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NLS evolution on the line
The Cauchy problem for the NLS flow:

iU, = AV —2|U]20,
V= = P,
where AU = 92V on the line R.

The Cauchy problem is locally and globally well-posed in ¥y € H'(R).
Moreover, the mass

(V) = || W7

and the energy
E(W) = [[¥']7 — ¥z,

are constants in time for ¥ € C(R, H').
E(W) is coercive in H' thanks to Gagliardo—Nirenberg inequality:
19z < Cllow 1P,

where C > 0 is independent of U.



Standing waves

Ground state is a standing wave of smallest energy FE at fixed mass Q,
E=inflEw): ucH'R), Qu)=u}
Euler-Lagrange equation for the standing waves:
—AD 2|0’ = —wd,

where w > 0 defines W (t,x) = ®(x)e™".



Standing waves

Ground state is a standing wave of smallest energy FE at fixed mass Q,
E=inflEw): ucH'R), Qu)=u}
Euler-Lagrange equation for the standing waves:
—AD 2|0’ = —wd,

where w > 0 defines W (t,x) = ®(x)e™".
Infimum & exists thanks to the same Gagliardo—Nirenberg inequality.

Theorem. (M.Weinstein, 1986) Infimum £ is attained at the NLS soliton
®,(x) = y/wsech(y/wx) with w = p?/4:

€= min Eu)=E(9)
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Orbital stability of standing waves

From the constants of motion, we can define the Lyapunov functional
Ay (V) == E(V) +w0(¥),
the critical points of which are the standing waves:

—AD 2|0 = —wd.

The NLS soliton @, (x) = y/wsech(y/wx) is a saddle point of A, (V) for
fixed w > 0. Moreover, it is a degenerate saddle point as ®,(x + a)e” is
also a solution for every 6 € R and a € R.

Definition. For every € > 0, there is § > 0 such that for every ¥ € H!
satisfying || Wo — @,/ < , the unique solution ¥ € C(R,H') of the NLS
equation satisfies

inf  ||U(z,-) — D (- i
p 00 ) = @+ @) < e,

where w > 0 is fixed.
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Theorem. (Grillakis—Shatah—Strauss, 1987) The NLS soliton on the line R is
orbitally stable for every w > 0.



Orbital stability of the NLS solitons on the line R

Theorem. (Grillakis—Shatah—Strauss, 1987) The NLS soliton on the line R is
orbitally stable for every w > 0.

» Hessian A/ (®,,) has exactly one simple negative eigenvalue and a
double zero eigenvalue.

» Fixed Q(¥) = ||¥||2, produces the linear constraint (U, ®,,);> = 0 on
U = Re(W). Hessian A/ (®,,) is non-negative under the constraint.

» The decomposition ¥ (x) = € [®,(x +a) + U(x + a) + iW(x + a)] is
uniquely defined for 6 € R, a € R, and w > 0 subject to three
constraints on U and W including (U, ®,,);> = 0. Hessian A’ (®,,) is
strictly positive under the three constraints.

» U,W € H' and w are controlled in the time evolution from energy
estimates due to coercivity of the Lyapunov function in these variables.
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If the standing wave has a free parameter which is not supported by the
corresponding symmetry of the PDE, does a drift along the parameter imply
instability of the standing waves?



Main Question

If the standing wave has a free parameter which is not supported by the
corresponding symmetry of the PDE, does a drift along the parameter imply
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Two answers:

NO Resonant normal forms (conformal cubic wave equation on
three-sphere): with P. Bizon and D. Hunik (Jagiellonian University,
Krakow, Poland) [Comm. Pure Appl. Math. 72 (2019), 1123-1151].

YES Balanced star graphs (transmission problems): with A. Kairzhan
(McMaster University) and R.H. Goodman (New Jersey Tech, USA)
[SIAM J. Applied Dynamical Systems (2019), in press].



Resonant normal forms

In many infinite-dimensional Hamiltonian systems with spatial confinement,
» The system can be written in canonical coordinates;
» The resonant energy transfer can be isolated from the rest.

If the resonant energy transfer also involves infinitely many modes, this
reductive technique leads to the infinite-dimensional resonant normal form.
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Resonant normal forms

In many infinite-dimensional Hamiltonian systems with spatial confinement,
» The system can be written in canonical coordinates;
» The resonant energy transfer can be isolated from the rest.

If the resonant energy transfer also involves infinitely many modes, this
reductive technique leads to the infinite-dimensional resonant normal form.

Hamiltonian systems with oo degrees of freedom

L R A

Resonant normal form with oo canonical coordinates

Examples:

» Cubic Szeg6 equation
Gerard, Grellier (2010, 2012, 2015)

» Rotating Bose—FEinstein condensates in 2D
Faou, Germain, & Hani (2016); Germain, Gerard, Thomann (2017);
Biasi, Bizon, Craps, & Evnin (2017)



Resonant normal form for conformal flow on S?
» Background geometry: the Einstein cylinder M = R x S* with metric
g = —di? + dx* + sin’xdw?, (t,x,w) € R x [0, 7] x S?
This spacetime has constant scalar curvature R(g) = 6.
» On M we consider a real scalar field ¢ satisfying
O — & — & = 0.
> We assume that ¢ = ¢(,x). Then, v(z,x) = sin(x)$(t, x) satisfies
Vi — Vyx + su?x =0
with Dirichlet boundary conditions v(¢,0) = v(¢,7) = 0.

» Linear eigenstates: ¢,(x) ~ sin(w,x) withw, =n+1m=0,1,2,...)



Time averaging

» Expanding v(f,x) = > cu(t)e,(x) we get
n=0

d*c T odx
" twac, = — anjkl cjcker,  Sjkin = / ———en(x)ej(x)er(x)er(x)
I o sin“x

» Using variation of constants

) _ . dc ) _ .
iwpt —iwpt no__ . iwpt —iwpt
anﬁne " +Bne ", dt = Wy (Bne ' _Bne l)
we factor out fast oscillations
dpy A
. —iwy,t
2lwng = — g Spjki cickcre” "
ki

» Each term in the sum has a factor e ¥, where Q = w, + wj Ewp £ wy.

The terms with {2 = 0 correspond to resonant interactions.

» Let 7 = &%t and B,(t) = e, (7). For e — 0 the non-resonant terms

o e~/ are highly oscillatory and therefore negligible.



Resonant system
» Keeping only the resonant terms (and rescaling), we obtain

oo n+j

. day _
in+1)—— = DD Sukirtiok GOtk
=0 k=0

where Sk ntj—r = min{n,j, k,n+j—k} + 1.

» This system (labeled as conformal flow) provides an accurate
approximation to the cubic wave equation on the timescale ~ 2.
Bizon—Craps—Evnin—Hunik-Luyten—Maliborski (2016)

» This is a Hamiltonian system

do, 1 OH

i+ D07 =5 a4,

with

oo oo n+tj

Hzg g g Shjk ntj—k O OGOk Q.

n=0 j=0 k=0



Properties of conformal flow

» Symmetries

Scaling: an(t) = cay(c*t), c€R
Global phase shift: an(t) = ea,(t), R
Local phase shift: a,(t) = e™a,(t), peR

» Conserved quantities
o oo
0=) (n+ Dl E=Y (n+ 1)l
n=0 n=0

» The Cauchy problem is locally (and therefore also globally) well-posed
for initial data in ¢>'(7Z) where H, Q, E are finite and conserved.



Energy inequality
Energy

co oo ntj

H:E E E Shjk nj—k O O O Q- j— g

n=0 j=0 k=0
Two mass quantities:
) oo
0= Z(n + 1)]an|?, E= Z 1)?|a)?
n=0 n=0

Theorem (Bizon—Hunik-P, 2019)
For every a € (>'/2(N), it is true that H(a)) < Q(«)% Moreover;
H(a) = Q(a)? if and only if v, = cp” for some c,p € C with |p| < 1.



Standing waves

A solution of the conformal flow is called a standing wave if a(f) = Ae™™,
where (A,)qen are time-independent and A is real.
The amplitudes of the standing wave satisfy

oo n+j

(n —+ I)AA,, = Z Z SnJ,k,n-l—j—k AjAkAl’H‘j—k :
=0 k=0

and they are critical points of energy H for fixed mass Q
with the Lyapunov functional K (o) = JH () — AQ(c).

Among the standing waves, there is a ground state

e
(1=1pP)>’

with |p| < 1 since o, = cp" attains H(a) < Q(a)%.

n_,—i\t

a,(t) =c¢ple™, A= ceC, pecC



Normalized ground state

Normalized ground state with A = 1
Aﬂ(p) = (1 _pZ)pn’ JZS (07 1)

» The conserved quantities H, Q, E take values:




Normalized ground state

Normalized ground state with A = 1
AVl(p) = (1 _pZ)pn’ JZS (07 1)

» The conserved quantities H, Q, E take values:

> If o = A(p) + a + ib is substituted into K () = 1H(cv) — Q(«v), then

K(a) = K(A(p) = (L+(p)a, a) + (L—(p)b, b) + O(|lall* + [1B]).

and the Hessian operator (L, (p),L_(p)) in £>!(N) x ¢>!(N) admits a
simple positive eigenvalue, a triple zero eigenvalue, and the rest of the
spectrum is strictly negative.

> L_(p)A(p) =0and L_(p)MA(p) =0

» Li(p)A'(p) = 0and Ly (p)MA(p) = A« (p)MA(p).

where A, (p) = 2(1 +p?)/(1 — p*) > 0 and M = diag(1,2,---).



Orbital stability of the ground state family

The ground state family

Anlp) = (1=p*)p", pe(0,1).

By the phase shift invariance, it defines the 2-dim orbit
A(p) _ {(eie-i-i/mAn(p))nEN (9 M) c Sl % Sl}

Theorem (Bizon—Hunik-P, 2019)

For every pg € (0,1) and every small € > 0, there is § > 0 such that for
every initial data o(0) € (*'(N) satisfying || (0) — A(po)|| ;21 < 6, the
unique solution o(t) € C(R ., (>") satisfies for all t

,inf () A (1)) |2 < e,
HE

and

Jint_[lae) = " A ()]l S €+ (po = p(1) /2
N

for some continuous function p(t) € [0, po).



Orbital stability of the ground state family

The ground state family

Anlp) = (1=p*)p", pe(0,1).

By the phase shift invariance, it defines the 2-dim orbit
A(P) _ {(eie-i-iunAn(p))nEN (9 M) c Sl % Sl}

Theorem (Bizon—Hunik-P, 2019)

For every pg € (0,1) and every small € > 0, there is § > 0 such that for
every initial data o(0) € (*'(N) satisfying || (0) — A(po)|| ;21 < 6, the
unique solution o(t) € C(R ., (>") satisfies for all t

,inf () A (1)) |2 < e,
HE

and

Jint_[lae) = " A ()]l S €+ (po = p(1) /2
N

for some continuous function p(t) € [0, po).

Parameter p(7) may drift towards smaller values compensated by the
increasing /%! distance between the solution and the orbit.



Coercivity of the energy in />!/?(N)
Symplectically orthogonal subspace of ¢*(N):

X ()" = {ac P(N): (MA(p),a) = (MA'(p),a) =0} .

There exists C > 0 such that
—(Ly(p)a,a) Z |||}

—(L—(p)b,b) Z ||b]|72.1/2
for every a, b € £>'/2(N) N [X.(p)]*.



Decomposition near the ground state

Assume that the initial data a(0) € ¢>!(N) satisfy

[[(0) = A(po) [l <6,

for some py € [0, 1) and a sufficiently small 6 > 0. Then, the corresponding
unique global solution a(t) € C(R ., ¢£>!) of the conformal flow can be
represented by the decomposition

an(t) = OO (c()A, (p(1)) + an(1) + iba(1))
a,b € [X.(p)]* satisfying for all ¢

|C(t) — 1| + ||a(t) + ib(l‘)Héz,l/z 5 0.



Decomposition near the ground state

Assume that the initial data a(0) € ¢>!(N) satisfy

[[(0) = A(po) [l <6,

for some py € [0, 1) and a sufficiently small 6 > 0. Then, the corresponding
unique global solution a(t) € C(R ., ¢£>!) of the conformal flow can be
represented by the decomposition

an(t) = OO (c()A, (p(1)) + an(1) + iba(1))
a,b € [X.(p)]* satisfying for all ¢
|C(t) — 1| + ||a(t) + ib(l‘)Héz,l/z <.

» The proof is based on the Lyapunov function

Afe) = (Q(a) 1)~ 3 (H(a) ~ 1)



Control of the drift of p() in time

Under the same assumptions,

p(t) Spo+0,  Na(®) +ib(t)|es S 6"+ [po — p(1)|'/2.

» The proof is based on the additional mass conservation:

2 1+ p(1)?

E(a(r)) = ¢(1)y AT la() + ib (1) 7.1,

which yields

2(p(1)* = pp)

(1 —p0)2)(1 - p2) + |la(t) + ib(1)||% < 6,




Control of the drift of p() in time

Under the same assumptions,

p(t) Spo+0,  Na(®) +ib(t)|es S 6"+ [po — p(1)|'/2.

» The proof is based on the additional mass conservation:

2
B(a() = (7 7220 + lat) + B(0) .

which yields

2(p(1)* = pp)

(= pD)(1-p2) la() + ib(0) |72 < 6,

Does the drift of p(r) towards smaller values actually occur?



Refined control of the drift of p(¢) in time

In addition to the conservation of H(«), Q(«), and E(«), there exists
another conserved quantity:

oo

Z(a) = (n+1)(n+2)an4 10
n=0

Biasi—-Bizon—Evrin (2018)



Refined control of the drift of p(¢) in time
In addition to the conservation of H(«), Q(«), and E(«), there exists
another conserved quantity:

oo

Z(a) = (n+1)(n+2)an4 10
n=0

Biasi—-Bizon—Evrin (2018)

For the normalized ground state,

HA) =1, Q@) =1, E@)= T2 74— 2

1 ,pz’ 1 ,pz
and expansion near the ground state family gives
1—p(@)
E(a(t)) — |Z(a(2))| > c()”,
(a(r)) = |Z(a(n)] = o) (®)

which yields
po—p(1) <
(1+p®)(1+po) ~

orpo —p(t) S 6.



Orbital stability: the ground state family
The ground state family
Aulp) = (1 =p*p", pe(0,1).

By the phase shift invariance, it defines the 2-dim orbit
Alp) = {(ef”fﬂ"A,,(p))neN (0, p) €S x sl} .

Theorem (Bizon—Hunik-P, 2019)

For every py € (0,1) and every small € > 0, there is § > 0 such that for
every initial data o(0) € (>'(N) satisfying || (0) — A(po)|| ;21 < 6, the
unique solution o(t) € C(R, ¢>'(N)) satisfies for all t:

pinf o) ¢THIA (o)l < e,



Main Question

If the standing wave has a free parameter which is not supported by the
corresponding symmetry of the PDE, does a drift along the parameter imply
instability of the standing waves?

Two answers:

NO Resonant normal forms (conformal cubic wave equation on
three-sphere): with P. Bizon and D. Hunik (Jagiellonian University,
Krakow, Poland) [Comm. Pure Appl. Math. 72 (2019), 1123-1151].

YES Balanced star graphs (transmission problems): with A. Kairzhan
(McMaster University) and R.H. Goodman (New Jersey Tech, USA)
[SIAM J. Applied Dynamical Systems (2019), in press].



Nonlinear Schrédinger equation on a metric graph

“ A metric graph " = {E, V} is given
by a set of edges E and vertices V,

'7 T e
\ with a metric structure on each edge.

Nonlinear Schrodinger equation on a graph I':

iV, = AV —2|0*¥, xel,

where A is the graph Laplacian and ¥(z, x) is defined componentwise on
edges subject to Neumann—Kirchhoff boundary conditions at vertices:
U(v) is continuous foreveryv eV,
Y ey 0¥ (v) =0, foreveryv e V,

where e ~ v denotes all edges e € E adjacenttov € V.



Example: a star graph

A star graph is the union of N half-lines connected at a single vertex. For
N = 2, the graph is the line R. For N = 3, the graph is a Y-junction.

\
Function spaces are defined componentwise:

) =LR)e LR @ - oL (RT),

oo

(N-1) elements

subject to the Neumann—Kirchhoff conditions at a single vertex:

Hy :={@ e H'(T): ¢(0) = ¢»(0) =--- = n(0)}

Hi :={V e H*(T)NHy: ¢(0) =) ¢j(0)},



Generalization of a star graph

A star graph is the union of N half-lines connected at a single vertex. For
N = 2, the graph is the line R. For N = 3, the graph is a Y-junction.

N\

For given positive (a1, -+ , ay),

H :={V e H'T): a19(0) = axh»(0) = -+ = anthn(0)}

N
Hp :={¥ e H*T)NHE: oy '9j(0) =)
j=2

a; (0}



Steady states on star graphs

Theorem. (Adami—Serra-Tilli, 2015)
IfN >3and oy = --- = ay = 1, no ground state exists in

E=inf{E(u): wuecH, QOu)=upu}

A minimizing sequence escapes to infinity along the edges.
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Steady states on star graphs

Theorem. (Adami—Serra-Tilli, 2015)
IfN >3and oy = --- = ay = 1, no ground state exists in

E=inf{E(u): wuecH, QOu)=upu}
A minimizing sequence escapes to infinity along the edges.
There exists a standing wave of the Euler—Lagrange equation:
—AD —2|PPP = —wd
in the form of the half-soliton:

Dlx) — Vwsech(y/wx), x € (—00,0), j=1,
@)= Vwsech(ywx), x€ (0,00), 2<j<N. |’

Theorem. (Adami et al., 2012) (Kairzhan—P., JDE, 2018) Half-soliton is a
saddle point of energy FE at fixed mass Q. This saddle point is unstable in the
time evolution of the NLS.



Non-uniqueness of the half-soliton

Consider now generalized boundary conditions

{ a191(0) = a21h2(0) = - - - = anPn(0)
ar "7 (0) = ay 'h(0) + - + ay Yy (0).

and generalized NLS equation iV, = —AW — 20| ¥|>¥, where
(aq, ..., apy) are positive.



Non-uniqueness of the half-soliton

Consider now generalized boundary conditions

{ a191(0) = a21h2(0) = - - - = anPn(0)
ar "7 (0) = ay 'h(0) + - + ay Yy (0).

and generalized NLS equation iV, = —AW — 20| ¥|>¥, where
(aq, ..., apy) are positive.

It al_z = ZN=2 aj_z, then there exists a one-parameter family of solutions
{®(x;a) }uer satisfying

@(X' a) _ al_l\/ase(:h(\/(;(x—"_a)% DA (_0070)7 j=1
’ ajfl\/ojsech(\/a(x +a)), xe(0,00), 2<j<N.

D. Matrasulov—K. Sabirov—Z. Sobirov (2012)



Shifted standing waves

Example for N = 3:

oy 'Vwsech(y/w(x +a)), x € (—00,0),
®(x;a) = | «a, 'Vwsech(y/w(x+a)), x € (0,00),
oy 'wsech(y/w(x +a)), x € (0,00).

=)
o

Figure: Schematic representation of the shifted standing waves on the star graph with
N = 3, and either a < 0 (left) or a > 0 (right).



Reason for existence of shifted states
Assume that ¥ € H} satisfies the symmetry reduction:

a21/}2(t7'x) = "':O‘N¢N(t7x)7 x> 0.

-2 _ N -2 o
Ifa; = ijz a7, the wave function

| o (t,x), x<0
ol x) = { oraltr), x>0,

IV I

satisfies the cubic NLS equation on the line R:

Oy 5290 2
=~ 2 eR
5 o el xER,

which is translationally invariant in x.



Momentum conservation

For a solution ¥ € C(R, H}.), let us define the momentum of the NLS:

P(¥) =Im(¥', ¥)p>(r)



Momentum conservation
For a solution ¥ € C(R, H}.), let us define the momentum of the NLS:
P(¥) = Im(¥’, ) 2r)
Ifay?= Z;VZZ aj_z’ the map # — P(¥) is monotonically increasing:
N N
dp 1 a3 2

J=2 i T

If in addition, the solution is symmetric and satisfies the NLS reduction:
0427/)2([7)6) = "':O‘NwN(t,x)7 X>0,

then the momentum P(J) is constant in time.



Stability of standing waves on the star graph

Shifted standing waves with parameters w > 0 and a € R:

) ()C' a) — al_l\/asech(\/a(qua)), X € (70070% J: la
e a; '/wsech(\/w(x+a)), x€(0,00), 2<j<N.

Substituting ¥ = @, + U + iW into A, («) := E(u) + wQ(u) yields
Aw(q)w-i-U-i-iW)—Aw((I)w) = <L+(OJ, a)U, U>L2(F)+<Lf (w, a)W, W>L2(1")+' SN

where

L (w,a) = —A+w—2a*®,(-;a)?,
Ly(w,a) = —A+w—602®,(;a).



Stability of standing waves on the star graph

Shifted standing waves with parameters w > 0 and a € R:

al_l\/aseCh(\/a(x+a))7 X € (70070% j=1

PSD= | a1 osech(vB(r ), x€ (0,00), 25 <N.

Substituting ¥ = @, + U + iW into A, («) := E(u) + wQ(u) yields
Aw(q)w-i-U-i-iW)—Aw((I)w) = <L+(OJ, a)U, U>L2(F)+<Lf (w, a)W7 W>L2(1")+' SN

where

L (w,a) = —A+w—2a*®,(;a)?,
Ly(w,a) = —A+w—602®,(;a).

Spectral properties of L. (w, a):
> 0.(Ly) = [w,00) withw > 0.
» L_ >0andker(L_) = span{®,}.
» &/ € ker(Ly)



Negative eigenvalues of L, (w, a)

A

/Con/tﬁluo;rs spectrum’
PHIUOHS|SPPErty

)\(]:'3

Figure: The spectrum of L4 (w,a) forw = 1.

Theorem. (Kairzhan-P., JPA, 2018) Besides simple eigenvalues \g = —3w
and A = 0, there exists exactly one additional eigenvalue A, (w, a) of
multiplicity N — 2 such that A\; (w,a) > 0 fora > 0 and A\;(w,a) < 0.



Shifted standing waves

Recall the main example for N = 3:

oy 'Vwsech(y/w(x +a)), x € (—00,0),
®(x;a) = | «a, 'Vwsech(y/w(x+a)), x € (0,00),
oy 'wsech(y/w(x +a)), x € (0,00).

=)
o

Figure: Ly (w, a) has two negative eigenvalues for a < 0 (left) and one negative
eigenvalue for a > 0 (right).



Implication of the eigenvalue count for N = 3

Ay (P, +UHIW)—A, (Py) = (Ly (w,a)U, U) 20y +(L—(w, @) W, W) 2 (py+- - -

> a < 0: &, is a saddle point of A, with two negative eigenvalues and it
remains a saddle point with one negative eigenvalue under the
constraint of fixed Q(¥) = || ¥||2..

Shifted state with a < 0 is spectrally and nonlinearly unstable.



Implication of the eigenvalue count for N = 3

Aw ((I)w+U+lW)_Aw ((I)w) = <L+ (wa a) Ua U>L2(F)+<L— (wv a)W7 W>L2(1")+' o

> a < 0: &, is a saddle point of A, with two negative eigenvalues and it
remains a saddle point with one negative eigenvalue under the
constraint of fixed Q(¥) = || ¥||2..

Shifted state with a < 0 is spectrally and nonlinearly unstable.

> a > 0: ¢, is a saddle point of A,, with one negative eigenvalue and it is
a degenerate constrained minimizer under the constraint of fixed
QO(¥) = || ||, with double zero eigenvalue.

The shifted state with a > 0 is spectrally stable. Is it nonlinearly stable?



Recap for spectrally stable shifted states with a > 0

Aw ((I)w+U+lW)_Aw ((I)w) = <L+ (wa a) Ua U>L2(F)+<L— (wv a)W7 W>L2(1")+' o

» L_ >0andker(L_) = span{®,}.

» ker(L;) = span{®/,} and L, has one negative eigenvalue.



Recap for spectrally stable shifted states with a > 0

Ay (P, +UHIW)—A, (Py) = (Ly (w,a)U, U) 20y +(L—(w, @)W, W) 2 () +- - -

» L_ >0andker(L_) = span{®,}.
» ker(L;) = span{®/,} and L, has one negative eigenvalue.

» Fixed Q(V) = || V||, produces the linear constraint (U, ®,,);> = 0 on
U = Re(V). Hessian A/ (®,,) is non-negative under the constraint.



Recap for spectrally stable shifted states with a > 0

Ay (P, +UHIW)—A, (Py) = (Ly (w,a)U, U) 20y +(L—(w, @)W, W) 2 () +- - -

» L_ >0andker(L_) = span{®,}.
> ker(L;) = span{®/ } and L has one negative eigenvalue.

» Fixed Q(V) = || V||, produces the linear constraint (U, ®,,);> = 0 on
U = Re(V). Hessian A/ (®,,) is non-negative under the constraint.

» The decomposition ¥ (x) = € [®,,(x;a) + U(x) + iW(x)] is uniquely
defined for § € R, a € R, and w > 0 subject to three constraints on U
and W including (U, ®,,);2 = 0. Hessian A/ (®,,) is strictly positive
under the three constraints.



Recap for spectrally stable shifted states with a > 0

Aw((I)w—FU-l-iW)—Aw((I)w) = <L+(w, a)U, U>L2(F)—|—<L_ (w, CI)VV7 W>L2(1")+' .-

» L_ >0andker(L_) = span{®,}.
> ker(L;) = span{®/ } and L has one negative eigenvalue.

» Fixed Q(V) = || V||, produces the linear constraint (U, ®,,);> = 0 on
U = Re(V). Hessian A/ (®,,) is non-negative under the constraint.

» The decomposition ¥ (x) = € [®,,(x;a) + U(x) + iW(x)] is uniquely
defined for § € R, a € R, and w > 0 subject to three constraints on U
and W including (U, ®,,);2 = 0. Hessian A/ (®,,) is strictly positive
under the three constraints.

» U,W € H} and w are controlled in the time evolution from energy
estimates due to coercivity of the Lyapunov function.



Drift of the shifted states

Theorem. (Kairzhan—P-Goodman, 2019)

Fix ap > 0. For every a € (0, ay) there exists ¢y > 0 (sufficiently small) such
that for every € € (0, ), there exists § > 0 and 7 > 0 such that for every
initial datum ¥ € H{. with P(¥) > 0 and

W — @, (-5 a0) |10y < 6

the unique solution ¥ € C([0, T}, Hj-) N C'([0, T], Hy') to the NLS
equation with the initial datum ¥ (0, -) = ¥ satisfies the bound

. i0 .
inf (| 9(1,-) = " @ (sale) ey e 1€ [0,7],

where a € C!([0, T)) is a strictly decreasing function such that
lim,,7a(r) = a.



Reason for the drift
Recall that the momentum of the NLS:
P(V) = Im(¥’, W) 2
is no longer constant but is monotonically increasing:

i ZZZ |,w 0) — a/(0)]’

J=2 i#j



Reason for the drift
Recall that the momentum of the NLS:
P(¥) = Im(¥', W)y
is no longer constant but is monotonically increasing:

i 222 |,w 0) — a/(0)]’

J=2 i#j

For the solution uniquely decomposed as
U(t,x) = &0 [@w(,) (x;a(t)) + U(t,x) + iW(t, x)] ,
the momentum is expanded as
P(W) = =2(®,(-;a), W) 2 (1) + O(||U + iWH%I‘(F))v
whereas the modulation equation for a(z) reads as
a=2(®}(5a), W)zr) [1+ O(|U +iWlmr))] + O(IU + Wl ),

sothata = —P(¥) + O(|U + iW|[3, ) < 0if P(¥) > P(¥p) > 0.



Numerical illustration: linear instability for a < 0
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Figure: A numerical solution for a = —0.55 and € = 0.1. The colorbar corresponds

to values of |u|>. The three panels correspond to the solution on edges 1, 2, and 3
going down.



Numerical illustration: drift instability fora > 0
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Figure: A numerical solution for a = 0.55 and € = 0.1. The colorbar corresponds to
values of |ul>.



Drift instability fora > 0
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Figure: Postprocessed quantities form the same simulation. (Top) The position of the
maximum of u. The solid line for # < 33.5 describes the position on the incoming
edge one. The dashed line for r > 33.5 shows the position of the maximum on edge
two. (Middle) The asymmetry, defined as ||u2||;2r+) — ||u3 |2 m+)- (Bottom) The
momentum P(¥) versus time 7.



Pushing experiments beyond the validity of the theorem
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Figure: A numerical solution with a = 0. (Top) The position of the maximum of |u|?,
on edge one for r < 117 and on edge three (dashed) for r > 117. (Middle)
Asymmetry of the solution between the two outgoing edges. (Bottom) The
momentum P(¥) versus time .



Conclusion

» Resonant normal forms: drift along the degenerate ground state family
is eliminated due to conserved quantities.

» PDEs on star graphs: drift along the shifted states leads to nonlinear
instability of the standing wave.



Conclusion

» Resonant normal forms: drift along the degenerate ground state family
is eliminated due to conserved quantities.

» PDEs on star graphs: drift along the shifted states leads to nonlinear
instability of the standing wave.

Thanks! Questions???
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