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I: Existence of domain walls
without potentials

D. Pelinovsky Domain walls with and without potentials 1 November 2023 2 / 33



Solitary waves in nonlinear PDEs
Bright soliton ψ(t, x) = e itsech(x)
of the focusing NLS equation

i∂tψ + ∂2xψ + 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 0 as |x | → ∞

Dark soliton ψ(t, x) = e−2it tanh(x)
of the defocusing NLS equation

i∂tψ + ∂2xψ − 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 1 as |x | → ∞
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Solitary waves in nonlinear PDEs
Bright soliton ψ(t, x) = e itsech(x)
of the focusing NLS equation

i∂tψ + ∂2xψ + 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 0 as |x | → ∞

Dark soliton ψ(t, x) = e−2it tanh(x)
of the defocusing NLS equation

i∂tψ + ∂2xψ − 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 1 as |x | → ∞

Coupled NLS models have bright-bright, bright-dark, dark-dark solitons:

i∂tψ1 + ∂2xψ1 + (±|ψ1|2 ± |ψ2|2)ψ1 = 0,
i∂tψ2 + ∂2xψ2 + (±|ψ1|2 ± |ψ2|2)ψ2 = 0.

Domain walls satisfy

|ψ1(t, x)| → 0, |ψ2(t, x)| → 1, as x → ∓∞
|ψ1(t, x)| → 1, |ψ2(t, x)| → 0, as x → ±∞

B. Malomed, “Past and present trends in the development of the
pattern-formation theory”, Physics 2021, 3(4), 1015–1045
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Domain walls from the energetic point of view
Bulk energy with stable states

W : R2 → R, W (u) ≥ 0, W (p+) = W (p−) = 0

The total energy

E (u) =

∫
R

[
1

2
|∇u|2 + W (u)

]
dx

Domain walls are heteroclinic orbits with profile U connecting p±:

−U ′′ + DW (U) = 0, U → p± as x → ±∞

p� p+

�0
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Example: Gross-Pitaevskii system without potentials
Motivated by two-component (repulsive) Bose-Einstein condensates,

i∂tψ1 = −∂2xψ1 + (g11|ψ1|2 + g12|ψ2|2)ψ1,

i∂tψ2 = −∂2xψ2 + (g12|ψ1|2 + g22|ψ2|2)ψ2,

with g11 > 0, g22 > 0, and g12 >
√
g11g22.

With normalization g11 = g22 = 1, g12 = γ > 1, the standing waves
ψj(t, x) = e−ituj(x) satisfy

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0,

with the bulk energy

W (u1, u2) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

Barankov (2002), Dror-Malomed-Zeng (2011), Filatrella–Malomed (2014)
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Domain walls satisfy the boundary-value problem:

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0,

with (u1, u2)→ (0, 1) as x → ∓∞, and (u1, u2)→ (1, 0) as x → ±∞.

Example: exact solution for γ = 3:

u1(x) =
1

2

[
1 + tanh

(
x√
2

)]
, u2(x) =

1

2

[
1− tanh

(
x√
2

)]
.
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0.

Uncoupled states (u1, u2) = (1, 0) and (u1, u2) = (0, 1)

Coupled symmetric state (u1, u2) = (1 + γ)−1/2(1, 1).

Recall W (u1, u2) = 1
2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2 .
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Recall W (u1, u2) = 1
2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2 .

For γ ∈ (0, 1),

W (u1, u2) ≥ − γ(1− γ)

2(1 + γ)2
= W ((1 + γ)−1/2, (1 + γ)−1/2)

hence the symmetric state is the minimizer of W (u1, u2) for γ ∈ (0, 1).
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Other positive solutions exist in the coupled system:

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0.

Uncoupled states (u1, u2) = (1, 0) and (u1, u2) = (0, 1)

Coupled symmetric state (u1, u2) = (1 + γ)−1/2(1, 1).

Recall W (u1, u2) = 1
2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2 .

For γ > 1,
W (u1, u2) ≥ 0 = W (1, 0) = W (0, 1)

hence the uncoupled states are the minimizers of W (u1, u2) for γ > 1.
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0.

Uncoupled states (u1, u2) = (1, 0) and (u1, u2) = (0, 1)

Coupled symmetric state (u1, u2) = (1 + γ)−1/2(1, 1).

Recall W (u1, u2) = 1
2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2 .

Domain walls are the minimizers of the energy
E (U) = 1

2

∫
R[|u′1|2 + |u′2|2 + W (u1, u2)]dx in the energy space

D =
{
U = (u1, u2) ∈ H1

loc(R) : |U(x)| → e± as x → ±∞
}
.

Such minimizers only exist for γ > 1.
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Existence of domain walls
Recall the energy E (U) = 1

2

∫
R[|U ′|2 + W (U)]dx with U = (u1, u2) and

W (U) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

Theorem (Alama–Bronsard–Contreras–P., 2015)

For γ > 1,

The infimum of E (U) is attained among functions U ∈ H1
loc(R) with

U(x)→ e± as x → ±∞, where e+ = (1, 0) and e− = (0, 1).

Every minimizer U = (u1, u2) satisfies

(a) u1(x) = u2(−x) for all x ∈ R.
(b) u21(x) + u22(x) ≤ 1 for all x ∈ R.
(c) u′1(x) > 0 and u′2(x) < 0 for all x ∈ R.
(d) 0 < u1,2(x) < 1 with exponential convergence to constant states.

Uniqueness in Aftalion-Sourdis (2016); Farina-Sciunzi-Soave (2017).
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Bifurcations of domain walls

For γ = 1, there exists rotational state (u1, u2) = (sin θ, cos θ) for which

W (u1, u2) ≥ 0 = W (sin θ, cos θ).

Bifurcation of domain walls can be anticipated from the rotational state.

A useful asymptotic approximation (u1, u2) = (sin θ, cos θ) on u21 + u22 = 1
for γ ≈ 1 (Contreras-P-Slastikov, 2022):

E (U) =
1

2

∫
R

[|θ′|2 + (γ − 1) sin2 θ cos2 θ]dx

Minimizers satisfy −θ′′(x) + 1
4(γ − 1) sin2(4θ) = 0 and exist for γ > 1 in

the exact form: θ(x) = π
2 − arctan(e−

√
γ−1x).
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II: Orbital stability of domain walls
without potentials
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Decomposition of energy for stability argument
Energy

E (U) =
1

2

∫
R

(|ψ′1|2 + |ψ2|2 +
1

2
(|ψ1|2 + |ψ2|2 − 1)2 + (γ − 1)|ψ1|2|ψ2|2)dx

is decomposed in the form:

E (U+V + iW )−E (U) = (L+V ,V )L2 +(L−W ,W )L2 +O(‖V + iW ‖3H1(R)),

where L± are matrix Schrödinger operators for Hessians. However, cubic
terms cannot be controlled in H1(R) because of phase modulations.
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(|ψ1|2 + |ψ2|2 − 1)2 + (γ − 1)|ψ1|2|ψ2|2)dx

is decomposed in the form:

E (U+V + iW )−E (U) = (L+V ,V )L2 +(L−W ,W )L2 +O(‖V + iW ‖3H1(R)),

where L± are matrix Schrödinger operators for Hessians. However, cubic
terms cannot be controlled in H1(R) because of phase modulations.

The second variation satisfies the following properties:

Self-adjoint operator L+ and L− are positive semi-definite in H1(R).

∃ Σ0 > 0 : σess(L+) = [Σ0,∞). σess(L−) = [0,∞)

Zero is a simple eigenvalue of L+, with eigenfunction ∂xU > 0.

L−U1 = L−U2 = 0 with U1 = (u1, 0) and U2 = (0, u2).
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Energy

E (U) =
1

2

∫
R

(|ψ′1|2 + |ψ2|2 +
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2
(|ψ1|2 + |ψ2|2 − 1)2 + (γ − 1)|ψ1|2|ψ2|2)dx

is decomposed in the form:

E (U+V + iW )−E (U) = (L+V ,V )L2 +(L−W ,W )L2 +O(‖V + iW ‖3H1(R)),

where L± are matrix Schrödinger operators for Hessians. However, cubic
terms cannot be controlled in H1(R) because of phase modulations.
As a result, we have coercivity

(L+V ,V )L2 ≥ C0‖V ‖2H1 for every V ∈ H1(R) : (V , ∂xU)L2 = 0

and the lack of coercivity:

(L−W ,W )L2 ≥ 0, with L−U1 = L−U2 = 0.
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The problem of phase modulations

Similar problems are known for dark solitons in the scalar NLS equation

iψt + ψxx − |ψ|2ψ = 0.

Perturbations in the energy space can be considered with the distance:

ρA(ψ,ϕ) :=
[∥∥ψ′ − ϕ′∥∥

L2(R) +
∥∥|ψ|2 − |ϕ|2∥∥

L2(R) +
∥∥ψ − ϕ∥∥

L∞(−A,A)

]
for some A > 0
Bethuel–Gravejat–Saut–Smets (2008)
or with the exponentially weighted distance:

ρ(ψ,ϕ) =
[∥∥ψ′ − ϕ′∥∥

L2(R) +
∥∥|ψ|2 − |ϕ|2∥∥

L2(R) +
∥∥sech(·)(ψ − ϕ)

∥∥
L2(R)

]
Gravejat–Smets (2015)
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

where Υ = (η1, η2) with ηj := |uj + vj + iwj |2 − u2j = 2ujvj + v2j + w2
j and

M =

[
1 γ
γ 1

]
: det(M) = 1− γ2 < 0.
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

One can introduce weighted H1 space:

〈Ψ,Φ〉H :=
2∑

j=1

∫
R

[
dψj

dx

dϕ̄j

dx
+ (γ − 1)(1− u2j )ψj ϕ̄j

]
dx

and write
(L−W ,W )L2 = ‖W ‖2H − γ〈TW ,W 〉H,

where T : H → H is the compact positive operator defined by

〈TΨ,Φ〉H :=

∫
R

(
1− u21 − u22

)
(ψ1ϕ̄1 + ψ2ϕ̄2) dx .
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

Then,

The spectrum of L− in H consists of isolated eigenvalues
accumulating to 1.

The smallest eigenvalue of L− is a double zero
with U1 = (u1, 0) ∈ H and U2 = (0, u2) ∈ H.

As a result, the quadratic form is coercive under the two constraints

(L−W ,W )L2 ≥ C‖W ‖2H ∀W ∈ H : 〈W ,U1〉H = 〈W ,U2〉H = 0.
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

However,

Only one constraint can be set on V in (L−V ,V )L2 .

The nonlinear part (MΥ,Υ)L2 is sign-indefinite since

M =

[
1 γ
γ 1

]
: det(M) = 1− γ2 < 0.

D. Pelinovsky Domain walls with and without potentials 1 November 2023 13 / 33



(Revised) alternative decomposition of energy

We introduce the family of distances parameterized by (large) R > 0:

ρR(Ψ,Φ) :=
∥∥Ψ− Φ

∥∥
H +

∑
j=1,2

∥∥|ψj |2 − |ϕj |2
∥∥
L2(|x |≥R)

.

in addition to

〈Ψ,Φ〉H :=
2∑

j=1

∫
R

[
dψj

dx

dϕ̄j

dx
+ (γ − 1)(1− u2j )ψj ϕ̄j

]
dx .
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(Revised) alternative decomposition of energy

The revised alternative decomposition can be controlled in ρR :

E (U + V + iW )− E (U) = (LRV ,V )L2 + (L−W ,W )L2

+

∫ R

−R
[N3(V ,W ) + N4(V ,W )] dx +

1

2

(∫ −R
−∞

+

∫ ∞
R

)
(η21 + η22)dx

+γ

∫ −R
−∞

η2(2u1v1 + v21 + w2
1 )dx + γ

∫ ∞
R

η1(2u2v2 + v22 + w2
2 )dx ,

where

LR = L− + 2

[
u21 γu1u2

γu1u2 u22

]
χ[−R,R]

= L+ − 2

[
u21 γu1u2

γu1u2 u22

]
χ(−∞,−R)∪(R,∞).

As R →∞, LR → L+ and L+∂xU = 0 with ∂xU ∈ H.
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(Revised) alternative decomposition of energy

The spectrum of LR in H consists of isolated eigenvalues
accumulating to 1.

The zero eigenvalue is shifted for R <∞ but is near 0 if R is large.

As a result, the quadratic form is coercive under one constraint

(LRV ,V )L2 ≥ C‖V ‖2H ∀V ∈ H : 〈V , ∂xU〉H = 0.

The nonlinear terms can be controlled inside and outside of [−R,R], e.g.

‖V + iW ‖H1(−R,R) ≤ CeκR‖V + iW ‖H

and ∣∣∣∣∫ ∞
R

η1(2u2v2 + v22 + w2
2 )dx

∣∣∣∣ ≤ Ce−κR‖V + iW ‖H‖η1‖L2(|x |≥R).
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Orbital Stability

Theorem (Contreras–P–Plum, 2018)

Let Ψ0 ∈ D ∩ L∞(R). There exists R0 > 0 such that for any R > R0 and
for every ε > 0, there is δ > 0 and real functions α(t), θ1(t), θ2(t) such
that if ρR(Ψ0,U) ≤ δ, then supt∈R ρR(Ψ(t),Uα(t),θ1(t),θ2(t)) ≤ ε, where

Uα(t),θ1(t),θ2(t) = (e−iθ1(t)u1(· − α(t)), e−iθ2(t)u2(· − α(t))).

Here
ρR(Ψ,Φ) :=

∥∥Ψ− Φ
∥∥
H +

∑
j=1,2

∥∥|ψj |2 − |ϕj |2
∥∥
L2(|x |≥R)

and

〈Ψ,Φ〉H :=
2∑

j=1

∫
R

[
dψj

dx

dϕ̄j

dx
+ (γ − 1)(1− u2j )ψj ϕ̄j

]
dx .
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Remarks

Modulation parameters α, θ1, and θ2 in the orbit of domain walls

Uα(t),θ1(t),θ2(t) = (e−iθ1(t)u1(· − α(t)), e−iθ2(t)u2(· − α(t)))

are uniquely determined by the projection algorithm.

The time evolution of the modulation parameters is controlled:

|α(t)|+ |θ1(t)|+ |θ2(t)| ≤ Cε(1 + |t|), t ∈ R

for some C > 0.

If R is large, then δ and ε are exponentially small in R.
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III: Domain walls
in external potentials
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Domain walls in small bounded potentials

Consider the domain walls in small bounded potentials:

i∂tψ1 = −∂2xψ1 + εV (x)ψ1 + (|ψ1|2 + γ|ψ2|2)ψ1,

i∂tψ2 = −∂2xψ2 + εV (x)ψ2 + (γ|ψ1|2 + |ψ2|2)ψ2,

where V ∈W 2,∞(R) ∩ L1(R) and ε� 1 is small.

Domain walls (u1, u2) are pinned to the extremal points of the potential V
and the pinning is stable at the maximum of the potential:

∃x0 ∈ R : V ′(x0) = 0, V ′′(x0) < 0.

Dror-Malomed-Zeng 2011, Alama–Bronsard–Contreras–P 2015

For applications to Bose–Einstein condensates in magnetic traps, we need
to consider V (x) = x2 which violates assumptions on V (x).
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Numerical results (motivations)
Consider the domain walls in the semi-classical limit:

i∂tψ1 = −ε2∂2xψ1 + x2ψ1 + (|ψ1|2 + γ|ψ2|2)ψ1,

i∂tψ2 = −ε2∂2xψ2 + x2ψ2 + (γ|ψ1|2 + |ψ2|2)ψ2.

where ε� 1 is small.

Navarro–Carretero-Gonzále–Kevrekidis 2008
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Stationary states in the harmonic potentials

Existence is found from the stationary Gross–Pitaevskii equations:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0.

All solutions (ψ1, ψ2) decay like Hermite–Gauss functions at infinity.
How to define domain walls among the localized solutions?

If we are to study domain walls variationally, we need the energy of the
Gross–Pitaevskii system which is defined in H1(R) ∩ L2,1(R):

Gε(Ψ) =
1

2

∫
R

[
ε2(ψ′1)2 + ε2(ψ′2)2 + (x2 − 1)(ψ2

1 + ψ2
2)

+
1

2
(ψ2

1 + ψ2
2)2 + (γ − 1)ψ2

1ψ
2
2

]
dx .
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Ground state of the scalar Gross–Pitaevskii theory

The scalar stationary Gross–Pitaevskii equation

−ε2η′′ε (x) + (x2 + η2ε(x)− 1)ηε(x) = 0,

admits the ground state of energy with ηε(x) > 0.

The limiting Thomas–Fermi
approximation:

lim
ε→0

ηε(x) =
√

1− x2 1{|x |<1}

with the convergence:
‖ηε − η0‖L∞ ≤ Cε1/3,
‖η′ε‖L∞ ≤ Cε−1/3.
Ignat–Millot (2006); Gallo–P (2011)
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Domain walls in harmonic potentials
By using the transformation ψ1,2(x) = ηε(x)φ1,2(x/ε) and changing the
variables x → z := x/ε, we obtain Gε(Ψ) = Gε(Υε) + εJε(Φ), where

Jε(Φ) =
1

2

∫
R
ηε(εz)2

[
(φ′1)2 + (φ′2)2

]
dz

+
1

2

∫
R
ηε(εz)4

[
1

2
(φ21 + φ22 − 1)2 + (γ − 1)φ21φ

2
2

]
dz .

Ψ ∈ H1 ∩ L2,1 is a minimizer of Gε if and only if Φ is a minimizer of Jε.

The limit ε→ 0 with η0(0) = 1
recovers domain walls without
harmonic potentials for γ > 1.
By the Γ convergence theorem,

Jε → J0 as ε→ 0

Contreras–P–Slastikov (2022)
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Domain walls in harmonic potentials
By using the transformation ψ1,2(x) = ηε(x)φ1,2(x/ε) and changing the
variables x → z := x/ε, we obtain Gε(Ψ) = Gε(Υε) + εJε(Φ), where

Jε(Φ) =
1

2

∫
R
ηε(εz)2

[
(φ′1)2 + (φ′2)2

]
dz

+
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2
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R
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2
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]
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Ψ ∈ H1 ∩ L2,1 is a minimizer of Gε if and only if Φ is a minimizer of Jε.

The limit ε→ 0 with η0(0) = 1
recovers domain walls without
harmonic potentials for γ > 1.
By the Γ convergence theorem,

Jε → J0 as ε→ 0

Contreras–P–Slastikov (2022)
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

Uncoupled states (ψ1, ψ2) = (ηε, 0) and (ψ1, ψ2) = (0, ηε)

Symmetric state (ψ1, ψ2) = (1 + γ)−1/2(ηε, ηε).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

Uncoupled states (ψ1, ψ2) = (ηε, 0) and (ψ1, ψ2) = (0, ηε)

Symmetric state (ψ1, ψ2) = (1 + γ)−1/2(ηε, ηε).

By the same reason for γ ∈ (0, 1),

W (u1, u2) =
1

2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2

≥ − γ(1− γ)

2(1 + γ)2
= W ((1 + γ)−1/2, (1 + γ)−1/2)

the symmetric state is the minimizer of Gε for γ ∈ (0, 1).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

Uncoupled states (ψ1, ψ2) = (ηε, 0) and (ψ1, ψ2) = (0, ηε)

Symmetric state (ψ1, ψ2) = (1 + γ)−1/2(ηε, ηε).

By the same reason for γ > 1,

W (u1, u2) =
1

2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2

≥ 0 = W (1, 0) = W (0, 1)

the uncoupled states are the minimizers of Gε for γ > 1.
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Spaces for Minimization

Domain walls arise as minimizers of Gε in the energy space with the
symmetry:

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R}.

Theorem (Contreras–P–Slastikov, 2022)

There exists ε0 > 0 such that for every ε ∈ (0, ε0) there is γ0(ε) ∈ (1,∞)
such that the symmetric state is a global minimizer of the energy Gε in Es
if γ ∈ (0, γ0(ε)] and a saddle point if γ ∈ (γ0(ε),∞).

Domain wall states are global minimizers of the energy Gε in Es if
γ ∈ (γ0(ε),∞): one satisfies ψ1(x) > ψ2(x) > 0 for x > 0 and the other
one obtained by the transformation ψ1 ↔ ψ2.
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Bifurcation diagram

It follows that γ0(ε)→ 1 as ε→ 0. Contreras–P–Slastikov (2022)
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Second variation

Variational analysis is complemented by the study of the second variation
at the symmetric state Ψ = (1 + γ)−1/2(ηε, ηε):

G ′′ε (Ψ) =

(
−ε2∂2x + x2 + 3ψ2

1 + γψ2
2 − 1 2γψ1ψ2

2γψ1ψ2 −ε2∂2x + x2 + γψ2
1 + 3ψ2

2 − 1

)
=

(
−ε2∂2x + x2 + 3+γ

1+γ η
2
ε − 1 2γ

1+γ η
2
ε

2γ
1+γ η

2
ε −ε2∂2x + x2 + 3+γ

1+γ η
2
ε − 1

)
.
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Second variation

After rotation, G ′′ε (Ψ) becomes(
L+ 0

0 L− + 21−γ
1+γ η

2
ε

)
,

L+ := −ε2∂2x + x2 − 1 + 3η2ε ,
L− := −ε2∂2x + x2 − 1 + η2ε ,

where L+ > 0 and L− ≥ 0 with L−ηε = 0 Gallo–P, 2011
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Second variation

After rotation, G ′′ε (Ψ) becomes(
L+ 0

0 L− + 21−γ
1+γ η

2
ε

)
,

L+ := −ε2∂2x + x2 − 1 + 3η2ε ,
L− := −ε2∂2x + x2 − 1 + η2ε ,

where L+ > 0 and L− ≥ 0 with L−ηε = 0 Gallo–P, 2011

Under the symmetry constraint in

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R}.

and the rotation, bifurcation from the symmetric state to the domain wall
corresponds to the second eigenvalue of Lγ crossing 0, where

Lγ := L− + 2
1− γ
1 + γ

η2ε .
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More about bifurcation diagram

For γ = 1, there is rotational symmetry with 1-parameter family

ψ1(x) = cos θ ηε(x), ψ2(x) = sin θ ηε(x).

If γ 6= 1, however, only solutions with θ = {0, π4 ,
π
2 } bifurcate from the

family and they correspond to the uncoupled and symmetric states.
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Proper analysis of bifurcation at γ0(ε) as ε→ 0

Let us rescale near (ε, γ) = (0, 1):

z 7→ y := z
√
γ − 1, Φ(z) = U(y), ε = µ

√
γ − 1,

so that Jε(Φ) =
√
γ − 1Iµ,γ(U) is given by

Iµ,γ(U) =
1

2

∫
R
ηε(µy)2

[
(u′1)2 + (u′2)2

]
dy

+
1

4(γ − 1)

∫
R
ηε(µy)4(u21 + u22 − 1)2dy +

1

2

∫
R
ηε(µy)4u21u

2
2dy .
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Let us rescale near (ε, γ) = (0, 1):

z 7→ y := z
√
γ − 1, Φ(z) = U(y), ε = µ

√
γ − 1,

so that Jε(Φ) =
√
γ − 1Iµ,γ(U) is given by

Iµ,γ(U) =
1

2

∫
R
ηε(µy)2

[
(u′1)2 + (u′2)2

]
dy

+
1

4(γ − 1)

∫
R
ηε(µy)4(u21 + u22 − 1)2dy +

1

2

∫
R
ηε(µy)4u21u

2
2dy .

The limit γ → 1 gives in the sense of Γ convergence:

Iµ,γ(U)→ Iµ,1(θ) =
1

2

∫ µ−1

−µ−1

[
η0(µy)2(θ′)2 +

1

4
η0(µy)4 sin2(2θ)

]
dy ,

where (u1, u2) = (sin(θ), cos(θ)).
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Proper analysis of bifurcation at γ0(ε) as ε→ 0

Iµ,1(θ) =
1

2

∫ µ−1

−µ−1

[
η0(µy)2(θ′)2 +

1

4
η0(µy)4 sin2(2θ)

]
dy .

Theorem (Contreras–P–Slastikov, 2022)

There exists µ0 ∈ (0,∞) such that θ = π
4 (symmetric state) is a global

minimizer of the energy Iµ,1 if µ ∈ [µ0,∞) and a saddle point of Iµ,1 if
µ ∈ (0, µ0). The domain wall states exist only if µ ∈ (0, µ0) and are global
minimizers of the energy Iµ,1.
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Proper analysis of bifurcation at γ0(ε) as ε→ 0

Iµ,1(θ) =
1

2

∫ µ−1

−µ−1

[
η0(µy)2(θ′)2 +

1

4
η0(µy)4 sin2(2θ)

]
dy .

Theorem (Contreras–P–Slastikov, 2022)

There exists µ0 ∈ (0,∞) such that θ = π
4 (symmetric state) is a global

minimizer of the energy Iµ,1 if µ ∈ [µ0,∞) and a saddle point of Iµ,1 if
µ ∈ (0, µ0). The domain wall states exist only if µ ∈ (0, µ0) and are global
minimizers of the energy Iµ,1.

Bifurcation corresponds to the second eigenvalue ν = µ−2

− d

dx

[
(1− x2)

dv

dx

]
= ν(1− x2)2v(x), −1 < x < 1.

It is found at ν0 ≈ 7.29 which determines γ0(ε) = 1 + ν0ε
2 +O(ε4).
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Bifurcation diagram

The magenta line corresponds to γ0(ε) = 1 + ν0ε
2.
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Comparison between numerical and asymptotic
approximations for ε = 0.1 and γ = 1.2
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IV: Numerical approximations
of domain walls

in harmonic potentials
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Numerical approximations of domain walls

We consider the half-line energy space:

Dα := {Ψ ∈ H1(R+) ∩ L2,1(R+) : ψ1(0) = ψ2(0) = α}.

Such minimizers Ψα = (ψ1, ψ2) of energy Gε always exist in Dα.
Ψα becomes the minimizer of Gε on full line R with the symmetry
ψ1(x) = ψ2(−x) under the following two numerically detected conditions:

Split function Sε(α) := ψ′1(0) + ψ′2(0) vanishes

Energy Gε(Ψα) is minimal.
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Numerical approximations of domain walls

For fixed ε = 0.1 and γ = 3:
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Numerical approximations of domain walls

For optimal α, we get the domain wall solution with ψ1(x) = ψ2(−x):
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Summary

Domain walls Ψ = (ψ1, ψ2) of the coupled Gross–Pitaevskii equations:

−ε2∂2xψ1 + V (x)ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + V (x)ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

are minimizers of energy in the energy space with symmetry

are orbitally stable in a weighted H1(R) energy space

persist under small bounded potentials

persist under harmonic potentials
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Summary

Domain walls Ψ = (ψ1, ψ2) of the coupled Gross–Pitaevskii equations:

−ε2∂2xψ1 + V (x)ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + V (x)ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

are minimizers of energy in the energy space with symmetry

are orbitally stable in a weighted H1(R) energy space

persist under small bounded potentials

persist under harmonic potentials

Conjectures:

Domain walls are asymptotically stable,

Domain walls do not travel in space with constant speed.
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−ε2∂2xψ2 + V (x)ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

are minimizers of energy in the energy space with symmetry

are orbitally stable in a weighted H1(R) energy space

persist under small bounded potentials

persist under harmonic potentials

Many thanks for your attention!
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