C}, \quad p \in \mathbb{C}$$

with |p| < 1 since $\alpha_n = cp^n$ attains $H(\alpha) \le Q(\alpha)^2$.

Normalized ground state

Normalized ground state with $\lambda = 1$

$$A_n(p) = (1 - p^2)p^n, \quad p \in (0, 1).$$

► The conserved quantities *H*, *Q*, *E* take values:

$$H(A) = 1$$
, $Q(A) = 1$, $E(A) = \frac{1+p^2}{1-p^2}$.

(ロト・日本)・モン・モン・モー のへで

Normalized ground state

Normalized ground state with $\lambda = 1$

$$A_n(p) = (1 - p^2)p^n, \quad p \in (0, 1).$$

► The conserved quantities *H*, *Q*, *E* take values:

$$H(A) = 1$$
, $Q(A) = 1$, $E(A) = \frac{1+p^2}{1-p^2}$.

• If $\alpha = A(p) + a + ib$ is substituted into $K(\alpha) = \frac{1}{2}H(\alpha) - Q(\alpha)$, then

$$K(\alpha) - K(A(p)) = \langle L_+(p)a, a \rangle + \langle L_-(p)b, b \rangle + \mathcal{O}(||a||^3 + ||b||^3).$$

and the Hessian operator $(L_+(p), L_-(p))$ in $\ell^{2,1}(\mathbb{N}) \times \ell^{2,1}(\mathbb{N})$ admits a simple positive eigenvalue, a triple zero eigenvalue, and the rest of the spectrum is strictly negative.

►
$$L_{-}(p)A(p) = 0$$
 and $L_{-}(p)MA(p) = 0$
► $L_{+}(p)A'(p) = 0$ and $L_{+}(p)MA(p) = \lambda_{*}(p)MA(p)$.
where $\lambda_{*}(p) = 2(1+p^{2})/(1-p^{2}) > 0$ and $M = \text{diag}(1,2,\cdots)$.

Orbital stability of the ground state family

The ground state family

$$A_n(p) = (1 - p^2)p^n, \quad p \in (0, 1).$$

By the phase shift invariance, it defines the 2-dim orbit

$$\mathcal{A}(p) = \left\{ \left(e^{i\theta + i\mu n} A_n(p) \right)_{n \in \mathbb{N}} : (\theta, \mu) \in \mathbb{S}^1 \times \mathbb{S}^1 \right\} \,.$$

Theorem (Bizon–Hunik–P, 2019)

For every $p_0 \in (0, 1)$ and every small $\epsilon > 0$, there is $\delta > 0$ such that for every initial data $\alpha(0) \in \ell^{2,1}(\mathbb{N})$ satisfying $\|\alpha(0) - A(p_0)\|_{\ell^{2,1}} \leq \delta$, the unique solution $\alpha(t) \in C(\mathbb{R}_+, \ell^{2,1})$ satisfies for all t

$$\inf_{\theta,\mu\in\mathbb{S}} \|\alpha(t) - e^{i\theta + i\mu n} A(p(t))\|_{\ell^{2,1/2}} \le \epsilon,$$

and

$$\inf_{\theta,\mu\in\mathbb{S}} \|\alpha(t) - e^{i\theta + i\mu n} A(p(t))\|_{\ell^{2,1}} \lesssim \epsilon + (p_0 - p(t))^{1/2}$$

for some continuous function $p(t) \in [0, p_0]$.

Orbital stability of the ground state family

The ground state family

$$A_n(p) = (1 - p^2)p^n, \quad p \in (0, 1).$$

By the phase shift invariance, it defines the 2-dim orbit

$$\mathcal{A}(p) = \left\{ \left(e^{i\theta + i\mu n} A_n(p) \right)_{n \in \mathbb{N}} : (\theta, \mu) \in \mathbb{S}^1 \times \mathbb{S}^1 \right\} \,.$$

Theorem (Bizon–Hunik–P, 2019)

For every $p_0 \in (0, 1)$ and every small $\epsilon > 0$, there is $\delta > 0$ such that for every initial data $\alpha(0) \in \ell^{2,1}(\mathbb{N})$ satisfying $\|\alpha(0) - A(p_0)\|_{\ell^{2,1}} \leq \delta$, the unique solution $\alpha(t) \in C(\mathbb{R}_+, \ell^{2,1})$ satisfies for all t

$$\inf_{\theta,\mu\in\mathbb{S}} \|\alpha(t) - e^{i\theta + i\mu n} A(p(t))\|_{\ell^{2,1/2}} \le \epsilon,$$

and

$$\inf_{\theta,\mu\in\mathbb{S}} \|\alpha(t) - e^{i\theta + i\mu n} A(p(t))\|_{\ell^{2,1}} \lesssim \epsilon + (p_0 - p(t))^{1/2}$$

for some continuous function $p(t) \in [0, p_0]$.

Coercivity of the energy in $\ell^{2,1/2}(\mathbb{N})$

Symplectically orthogonal subspace of $\ell^2(\mathbb{N})$:

$$[X_c(p)]^{\perp} := \left\{ a \in \ell^2(\mathbb{N}) : \quad \langle MA(p), a \rangle = \langle MA'(p), a \rangle = 0 \right\}.$$

There exists C > 0 such that

 $-\langle L_+(p)a,a
angle\gtrsim \|a\|_{\ell^{2,1/2}}^2$ $-\langle L_-(p)b,b
angle\gtrsim \|b\|_{\ell^{2,1/2}}^2$ for every $a,b\in \ell^{2,1/2}(\mathbb{N})\cap [X_c(p)]^{\perp}$.

Decomposition near the ground state

Assume that the initial data $\alpha(0) \in \ell^{2,1}(\mathbb{N})$ satisfy

$$\|\alpha(0) - A(p_0)\|_{\ell^{2,1}} \le \delta$$

for some $p_0 \in [0, 1)$ and a sufficiently small $\delta > 0$. Then, the corresponding unique global solution $\alpha(t) \in C(\mathbb{R}_+, \ell^{2,1})$ of the conformal flow can be represented by the decomposition

$$\alpha_n(t) = e^{i(\theta(t) + (n+1)\mu(t))} \left(c(t)A_n(p(t)) + a_n(t) + ib_n(t) \right),$$

 $a, b \in [X_c(p)]^{\perp}$ satisfying for all t

$$|c(t) - 1| + ||a(t) + ib(t)||_{\ell^{2,1/2}} \leq \delta.$$

Decomposition near the ground state

Assume that the initial data $\alpha(0) \in \ell^{2,1}(\mathbb{N})$ satisfy

$$\|\alpha(0) - A(p_0)\|_{\ell^{2,1}} \le \delta$$

for some $p_0 \in [0, 1)$ and a sufficiently small $\delta > 0$. Then, the corresponding unique global solution $\alpha(t) \in C(\mathbb{R}_+, \ell^{2,1})$ of the conformal flow can be represented by the decomposition

$$\alpha_n(t) = e^{i(\theta(t) + (n+1)\mu(t))} (c(t)A_n(p(t)) + a_n(t) + ib_n(t)),$$

 $a, b \in [X_c(p)]^{\perp}$ satisfying for all t

$$|c(t) - 1| + ||a(t) + ib(t)||_{\ell^{2,1/2}} \leq \delta.$$

The proof is based on the Lyapunov function

$$\Delta(c) := c^2 (Q(\alpha) - 1) - \frac{1}{2} (H(\alpha) - 1).$$

Control of the drift of p(t) in time

Under the same assumptions,

$$p(t) \lesssim p_0 + \delta$$
, $||a(t) + ib(t)||_{\ell^{2,1}} \lesssim \delta^{1/2} + |p_0 - p(t)|^{1/2}$.

The proof is based on the additional mass conservation:

$$E(\alpha(t)) = c(t)^2 \frac{1+p(t)^2}{1-p(t)^2} + ||a(t) + ib(t)||_{\ell^{2,1}}^2,$$

which yields

$$\frac{2(p(t)^2 - p_0^2)}{(1 - p(t)^2)(1 - p_0^2)} + \|a(t) + ib(t)\|_{\ell^{2,1}}^2 \lesssim \delta_{\ell^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Control of the drift of p(t) in time

Under the same assumptions,

$$p(t) \lesssim p_0 + \delta$$
, $||a(t) + ib(t)||_{\ell^{2,1}} \lesssim \delta^{1/2} + |p_0 - p(t)|^{1/2}$.

The proof is based on the additional mass conservation:

$$E(\alpha(t)) = c(t)^2 \frac{1+p(t)^2}{1-p(t)^2} + ||a(t) + ib(t)||_{\ell^{2,1}}^2,$$

which yields

$$\frac{2(p(t)^2 - p_0^2)}{(1 - p(t)^2)(1 - p_0^2)} + \|a(t) + ib(t)\|_{\ell^{2,1}}^2 \lesssim \delta,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Does the drift of p(t) towards smaller values actually occur?

Refined control of the drift of p(t) in time

In addition to the conservation of $H(\alpha)$, $Q(\alpha)$, and $E(\alpha)$, there exists another conserved quantity:

$$Z(\alpha) = \sum_{n=0}^{\infty} (n+1)(n+2)\bar{\alpha}_{n+1}\alpha_n.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Biasi-Bizon-Evrin (2018)

Refined control of the drift of p(t) in time

In addition to the conservation of $H(\alpha)$, $Q(\alpha)$, and $E(\alpha)$, there exists another conserved quantity:

$$Z(\alpha) = \sum_{n=0}^{\infty} (n+1)(n+2)\bar{\alpha}_{n+1}\alpha_n.$$

Biasi-Bizon-Evrin (2018)

For the normalized ground state,

$$H(A) = 1$$
, $Q(A) = 1$, $E(A) = \frac{1+p^2}{1-p^2}$, $Z(A) = \frac{2p}{1-p^2}$,

and expansion near the ground state family gives

$$E(\alpha(t)) - |Z(\alpha(t))| \ge \frac{1 - p(t)}{1 + p(t)} c(t)^2,$$

which yields

$$\frac{p_0 - p(t)}{(1 + p(t))(1 + p_0)} \lesssim \delta,$$

or $p_0 - p(t) \leq \delta$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Orbital stability: the ground state family

The ground state family

$$A_n(p) = (1 - p^2)p^n, \quad p \in (0, 1).$$

By the phase shift invariance, it defines the 2-dim orbit

$$\mathcal{A}(p) = \left\{ \left(e^{i\theta + i\mu n} A_n(p) \right)_{n \in \mathbb{N}} : (\theta, \mu) \in \mathbb{S}^1 \times \mathbb{S}^1 \right\} \,.$$

Theorem (Bizon–Hunik–P, 2019)

For every $p_0 \in (0, 1)$ and every small $\epsilon > 0$, there is $\delta > 0$ such that for every initial data $\alpha(0) \in \ell^{2,1}(\mathbb{N})$ satisfying $\|\alpha(0) - A(p_0)\|_{\ell^{2,1}} \leq \delta$, the unique solution $\alpha(t) \in C(\mathbb{R}, \ell^{2,1}(\mathbb{N}))$ satisfies for all t:

$$\inf_{\theta,\mu\in\mathbb{S}} \|\alpha(t) - e^{i\theta + i\mu n} A(p_0)\|_{\ell^{2,1}} \le \epsilon,$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Main Question

If the standing wave has a free parameter which is not supported by the corresponding symmetry of the PDE, does a drift along the parameter imply instability of the standing waves?

Two answers:

- NO Resonant normal forms (conformal cubic wave equation on three-sphere): with P. Bizon and D. Hunik (Jagiellonian University, Krakow, Poland) [Comm. Pure Appl. Math. 72 (2019), 1123–1151].
- YES Balanced star graphs (transmission problems): with A. Kairzhan (McMaster University) and R.H. Goodman (New Jersey Tech, USA) [SIAM J. Applied Dynamical Systems (2019), in press].

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonlinear Schrödinger equation on a metric graph

A metric graph $\Gamma = \{E, V\}$ is given by a set of edges *E* and vertices *V*, with a metric structure on each edge.

Nonlinear Schrödinger equation on a graph Γ :

$$i\Psi_t = -\Delta \Psi - 2|\Psi|^2 \Psi, \quad x \in \Gamma,$$

where Δ is the graph Laplacian and $\Psi(t, x)$ is defined componentwise on edges subject to Neumann–Kirchhoff boundary conditions at vertices:

$$\begin{cases} \Psi(v) \text{ is continuous} & \text{for every } v \in V, \\ \sum_{e \sim v} \partial \Psi_e(v) = 0, & \text{for every } v \in V, \end{cases}$$

where $e \sim v$ denotes all edges $e \in E$ adjacent to $v \in V$.

Example: a star graph

A star graph is the union of *N* half-lines connected at a single vertex. For N = 2, the graph is the line \mathbb{R} . For N = 3, the graph is a *Y*-junction.

Function spaces are defined componentwise:

$$L^{2}(\Gamma) = L^{2}(\mathbb{R}^{-}) \oplus \underbrace{L^{2}(\mathbb{R}^{+}) \oplus \cdots \oplus L^{2}(\mathbb{R}^{+})}_{(\text{N-1}) \text{ elements}},$$

subject to the Neumann-Kirchhoff conditions at a single vertex:

Generalization of a star graph

A star graph is the union of *N* half-lines connected at a single vertex. For N = 2, the graph is the line \mathbb{R} . For N = 3, the graph is a *Y*-junction.

For given positive $(\alpha_1, \cdots, \alpha_N)$,

$$H_{\Gamma}^{1} := \{ \Psi \in H^{1}(\Gamma) : \alpha_{1}\psi_{1}(0) = \alpha_{2}\psi_{2}(0) = \dots = \alpha_{N}\psi_{N}(0) \}$$
$$H_{\Gamma}^{2} := \{ \Psi \in H^{2}(\Gamma) \cap H_{\Gamma}^{1} : \alpha_{1}^{-1}\psi_{1}'(0) = \sum_{i=1}^{N} \alpha_{i}^{-1}\psi_{i}'(0) \}.$$

i=2

▲□▶▲□▶▲□▶▲□▶ □ のQで

Steady states on star graphs

Theorem. (Adami–Serra-Tilli, 2015) If $N \ge 3$ and $\alpha_1 = \cdots = \alpha_N = 1$, no ground state exists in

$$\mathcal{E} = \inf\{E(u) : u \in H^1_{\Gamma}, Q(u) = \mu\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A minimizing sequence escapes to infinity along the edges.

Steady states on star graphs

Theorem. (Adami–Serra-Tilli, 2015) If $N \ge 3$ and $\alpha_1 = \cdots = \alpha_N = 1$, no ground state exists in

$$\mathcal{E} = \inf\{E(u): u \in H^1_{\Gamma}, Q(u) = \mu\}.$$

A minimizing sequence escapes to infinity along the edges. There exists a standing wave of the Euler–Lagrange equation:

$$-\Delta\Phi - 2|\Phi|^2\Phi = -\omega\Phi$$

in the form of the half-soliton:

$$\Phi(x) = \left[\begin{array}{cc} \sqrt{\omega} \operatorname{sech}(\sqrt{\omega}x), & x \in (-\infty, 0), \ j = 1, \\ \sqrt{\omega} \operatorname{sech}(\sqrt{\omega}x), & x \in (0, \infty), \ 2 \le j \le N. \end{array}\right].$$

Steady states on star graphs

Theorem. (Adami–Serra-Tilli, 2015) If $N \ge 3$ and $\alpha_1 = \cdots = \alpha_N = 1$, no ground state exists in

$$\mathcal{E} = \inf\{E(u): u \in H^1_{\Gamma}, Q(u) = \mu\}.$$

A minimizing sequence escapes to infinity along the edges. There exists a standing wave of the Euler–Lagrange equation

$$-\Delta\Phi - 2|\Phi|^2\Phi = -\omega\Phi$$

in the form of the half-soliton:

$$\Phi(x) = \left[\begin{array}{cc} \sqrt{\omega} \operatorname{sech}(\sqrt{\omega}x), & x \in (-\infty, 0), \ j = 1, \\ \sqrt{\omega} \operatorname{sech}(\sqrt{\omega}x), & x \in (0, \infty), \ 2 \le j \le N. \end{array}\right].$$

Theorem. (Adami *et al.*, 2012) (Kairzhan–P., JDE, 2018) Half-soliton is a saddle point of energy E at fixed mass Q. This saddle point is unstable in the time evolution of the NLS.

Non-uniqueness of the half-soliton

Consider now generalized boundary conditions

$$\begin{cases} \alpha_1\psi_1(0) = \alpha_2\psi_2(0) = \dots = \alpha_N\psi_N(0) \\ \alpha_1^{-1}\psi_1'(0) = \alpha_2^{-1}\psi_2'(0) + \dots + \alpha_N^{-1}\psi_N'(0). \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

and generalized NLS equation $i\Psi_t = -\Delta \Psi - 2\alpha^2 |\Psi|^2 \Psi$, where $(\alpha_1, \ldots, \alpha_N)$ are positive.

Non-uniqueness of the half-soliton

Consider now generalized boundary conditions

$$\begin{cases} \alpha_1\psi_1(0) = \alpha_2\psi_2(0) = \dots = \alpha_N\psi_N(0) \\ \alpha_1^{-1}\psi_1'(0) = \alpha_2^{-1}\psi_2'(0) + \dots + \alpha_N^{-1}\psi_N'(0). \end{cases}$$

and generalized NLS equation $i\Psi_t = -\Delta \Psi - 2\alpha^2 |\Psi|^2 \Psi$, where $(\alpha_1, \ldots, \alpha_N)$ are positive.

If $\alpha_1^{-2} = \sum_{j=2}^N \alpha_j^{-2}$, then there exists a one-parameter family of solutions $\{\Phi(x; a)\}_{a \in \mathbb{R}}$ satisfying

$$\Phi(x;a) = \left[\begin{array}{cc} \alpha_1^{-1}\sqrt{\omega}\mathrm{sech}(\sqrt{\omega}(x+a)), & x \in (-\infty,0), \ j=1, \\ \alpha_j^{-1}\sqrt{\omega}\mathrm{sech}(\sqrt{\omega}(x+a)), & x \in (0,\infty), \ 2 \le j \le N. \end{array}\right].$$

D. Matrasulov-K. Sabirov-Z. Sobirov (2012)

Shifted standing waves

Example for N = 3:

$$\Phi(x;a) = \begin{bmatrix} \alpha_1^{-1}\sqrt{\omega}\operatorname{sech}(\sqrt{\omega}(x+a)), & x \in (-\infty,0), \\ \alpha_2^{-1}\sqrt{\omega}\operatorname{sech}(\sqrt{\omega}(x+a)), & x \in (0,\infty), \\ \alpha_3^{-1}\sqrt{\omega}\operatorname{sech}(\sqrt{\omega}(x+a)), & x \in (0,\infty). \end{bmatrix}$$

Figure: Schematic representation of the shifted standing waves on the star graph with N = 3, and either a < 0 (left) or a > 0 (right).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Reason for existence of shifted states

Assume that $\Psi \in H^1_{\Gamma}$ satisfies the symmetry reduction:

$$\alpha_2\psi_2(t,x)=\cdots=\alpha_N\psi_N(t,x), \quad x>0.$$

If $\alpha_1^{-2} = \sum_{j=2}^N \alpha_j^{-2}$, the wave function

$$\varphi(t,x) = \begin{cases} \alpha_1 \psi_1(t,x), & x \le 0, \\ \alpha_2 \psi_2(t,x), & x \ge 0, \end{cases}$$

satisfies the cubic NLS equation on the line \mathbb{R} :

$$i\frac{\partial \varphi}{\partial t} = -\frac{\partial^2 \varphi}{\partial x^2} - 2|\varphi|^2 \varphi, \quad x \in \mathbb{R},$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

which is translationally invariant in *x*.

Momentum conservation

For a solution $\Psi \in C(\mathbb{R}, H^1_{\Gamma})$, let us define the momentum of the NLS:

 $P(\Psi) = \operatorname{Im} \langle \Psi', \Psi \rangle_{L^2(\Gamma)}$

Momentum conservation

For a solution $\Psi \in C(\mathbb{R}, H^1_{\Gamma})$, let us define the momentum of the NLS:

$$P(\Psi) = \operatorname{Im} \langle \Psi', \Psi \rangle_{L^2(\Gamma)}$$

If $\alpha_1^{-2} = \sum_{j=2}^N \alpha_j^{-2}$, the map $t \mapsto P(\Psi)$ is monotonically increasing:

$$\frac{dP}{dt} = \frac{1}{2} \sum_{j=2}^{N} \sum_{i\neq j}^{N} \frac{\alpha_1^2}{\alpha_j^2 \alpha_i^2} \left| \alpha_j \psi_j'(0) - \alpha_i \psi_i'(0) \right|^2 \ge 0.$$

If in addition, the solution is symmetric and satisfies the NLS reduction:

$$\alpha_2\psi_2(t,x)=\cdots=\alpha_N\psi_N(t,x), \quad x>0,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

then the momentum $P(\Psi)$ is constant in time.

Stability of standing waves on the star graph

Shifted standing waves with parameters $\omega > 0$ and $a \in \mathbb{R}$:

$$\Phi_{\omega}(x;a) = \left[\begin{array}{cc} \alpha_1^{-1}\sqrt{\omega}\mathrm{sech}(\sqrt{\omega}(x+a)), & x \in (-\infty,0), \ j=1, \\ \alpha_j^{-1}\sqrt{\omega}\mathrm{sech}(\sqrt{\omega}(x+a)), & x \in (0,\infty), \ 2 \le j \le N. \end{array}\right]$$

Substituting $\Psi = \Phi_{\omega} + U + iW$ into $\Lambda_{\omega}(u) := E(u) + \omega Q(u)$ yields

$$\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where

$$\left\{ \begin{array}{l} L_{-}(\omega,a)=-\Delta+\omega-2\alpha^{2}\Phi_{\omega}(\cdot;a)^{2},\\ L_{+}(\omega,a)=-\Delta+\omega-6\alpha^{2}\Phi_{\omega}(\cdot;a)^{2}. \end{array} \right.$$

Stability of standing waves on the star graph

Shifted standing waves with parameters $\omega > 0$ and $a \in \mathbb{R}$:

$$\Phi_{\omega}(x;a) = \left[\begin{array}{cc} \alpha_1^{-1}\sqrt{\omega}\mathrm{sech}(\sqrt{\omega}(x+a)), & x \in (-\infty,0), \ j=1, \\ \alpha_j^{-1}\sqrt{\omega}\mathrm{sech}(\sqrt{\omega}(x+a)), & x \in (0,\infty), \ 2 \le j \le N. \end{array}\right]$$

Substituting $\Psi = \Phi_{\omega} + U + iW$ into $\Lambda_{\omega}(u) := E(u) + \omega Q(u)$ yields

$$\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots,$$

where

$$\left\{ \begin{array}{l} L_{-}(\omega,a) = -\Delta + \omega - 2\alpha^{2}\Phi_{\omega}(\cdot;a)^{2}, \\ L_{+}(\omega,a) = -\Delta + \omega - 6\alpha^{2}\Phi_{\omega}(\cdot;a)^{2}. \end{array} \right.$$

Spectral properties of $L_{\pm}(\omega, a)$:

- $\sigma_c(L_{\pm}) = [\omega, \infty)$ with $\omega > 0$.
- $L_{-} \geq 0$ and $\ker(L_{-}) = \operatorname{span}\{\Phi_{\omega}\}.$
- ▶ $\Phi'_{\omega} \in \ker(L_+)$

Negative eigenvalues of $L_+(\omega, a)$

Figure: The spectrum of $L_+(\omega, a)$ for $\omega = 1$.

Theorem. (Kairzhan–P., JPA, 2018) Besides simple eigenvalues $\lambda_0 = -3\omega$ and $\lambda = 0$, there exists exactly one additional eigenvalue $\lambda_1(\omega, a)$ of multiplicity N - 2 such that $\lambda_1(\omega, a) > 0$ for a > 0 and $\lambda_1(\omega, a) < 0$.

Shifted standing waves

Recall the main example for N = 3:

$$\Phi(x;a) = \begin{bmatrix} \alpha_1^{-1}\sqrt{\omega}\operatorname{sech}(\sqrt{\omega}(x+a)), & x \in (-\infty,0), \\ \alpha_2^{-1}\sqrt{\omega}\operatorname{sech}(\sqrt{\omega}(x+a)), & x \in (0,\infty), \\ \alpha_3^{-1}\sqrt{\omega}\operatorname{sech}(\sqrt{\omega}(x+a)), & x \in (0,\infty). \end{bmatrix}$$

Figure: $L_+(\omega, a)$ has two negative eigenvalues for a < 0 (left) and one negative eigenvalue for a > 0 (right).

・ロト・(部・・目下・(日下・))

Implication of the eigenvalue count for N = 3

 $\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots$

a < 0: Φ_ω is a saddle point of Λ_ω with two negative eigenvalues and it remains a saddle point with one negative eigenvalue under the constraint of fixed Q(Ψ) = ||Ψ||²_{L²}.

Shifted state with a < 0 is spectrally and nonlinearly unstable.

Implication of the eigenvalue count for N = 3

 $\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots$

a < 0: Φ_ω is a saddle point of Λ_ω with two negative eigenvalues and it remains a saddle point with one negative eigenvalue under the constraint of fixed Q(Ψ) = ||Ψ||²_{L²}.

Shifted state with a < 0 is spectrally and nonlinearly unstable.

• a > 0: Φ_ω is a saddle point of Λ_ω with one negative eigenvalue and it is a degenerate constrained minimizer under the constraint of fixed Q(Ψ) = ||Ψ||²_{L²} with double zero eigenvalue.

The shifted state with a > 0 is spectrally stable. Is it nonlinearly stable?

$$\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots$$

•
$$L_{-} \geq 0$$
 and ker $(L_{-}) = \operatorname{span} \{ \Phi_{\omega} \}.$

• $\ker(L_+) = \operatorname{span}\{\Phi'_{\omega}\}$ and L_+ has one negative eigenvalue.

$$\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots$$

•
$$L_{-} \geq 0$$
 and ker $(L_{-}) = \operatorname{span} \{ \Phi_{\omega} \}.$

- $\ker(L_+) = \operatorname{span}\{\Phi'_{\omega}\}$ and L_+ has one negative eigenvalue.
- Fixed Q(Ψ) = ||Ψ||²_{L²} produces the linear constraint ⟨U, Φ_ω⟩_{L²} = 0 on U = Re(Ψ). Hessian Λ^{''}_ω(Φ_ω) is non-negative under the constraint.

$$\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots$$

•
$$L_{-} \geq 0$$
 and ker $(L_{-}) = \operatorname{span} \{ \Phi_{\omega} \}.$

- ▶ ker(L_+) = span{ Φ'_{ω} } and L_+ has one negative eigenvalue.
- Fixed Q(Ψ) = ||Ψ||²_{L²} produces the linear constraint ⟨U, Φ_ω⟩_{L²} = 0 on U = Re(Ψ). Hessian Λ^{''}_ω(Φ_ω) is non-negative under the constraint.
- The decomposition Ψ(x) = e^{iθ} [Φ_ω(x; a) + U(x) + iW(x)] is uniquely defined for θ ∈ ℝ, a ∈ ℝ, and ω > 0 subject to three constraints on U and W including ⟨U, Φ_ω⟩_{L²} = 0. Hessian Λ^{''}_ω(Φ_ω) is strictly positive under the three constraints.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\Lambda_{\omega}(\Phi_{\omega}+U+iW)-\Lambda_{\omega}(\Phi_{\omega})=\langle L_{+}(\omega,a)U,U\rangle_{L^{2}(\Gamma)}+\langle L_{-}(\omega,a)W,W\rangle_{L^{2}(\Gamma)}+\cdots$

•
$$L_{-} \geq 0$$
 and ker $(L_{-}) = \operatorname{span} \{ \Phi_{\omega} \}.$

- ▶ ker(L_+) = span{ Φ'_{ω} } and L_+ has one negative eigenvalue.
- Fixed Q(Ψ) = ||Ψ||²_{L²} produces the linear constraint ⟨U, Φ_ω⟩_{L²} = 0 on U = Re(Ψ). Hessian Λ^{''}_ω(Φ_ω) is non-negative under the constraint.
- The decomposition Ψ(x) = e^{iθ} [Φ_ω(x; a) + U(x) + iW(x)] is uniquely defined for θ ∈ ℝ, a ∈ ℝ, and ω > 0 subject to three constraints on U and W including ⟨U, Φ_ω⟩_{L²} = 0. Hessian Λ^{''}_ω(Φ_ω) is strictly positive under the three constraints.
- ► $U, W \in H^1_{\Gamma}$ and ω are controlled in the time evolution from energy estimates due to coercivity of the Lyapunov function.

Drift of the shifted states

Theorem. (Kairzhan–P–Goodman, 2019)

Fix $a_0 > 0$. For every $\mathbf{a} \in (0, a_0)$ there exists $\epsilon_0 > 0$ (sufficiently small) such that for every $\epsilon \in (0, \epsilon_0)$, there exists $\delta > 0$ and T > 0 such that for every initial datum $\Psi_0 \in H_{\Gamma}^1$ with $P(\Psi_0) > 0$ and

$$\|\Psi_0 - \Phi_\omega(\cdot; a_0)\|_{H^1(\Gamma)} \le \delta$$

the unique solution $\Psi \in C([0,T], H^1_{\Gamma}) \cap C^1([0,T], H^{-1}_{\Gamma})$ to the NLS equation with the initial datum $\Psi(0, \cdot) = \Psi_0$ satisfies the bound

$$\inf_{\theta \in \mathbb{R}} \|\Psi(t,\cdot) - e^{i\theta} \Phi_{\omega}(\cdot;a(t))\|_{H^1(\Gamma)} \le \epsilon, \quad t \in [0,T],$$

where $a \in C^1([0, T])$ is a strictly decreasing function such that $\lim_{t\to T} a(t) = \mathbf{a}$.

Reason for the drift

Recall that the momentum of the NLS:

$$P(\Psi) = \operatorname{Im}\langle \Psi', \Psi \rangle_{L^2(\Gamma)}$$

is no longer constant but is monotonically increasing:

$$\frac{dP}{dt} = \frac{1}{2} \sum_{j=2}^{N} \sum_{i \neq j}^{N} \frac{\alpha_1^2}{\alpha_j^2 \alpha_i^2} \left| \alpha_j \psi_j'(0) - \alpha_i \psi_i'(0) \right|^2 \ge 0.$$

- コン・4回シュービン・4回シューレー

Reason for the drift

Recall that the momentum of the NLS:

$$P(\Psi) = \operatorname{Im}\langle \Psi', \Psi \rangle_{L^2(\Gamma)}$$

is no longer constant but is monotonically increasing:

$$\frac{dP}{dt} = \frac{1}{2} \sum_{j=2}^{N} \sum_{i \neq j}^{N} \frac{\alpha_1^2}{\alpha_j^2 \alpha_i^2} \left| \alpha_j \psi_j'(0) - \alpha_i \psi_i'(0) \right|^2 \ge 0.$$

For the solution uniquely decomposed as

$$\Psi(t,x) = e^{i\theta(t)} \left[\Phi_{\omega(t)}(x;a(t)) + U(t,x) + iW(t,x) \right],$$

the momentum is expanded as

$$P(\Psi) = -2\langle \Phi'_{\omega}(\cdot;a), W \rangle_{L^{2}(\Gamma)} + \mathcal{O}(\|U+iW\|^{2}_{H^{1}(\Gamma)}),$$

whereas the modulation equation for a(t) reads as

$$\dot{a} = 2\langle \Phi'_{\omega}(\cdot; a), W \rangle_{L^{2}(\Gamma)} \left[1 + \mathcal{O}(\|U + iW\|_{H^{1}(\Gamma)}) \right] + \mathcal{O}(\|U + iW\|_{H^{1}(\Gamma)}^{2}),$$

so that $\dot{a} = -P(\Psi) + \mathcal{O}(\|U + iW\|_{H^{1}(\Gamma)}^{2}) < 0$ if $P(\Psi) \ge P(\Psi_{0}) \ge 0.$

Numerical illustration: linear instability for a < 0

Figure: A numerical solution for a = -0.55 and $\epsilon = 0.1$. The colorbar corresponds to values of $|u|^2$. The three panels correspond to the solution on edges 1, 2, and 3 going down.

Numerical illustration: drift instability for a > 0

Figure: A numerical solution for a = 0.55 and $\epsilon = 0.1$. The colorbar corresponds to values of $|u|^2$.

イロト 不得 トイヨト イヨト ニヨー

Drift instability for a > 0

Figure: Postprocessed quantities form the same simulation. (Top) The position of the maximum of *u*. The solid line for t < 33.5 describes the position on the incoming edge one. The dashed line for t > 33.5 shows the position of the maximum on edge two. (Middle) The asymmetry, defined as $||u_2||_{L^2(\mathbb{R}^+)} - ||u_3||_{L^2(\mathbb{R}^+)}$. (Bottom) The momentum $P(\Psi)$ versus time *t*.

▲ 臣 ▶ 臣 • • • • • • •

Pushing experiments beyond the validity of the theorem

Figure: A numerical solution with a = 0. (Top) The position of the maximum of $|u|^2$, on edge one for t < 117 and on edge three (dashed) for t > 117. (Middle) Asymmetry of the solution between the two outgoing edges. (Bottom) The momentum $P(\Psi)$ versus time t.

Conclusion

Resonant normal forms: drift along the degenerate ground state family is eliminated due to conserved quantities.

PDEs on star graphs: drift along the shifted states leads to nonlinear instability of the standing wave.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Conclusion

Resonant normal forms: drift along the degenerate ground state family is eliminated due to conserved quantities.

PDEs on star graphs: drift along the shifted states leads to nonlinear instability of the standing wave.

Thanks! Questions???

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●